1
|
Li X, Chen L, Hong C, Tian W, Yu K, Liu H. Development of a chromatographic method for optimizing the thiol-maleimide coupling of polyoxometalate-polymer hybrids. J Chromatogr A 2024; 1721:464861. [PMID: 38564931 DOI: 10.1016/j.chroma.2024.464861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The covalent attachment of polyoxometalates (POMs) to polymers has been developed as a strategic approach for the advancement of POM-based hybrid materials with versatile applications. In this study, we utilized thiol-maleimide Michael addition to investigate the kinetics and efficacy of the "one-to-one" conjugation between Keggin type POM and polystyrene. We explored the effects of solvent polarity, catalyst, molecular weight of PS and synthetic strategies on the reaction kinetics and efficiency, by means of reverse-phase high-performance liquid chromatography (RP-HPLC). A series of comparative analysis affirmed the superior efficiency of the one-pot method, particularly when facilitated by the addition of a high-polarity solvent and an excess of maleimide. These findings offer valuable insights into the intricate interplay between reaction conditions, kinetics, and selectivity in thiol-maleimide reactions of POMs and polymers. They hold profound implications for advancing the study of POM-based multifunctional materials and the synthesis of complex hybrid molecules.
Collapse
Affiliation(s)
- Xiangqian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lu Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Chengyang Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Wei Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Kun Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Gao Y, Choudhari M, Such GK, Ritchie C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem Sci 2022; 13:2510-2527. [PMID: 35356680 PMCID: PMC8890132 DOI: 10.1039/d1sc05879g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/21/2021] [Indexed: 01/16/2023] Open
Abstract
Polyoxometalates (POMs) are anionic molecular metal oxides with expansive diversity in terms of their composition, structure, nuclearity and charge. Within this vast collection of compounds are dominant structural motifs (POM platforms), that are amenable to significant chemical tuning with minimal perturbation of the inorganic oxide molecular structure. Consequently, this enables the systematic investigation of these compounds as inorganic additives within materials whereby structure and charge can be tuned independently i.e. [PW12O40]3- vs. [SiW12O40]4- while also investigating the impact of varying the charge balancing cations on self-assembly. The rich surface chemistry of POMs also supports their functionalisation by organic components to yield so-called inorganic-organic hybrids which will be the key focus of this perspective. We will introduce the modifications possible for each POM platform, as well as discussing the range of nanoparticles, microparticles and surfaces that have been developed using both surfactant and polymer building blocks. We will also illustrate important examples of POM-hybrids alongside their potential utility in applications such as imaging, therapeutic delivery and energy storage.
Collapse
Affiliation(s)
- Yanting Gao
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Manjiri Choudhari
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
| | - Chris Ritchie
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
4
|
Cameron JM, Guillemot G, Galambos T, Amin SS, Hampson E, Mall Haidaraly K, Newton GN, Izzet G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: from functional building blocks to hierarchical nanomaterials. Chem Soc Rev 2021; 51:293-328. [PMID: 34889926 DOI: 10.1039/d1cs00832c] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties (e.g. solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities. Here, we present a detailed discussion of the design opportunities afforded by hybrid POMs, where fine control over their size, topology and their covalent and non-covalent interactions with a range of other species and/or substrates makes them ideal building blocks in the assembly of a broad range of supramolecular hybrid nanomaterials. We review both direct self-assembly approaches (encompassing both solution and solid-state approaches) and the non-covalent interactions of hybrid POMs with a range of suitable substrates (including cavitands, carbon nanotubes and biological systems), while giving key consideration to the underlying driving forces in each case. Ultimately, this review aims to demonstrate the enormous potential that the rational assembly of hybrid POM clusters shows for the development of next-generation nanomaterials with applications in areas as diverse as catalysis, energy-storage and molecular biology, while providing our perspective on where the next major developments in the field may emerge.
Collapse
Affiliation(s)
- Jamie M Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Theodor Galambos
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Sharad S Amin
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Elizabeth Hampson
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Kevin Mall Haidaraly
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | - Graham N Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group, The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, UK.
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| |
Collapse
|
5
|
Biais P, Engel M, Colombani O, Nicolai T, Stoffelbach F, Rieger J. Thermoresponsive dynamic BAB block copolymer networks synthesized by aqueous PISA in one-pot. Polym Chem 2021. [DOI: 10.1039/d0py01424a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of neutral hydrophilic monomer units in the hydrophobic B blocks of BAB copolymers produces transient networks exhibiting a thermoresponsive behavior with a maximum of viscosity in water.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Marie Engel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| |
Collapse
|
6
|
Yu X, Cui H, Wang Q, Li J, Su F, Zhang L, Sang X, Zhu Z. Construction and visible‐light photocatalytic performance of carboxyethyltin/transition metal–functionalized wheel‐like tungstophosphates. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao‐Shu Yu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Hong‐Juan Cui
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Qi‐Zhi Wang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Jian‐Sheng Li
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Fang Su
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Lan‐Cui Zhang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Xiao‐Jing Sang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| | - Zai‐Ming Zhu
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian 116029 China
| |
Collapse
|
7
|
Anyushin AV, Vanhaecht S, Parac-Vogt TN. A Bis-organosilyl-Functionalized Wells-Dawson Polyoxometalate as a Platform for Facile Amine Postfunctionalization. Inorg Chem 2020; 59:10146-10152. [PMID: 32628015 DOI: 10.1021/acs.inorgchem.0c01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of modular platforms that can undergo postfunctionalization reactions permits coupling of inorganic clusters with different organic functionalities, thereby expanding the range of key physicochemical properties that are relevant for applications in different areas of science. In this work, a novel hybrid Wells-Dawson polyoxometalate (POM) platform was developed and successfully used for postfunctionalization via a nucleophilic substitution reaction. Two new halogen-functionalized bis-organosilyl Wells-Dawson POMs TBA6[α2-P2W17O61{O(SiC3H6-X)2}] (X = Cl or I) were synthesized, and their coupling with amine substrates was explored in a one-step postfunctionalization reaction. The iodide form of the POM has proven to be much more reactive, and its reaction with a range of primary and secondary amines resulted in a series of new bis-substituted Wells-Dawson POMs with the general formula TBA6[α2-P2W17O61{O(SiC3H6-NR1R2)2}]. Coupling of 18 amines with R1 and R2 groups, which exhibited a wide variety in terms of both chemical nature and bulkiness, was achieved under mild conditions via a catalyst-free approach. Using Na2CO3 as a base in acetonitrile solutions at 55 °C resulted in hybrid products that were obtained in high purity and good yields, after a simple isolation and purification procedure.
Collapse
Affiliation(s)
| | - Stef Vanhaecht
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
8
|
Biais P, Colombani O, Bouteiller L, Stoffelbach F, Rieger J. Unravelling the formation of BAB block copolymer assemblies during PISA in water. Polym Chem 2020. [DOI: 10.1039/d0py00422g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BAB triblock copolymers prepared by PISA in water self-assemble into a transient network of bridged micelles. The slowdown of the exchange of B blocks between micelles during PISA is highlighted as well as the parameters affecting the polymerization.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- Avenue Olivier Messiaen
- 72085 Le Mans Cedex 9
- France
| | - Laurent Bouteiller
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| |
Collapse
|
9
|
Anyushin AV, Kondinski A, Parac-Vogt TN. Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem Soc Rev 2019; 49:382-432. [PMID: 31793568 DOI: 10.1039/c8cs00854j] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyoxometalates (POMs) represent an important group of metal-oxo nanoclusters, typically comprised of early transition metals in high oxidation states (mainly V, Mo and W). Many plenary POMs exhibit good pH, solvent, thermal and redox stability, which makes them attractive components for the design of covalently integrated hybrid organic-inorganic molecules, herein referred to as hybrid-POMs. Until now, thousands of organic hybrid-POMs have been reported; however, only a small fraction can be further functionalized using other organic molecules or metal cations. This emerging class of 'post-functionalizable' hybrid-POMs constitute a valuable modular platform that permits coupling of POM properties with different organic and metal cation functionalities, thereby expanding the key physicochemical properties that are relevant for application in (photo)catalysis, bioinorganic chemistry and materials science. The post-functionalizable hybrid-POM platforms offer an opportunity to covalently link multi-electron redox responsive POM cores with virtually any (bio)organic molecule or metal cation, generating a wide range of materials with tailored properties. Over the past few years, these materials have been showcased in the preparation of framework materials, functional surfaces, surfactants, homogeneous and heterogeneous catalysts and light harvesting materials, among others. This review article provides an overview on the state of the art in POM post-functionalization and highlights the key design and structural features that permit the discovery of new hybrid-POM platforms. In doing so, we aim to make the subject more comprehensible, both for chemists and for scientists with different materials science backgrounds interested in the applications of hybrid (POM) materials. The review article goes beyond the realms of polyoxometalate chemistry and encompasses emerging research domains such as reticular materials, surfactants, surface functionalization, light harvesting materials, non-linear optics, charge storing materials, and homogeneous acid-base catalysis among others.
Collapse
|
10
|
Zhang LL, Miao WK, Ren LJ, Yan YK, Lin Y, Wang W. Twining Poly(polyoxometalate) Chains into Nanoropes. Chemistry 2019; 25:13396-13401. [PMID: 31397509 DOI: 10.1002/chem.201902875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/08/2019] [Indexed: 12/22/2022]
Abstract
Organic polymers and inorganic clusters belong to two different disciplines and have completely different properties and structures. When a cluster is attached to the backbone of a polymer as a pendant, the resultant hybrid polymers (polyclusters) exhibit unique behaviours totally different from those of conventional polymers owing to the nanoscale size of the cluster and its particular interactions. Herein, the aggregation of a poly(polyoxometalate)-a polynorbornene backbone with inorganic polyoxometalate cluster pendants-upon addition of a non-solvent to its dilute solution is reported. A three-dimensional network of tangled and snake-like nanothreads was observed. Direct visualisation of individual nanoscale clusters enabled identification of single chains within the nanothreads. These observations suggest that during the process of aggregation, the hybrid polymer forms curved or extended chains as a consequence of an armouring effect in which the collapsed cluster pendants wrap around the backbone. The collapse occurs because they become less soluble in the solvent/non-solvent mixture. The extended chains then become entwined and form nanoropes consisting of multiple chains wound around each other. This study provides a deeper understanding of the nature of polyclusters and should also prove useful for their future development and application.
Collapse
Affiliation(s)
- Lan-Lan Zhang
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Wen-Ke Miao
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu-Kun Yan
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of, Functional Polymer Materials of Ministry of Education and Institute of, Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
11
|
Yu SJ, Han YK, Wang W. Unravelling concentration-regulated self-assembly of a protonated polyoxometalate-polystyrene hybrid. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Mellot G, Guigner JM, Jestin J, Bouteiller L, Stoffelbach F, Rieger J. Bisurea-Functionalized RAFT Agent: A Straightforward and Versatile Tool toward the Preparation of Supramolecular Cylindrical Nanostructures in Water. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gaëlle Mellot
- Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, Cedex 05 F-75252 Paris, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, UMR 7590-IRD-MNHN, F-75005 Paris, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Bât. 563, CEA Saclay, Cedex 91191 Gif-sur-Yvette, France
| | - Laurent Bouteiller
- Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, Cedex 05 F-75252 Paris, France
| | - François Stoffelbach
- Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, Cedex 05 F-75252 Paris, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, Cedex 05 F-75252 Paris, France
| |
Collapse
|
13
|
Zhou J, Yao H, Ma J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00065d] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We summarized the RAFT-mediated surfactant-free emulsion polymerization using various RAFT agents and the polymerization types for the preparation of organic/inorganic hybrid materials.
Collapse
Affiliation(s)
- Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Hongtao Yao
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| |
Collapse
|
14
|
Yu CB, Ren LJ, Wang W. Synthesis and Self-Assembly of a Series of nPOSS-b-PEO Block Copolymers with Varying Shape Anisotropy. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng-Bin Yu
- Center
for Synthetic Soft Materials, Key Laboratory of Functional
Polymer Materials of Ministry of Education and Institute of Polymer
Chemistry, College of Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Li-Jun Ren
- Center
for Synthetic Soft Materials, Key Laboratory of Functional
Polymer Materials of Ministry of Education and Institute of Polymer
Chemistry, College of Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Wei Wang
- Center
for Synthetic Soft Materials, Key Laboratory of Functional
Polymer Materials of Ministry of Education and Institute of Polymer
Chemistry, College of Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Vanhaecht S, Quanten T, Parac-Vogt TN. A Simple Nucleophilic Substitution as a Versatile Postfunctionalization Method for the Coupling of Nucleophiles to an Anderson-Type Polyoxometalate. Inorg Chem 2017; 56:3095-3101. [DOI: 10.1021/acs.inorgchem.6b03131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stef Vanhaecht
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F − bus 2404, 3001 Leuven, Belgium
| | - Thomas Quanten
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F − bus 2404, 3001 Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F − bus 2404, 3001 Leuven, Belgium
| |
Collapse
|
16
|
Inorganic–Organic Hybrid Surfactant Crystals: Structural Aspects and Functions. CRYSTALS 2016. [DOI: 10.3390/cryst6030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Quanten T, Shestakova P, Van Den Bulck D, Kirschhock C, Parac-Vogt TN. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. Chemistry 2016; 22:3775-84. [PMID: 26833582 DOI: 10.1002/chem.201503976] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/09/2022]
Abstract
The interaction between the 1:2 Zr(IV) :Wells-Dawson complex, K15 H[Zr(α2 -P2 W17 O61 )2] (1), and a range of surfactants was studied in detail with the aim of developing metal-substituted POMs as potential artificial proteases for membrane proteins. The surfactants include the positively charged cetyl(trimethyl)ammonium bromide (CTAB), the negatively charged sodium dodecyl sulfate (SDS), the neutral Triton X-100 (TX-100), and zwitterionic 3-[dodecyl(dimethyl)ammonio]-1-propanesulfonate (Zw3-13) and 3-[dimethyl(3-{[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino}propyl)ammonio]-1-propanesulfonate (CHAPS). A combination of multinuclear (1)H, (13)C, and (31) P NMR spectroscopy, (1)H diffusion-ordered NMR spectroscopy ((1)H DOSY), and nuclear Overhauser effect spectroscopy (NOESY) was used to examine the interaction between 1 and each surfactant on the molecular level. Cationic surfactant CTAB caused precipitation of 1 due to strong electrostatic interactions, while the anionic SDS and neutral TX-100 surfactants did not exhibit any interaction at neutral pD. (1)H DOSY NMR spectroscopy indicated an interaction between 1 and zwitterionic surfactants Zw3-12 and CHAPS, which occurs via the positively charged ammonium group in the surfactant molecule. In the presence of anionic, neutral, and zwitterionic surfactants, 1 preserves its catalytic activity towards the hydrolysis of the peptide bond in the dipeptide glycyl-l-histidine (GH). The fastest hydrolysis was observed at pD 7.0 and could be rationalized by taking into account pD-dependent speciation of 1 and coordination properties of GH.
Collapse
Affiliation(s)
- Thomas Quanten
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Pavletta Shestakova
- NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchef Str., B1.9, Sofia, 1113, Bulgaria
| | - Dries Van Den Bulck
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Christine Kirschhock
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
18
|
Tang J, Li XY, Wu H, Ren LJ, Zhang YQ, Yao HX, Hu MB, Wang W. Tube-graft-Sheet Nano-Objects Created by A Stepwise Self-Assembly of Polymer-Polyoxometalate Hybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:460-467. [PMID: 26710830 DOI: 10.1021/acs.langmuir.5b04504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we report the preparation of complex nano-objects by means of a stepwise self-assembly of two polymer-polyoxometalate hybrids (PPHs) in solution. The PPHs are designed and synthesized by tethering two linear poly(ε-caprolactone)s (PCL) of different molecular weights (MW) on a complex of a Wells-Dawson-type polyoxometalate (POM) cluster and its countraions. The higher MW PCL-POM self-assembled into nanosheets, while the lower MW PCL-POM assembled into nanotubes just by altering the ratio of water in the DMF-water mixed solvent system. The two nano-objects have a similar membrane structure in which a PCL layer is sandwiched by the two POM-based complex layers. The PCL layer in the nanosheets is semicrystalline, while the PCL layer in the nanotubes is amorphous. We further exploited this MW-dependence to self-assemble the nanotubes on the nanosheet edges to create complex tube-graft-sheet nano-objects. We found that the nanotubes nucleate on the four {110} faces of the PCL crystal and then further grow along the crystallographic b-axis of the PCL crystal. Our findings offer hope for the further development of nano-objects with increasing complexity.
Collapse
Affiliation(s)
- Jing Tang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Xue-Ying Li
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Han Wu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Li-Jun Ren
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Yu-Qi Zhang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Hai-Xia Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Min-Biao Hu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| |
Collapse
|
19
|
Walsh JJ, Bond AM, Forster RJ, Keyes TE. Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.016] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Wu H, Yang HK, Wang W. Covalently-linked polyoxometalate–polymer hybrids: optimizing synthesis, appealing structures and prospective applications. NEW J CHEM 2016. [DOI: 10.1039/c5nj01257k] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, the field of covalent polyoxometalate–polymer hybrids has been reviewed and some perspectives are provided.
Collapse
Affiliation(s)
- Han Wu
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Hai-Kuan Yang
- Department of Chemistry
- North University of China
- Taiyuan
- China
| | - Wei Wang
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| |
Collapse
|
21
|
Chen X, Li H, Yin P, Liu T. Design of polystyrene latex particles covered with polyoxometalate clusters via multiple covalent bonding. Chem Commun (Camb) 2015; 51:6104-7. [DOI: 10.1039/c5cc00239g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate clusters can be chemically grafted onto the surface of polymer latex via simple emulsion polymerization reaction. Such hierarchical nano-structures could serve as highly efficient quasi-homogeneous catalysts.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Hui Li
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Panchao Yin
- Department of Polymer Science
- The University of Akron
- Akron
- USA
- The Chemical and Engineering Materials Division
| | - Tianbo Liu
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| |
Collapse
|
22
|
Miao WK, Yi A, Yan YK, Ren LJ, Chen D, Wang CH, Wang W. A poly(polyoxometalate)-b-poly(hexanoic acid) block copolymer: synthesis, self-assembled micelles and catalytic activity. Polym Chem 2015. [DOI: 10.1039/c5py00855g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly(polyoxometalate)-polymer hybrid block copolymer (H-BCP) was prepared via ring-opening metathesis polymerization (ROMP). The H-BCP self-assembles into hybrid micelles with a poly(polyoxometalate) shell and a polymer core in acetonitrile.
Collapse
Affiliation(s)
- Wen-Ke Miao
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Ang Yi
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yu-Kun Yan
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Li-Jun Ren
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Da Chen
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Chun-Hong Wang
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Wei Wang
- Center for Synthetic Soft Materials
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|