1
|
Varga N, Smieško M, Jiang X, Jakob RP, Wagner B, Mühlethaler T, Dätwyler P, Zihlmann P, Rabbani S, Maier T, Schwardt O, Ernst B. Strengthening an Intramolecular Non-Classical Hydrogen Bond to Get in Shape for Binding. Angew Chem Int Ed Engl 2024; 63:e202406024. [PMID: 39072885 DOI: 10.1002/anie.202406024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
In this research article, we report on the strengthening of a non-classical hydrogen bond (C-H⋅⋅⋅O) by introducing electron withdrawing groups at the carbon atom. The approach is demonstrated on the example of derivatives of the physiological E-selectin ligand sialyl Lewisx (1, sLex). Its affinity is mainly due to a beneficial entropy term, which is predominantly caused by the pre-organization of sLex in its binding conformation. We have shown, that among the elements responsible for the pre-organization, the stabilization by a non-classical hydrogen bond between the H-C5 of l-fucose and the ring oxygen O5 of the neighboring d-galactose moiety is essential and yields 7.4 kJ mol-1. This effect could be further strengthened by replacing l-fucose by 6,6,6-trifluoro-l-fucose leading to an improved non-classical H-bond of 14.9 kJ mol-1, i.e., an improved pre-organization in the bioactive conformation. For a series of glycomimetics of sLex (1), this outcome could be confirmed by high field NMR-shifts of the H-C5Fuc, by X-ray diffraction analysis of glycomimetics co-crystallized with E-selectin as well as by isothermal titration calorimetry. Furthermore, the electron-withdrawing character of the CF3-group beneficially influences the pharmacokinetic properties of sLex mimetics. Thus, acid-stability, a prerequisite for gastrointestinal stability, could be substantially improved.
Collapse
Affiliation(s)
- Norbert Varga
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman P Jakob
- Department Biozentrum, Structural Area Focal Biology, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Beatrice Wagner
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pascal Zihlmann
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timm Maier
- Department Biozentrum, Structural Area Focal Biology, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
2
|
Kolić D, Šinko G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. Int J Mol Sci 2024; 25:6310. [PMID: 38928014 PMCID: PMC11204243 DOI: 10.3390/ijms25126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 μM). Pyraclostrobin (50 μM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.
Collapse
Affiliation(s)
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Leung VMY, Pook CM, Chan TC, Yeung YY. Trialkylphosphonium Oxoborate as C(sp 3 )-H Oxyanion Hole Catalyst for Diels-Alder Reaction. Chem Asian J 2024; 19:e202300981. [PMID: 38116878 DOI: 10.1002/asia.202300981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
We have developed a catalytic protocol for Diels-Alder reaction using trialkylphosphonium oxoborates as oxyanion hole catalysts. The reaction can be operated under ambient conditions. Dienes could easily polymerize under acidic condition. Nonetheless, these acid-sensitive substrates are compatible with the catalytic protocol and the reaction scope covers a wide range of substrates.
Collapse
Affiliation(s)
- Vincent Ming-Yau Leung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT, Hong Kong, China
| | - Chun-Man Pook
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT, Hong Kong, China
| | - Tsz-Chun Chan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT, Hong Kong, China
| |
Collapse
|
4
|
Leung VMY, Wong HCF, Pook CM, Tse YLS, Yeung YY. Trialkylphosphonium oxoborates as C(sp 3)-H oxyanion holes and their application in catalytic chemoselective acetalization. Chem Sci 2023; 14:12684-12692. [PMID: 38020391 PMCID: PMC10646966 DOI: 10.1039/d3sc03081d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
The use of trialkylphosphonium oxoborates (TOB) as catalysts is reported. The site-isolated borate counter anion in a TOB catalyst increases the availability of C(sp3)-H to interact with electron donor substrates. The catalytic protocol is applicable to a wide range of substrates in the acetalization reaction and provides excellent chemoselectivity in the acetalization over thioacetalization in the presence of alcohols and thiols, which is otherwise hard to achieve using typical acid catalysts. Experimental and computational studies revealed that the TOB catalysts have multiple preorganized C(sp3)-Hs that serve as a mimic of oxyanion holes, which can stabilize the oxyanion intermediates via multiple C(sp3)-H non-classical hydrogen bond interactions.
Collapse
Affiliation(s)
- Vincent Ming-Yau Leung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Hong-Chai Fabio Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Chun-Man Pook
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Ying-Lung Steve Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, NT Hong Kong China
| |
Collapse
|
5
|
Fressigné C, Jean A, Sanselme M, Blanchet J, Rouden J, Maddaluno J, De Paolis M. Intra- and Intermolecular Cation-π Interactions between Onium Salts and Alkynes/Acetylene: Experimental and Theoretical Insights. J Org Chem 2023; 88:14494-14503. [PMID: 37819740 DOI: 10.1021/acs.joc.3c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cation-π interactions between various onium salts, alkynes, and acetylene were studied, taking into account the substituents of the triple bond, the nature of the anions, and the polarity of the solvent, through a combination of MP2 calculations and experiments. In an intramolecular setting, these data (including single-crystal X-ray crystallography) concurred with the stability of folded conformers of alkynyl onium salts, even substituted with electron-withdrawing groups. To examine the contribution of these interactions on the alkyne electronic population, a thorough in silico study was carried out using natural bonding orbital analysis of the conformers. Intramolecular interactions from sulfonium salt tethered to phenylalkyne were highlighted, as illustrated above by the computed folded conformation (MP2) along with noncovalent interaction (NCI) analysis. Furthermore, investigations of intermolecular interactions, involving acetylene or phenylacetylene with various onium ions, revealed the high energy interactions of their complexes with phenyldimethylsulfonium chloride, as illustrated above with the complex PhC≡CH/PhMe2SCl (MP2 calculations and NCI analysis).
Collapse
Affiliation(s)
- Catherine Fressigné
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Alexandre Jean
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
- LCMT, ENSICAEN et Université de Caen Basse-Normandie, CNRS, 6 bd du Maréchal Juin, 14050 Caen, France
| | - Morgane Sanselme
- Univ Rouen Normandie, Normandie Univ, SMS, UR 3233, F-76000 Rouen, France
| | - Jérôme Blanchet
- LCMT, ENSICAEN et Université de Caen Basse-Normandie, CNRS, 6 bd du Maréchal Juin, 14050 Caen, France
| | - Jacques Rouden
- LCMT, ENSICAEN et Université de Caen Basse-Normandie, CNRS, 6 bd du Maréchal Juin, 14050 Caen, France
| | - Jacques Maddaluno
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Michaël De Paolis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
6
|
Cross-assembly confined bifunctional catalysis via non-covalent interactions for asymmetric halogenation. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Chan YC, Wang X, Lam YP, Wong J, Tse YLS, Yeung YY. A Catalyst-Controlled Enantiodivergent Bromolactonization. J Am Chem Soc 2021; 143:12745-12754. [PMID: 34350758 DOI: 10.1021/jacs.1c05680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-controlled enantiodivergent bromolactonization of olefinic acids has been developed. Quinine-derived amino-amides bearing the same chiral core but different achiral aryl substituents were used as the catalysts. Switching the methoxy substituent in the aryl amide system from meta- to ortho-position results in a complete switch in asymmetric induction to afford the desired lactone in good enantioselectivity and yield. Mechanistic studies, including chemical experiments and density functional theory calculations, reveal that the differences in steric and electronic effects of the catalyst substituent alter the reaction mechanism.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinyan Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jonathan Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
8
|
Hu RB, Lam YP, Ng WH, Wong CY, Yeung YY. Zwitterion-Induced Organic–Metal Hybrid Catalysis in Aerobic Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong-Bin Hu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Wing-Hin Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
9
|
Lam YP, Lam Z, Yeung YY. Zwitterion-Catalyzed Isomerization of Maleic to Fumaric Acid Diesters. J Org Chem 2021; 86:1183-1190. [PMID: 33315398 DOI: 10.1021/acs.joc.0c02316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fumaric acid diesters are important building blocks for organic synthesis. A class of zwitterionic organocatalysts based on an amide anion/iminium cation charge pair were found to be effective in catalyzing the isomerization of maleic acid diesters to give fumaric acid diesters. Comparison of the performance of different zwitterionic organocatalysts toward the reaction revealed that nonclassical hydrogen bonding was involved in the stabilization of the Michael adduct intermediate.
Collapse
Affiliation(s)
- Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zachary Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
10
|
Itoh Y, Kurohara T, Suzuki T. N<sup>+</sup>-C-H…O Hydrogen Bonds in Protein-Ligand Complexes and their Application to Drug Design. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
11
|
Andersson CD, Mishra BK, Forsgren N, Ekström F, Linusson A. Physical Mechanisms Governing Substituent Effects on Arene-Arene Interactions in a Protein Milieu. J Phys Chem B 2020; 124:6529-6539. [PMID: 32610016 PMCID: PMC7467712 DOI: 10.1021/acs.jpcb.0c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Indexed: 11/28/2022]
Abstract
Arene-arene interactions play important roles in protein-ligand complex formation. Here, we investigate the characteristics of arene-arene interactions between small organic molecules and aromatic amino acids in protein interiors. The study is based on X-ray crystallographic data and quantum mechanical calculations using the enzyme acetylcholinesterase and selected inhibitory ligands as a model system. It is shown that the arene substituents of the inhibitors dictate the strength of the interaction and the geometry of the resulting complexes. Importantly, the calculated interaction energies correlate well with the measured inhibitor potency. Non-hydrogen substituents strengthened all interaction types in the protein milieu, in keeping with results for benzene dimer model systems. The interaction energies were dispersion-dominated, but substituents that induced local dipole moments increased the electrostatic contribution and thus yielded more strongly bound complexes. These findings provide fundamental insights into the physical mechanisms governing arene-arene interactions in the protein milieu and thus into molecular recognition between proteins and small molecules.
Collapse
Affiliation(s)
| | - Brijesh Kumar Mishra
- International
Institute of Information Technology, Bangalore, Karnataka 560003, India
| | - Nina Forsgren
- CBRN
Defense and Security, Swedish Defense Research
Agency, SE-90621 Umeå, Sweden
| | - Fredrik Ekström
- CBRN
Defense and Security, Swedish Defense Research
Agency, SE-90621 Umeå, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
12
|
Abstract
Intermolecular haloesterification is an important class of transformations. The resulting products are valuable building blocks. However, it is often necessary to use super-stoichiometric amount of acid in order to compensate the low reactivity. Herein, we report a zwitterion-catalyzed intermolecular bromoesterification using acid and olefin in an equimolar ratio. Mechanistic study revealed that the charge pair in the zwitterion works synergistically in activating both NBS and carboxylic acid.
Collapse
Affiliation(s)
- Wing-Hin Ng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Rong-Bin Hu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
13
|
Nakamura T, Okuno K, Nishiyori R, Shirakawa S. Hydrogen‐Bonding Catalysis of Alkyl‐Onium Salts. Chem Asian J 2020; 15:463-472. [DOI: 10.1002/asia.201901652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Takumi Nakamura
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ken Okuno
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ryuichi Nishiyori
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
14
|
Rodrigues DA, Pinheiro PDSM, S. Sagrillo F, R. Freitas MC, A. Alves M, Thota S, Tinoco LW, Magalhães A, Sant’Anna CMR, Fraga CAM. Structure–property relationship studies of 3-acyl-substituted furans: the serendipitous identification and characterization of a new non-classical hydrogen bond donor moiety. NEW J CHEM 2020. [DOI: 10.1039/d0nj01598a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A serendipitous identification and characterization of a new non-classical hydrogen bond donor moiety found in N-acylhydrazones containing 3-acyl-substituted furan subunit is presented.
Collapse
|
15
|
Lam YP, Wang X, Tan F, Ng WH, Tse YLS, Yeung YY. Amide/Iminium Zwitterionic Catalysts for (Trans)esterification: Application in Biodiesel Synthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying-Pong Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinyan Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Fei Tan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Wing-Hin Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
16
|
Vinnarasi S, Radhika R, Vijayakumar S, Shankar R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:317-339. [PMID: 30794082 DOI: 10.1080/07391102.2019.1574239] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human telomerase referred as 'terminal transferase' is a nucleoprotein enzyme which inhibits the disintegration of telomere length and act as a drug target for the anticancer therapy. The tandem repeating structure of telomere sequence forms the guanine-rich quadruplex structures that stabilize stacked tetrads. In our present work, we have investigated the interaction of quercetin with DNA tetrads using DFT. Geometrical analysis revealed that the influence of quercetin drug induces the structural changes into the DNA tetrads. Among DNA tetrads, the quercetin stacked with GCGC tetrad has the highest interaction energy of -88.08 kcal/mol. The binding mode and the structural stability are verified by the absorption spectroscopy method. The longer wavelength was found at 380 nm and it exhibits bathochromic shift. The findings help us to understand the binding nature of quercetin drug with DNA tetrads and it also inhibits the telomerase activity. Further, the quercetin drug interacted with G-quadruplex DNA by using molecular dynamics (MD) simulation studies for 100 ns simulation at different temperatures and different pH levels (T = 298 K, 320 K and pH = 7.4, 5.4). The structural stability of the quercetin with G-quadruplex structure is confirmed by RMSD. For the acidic condition (pH = 5.4), the binding affinity is higher toward G-quadruplex DNA, this result resembles that the quercetin drug is well interacted with G-quadruplex DNA at acidic condition (pH = 7.4) than the neutral condition. The obtained results show that quercetin drug stabilizes the G-quadruplex DNA, which regulates telomerase enzyme and it potentially acts as a novel anti-cancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Vinnarasi
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Radhika
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
17
|
Itoh Y, Nakashima Y, Tsukamoto S, Kurohara T, Suzuki M, Sakae Y, Oda M, Okamoto Y, Suzuki T. N +-C-H···O Hydrogen bonds in protein-ligand complexes. Sci Rep 2019; 9:767. [PMID: 30683882 PMCID: PMC6347603 DOI: 10.1038/s41598-018-36987-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/28/2018] [Indexed: 12/03/2022] Open
Abstract
In the context of drug design, C-H···O hydrogen bonds have received little attention so far, mostly because they are considered weak relative to other noncovalent interactions such as O-H···O hydrogen bonds, π/π interactions, and van der Waals interactions. Herein, we demonstrate the significance of hydrogen bonds between C-H groups adjacent to an ammonium cation and an oxygen atom (N+-C-H···O hydrogen bonds) in protein-ligand complexes. Quantum chemical calculations revealed details on the strength and geometrical requirements of these N+-C-H···O hydrogen bonds, and a subsequent survey of the Protein Data Bank (PDB) based on these criteria suggested that numerous protein-ligand complexes contain such N+-C-H···O hydrogen bonds. An ensuing experimental investigation into the G9a-like protein (GLP)-inhibitor complex demonstrated that N+-C-H···O hydrogen bonds affect the activity of the inhibitors against the target enzyme. These results should provide the basis for the use of N+-C-H···O hydrogen bonds in drug discovery.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Yusuke Nakashima
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Shuichiro Tsukamoto
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Takashi Kurohara
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Miki Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Yoshitake Sakae
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yuko Okamoto
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan. .,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
18
|
Knutsson S, Engdahl C, Kumari R, Forsgren N, Lindgren C, Kindahl T, Kitur S, Wachira L, Kamau L, Ekström F, Linusson A. Noncovalent Inhibitors of Mosquito Acetylcholinesterase 1 with Resistance-Breaking Potency. J Med Chem 2018; 61:10545-10557. [PMID: 30339371 DOI: 10.1021/acs.jmedchem.8b01060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance development in insects significantly threatens the important benefits obtained by insecticide usage in vector control of disease-transmitting insects. Discovery of new chemical entities with insecticidal activity is highly desired in order to develop new insecticide candidates. Here, we present the design, synthesis, and biological evaluation of phenoxyacetamide-based inhibitors of the essential enzyme acetylcholinesterase 1 (AChE1). AChE1 is a validated insecticide target to control mosquito vectors of, e.g., malaria, dengue, and Zika virus infections. The inhibitors combine a mosquito versus human AChE selectivity with a high potency also for the resistance-conferring mutation G122S; two properties that have proven challenging to combine in a single compound. Structure-activity relationship analyses and molecular dynamics simulations of inhibitor-protein complexes have provided insights that elucidate the molecular basis for these properties. We also show that the inhibitors demonstrate in vivo insecticidal activity on disease-transmitting mosquitoes. Our findings support the concept of noncovalent, selective, and resistance-breaking inhibitors of AChE1 as a promising approach for future insecticide development.
Collapse
Affiliation(s)
- Sofie Knutsson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Cecilia Engdahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Rashmi Kumari
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Nina Forsgren
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Cecilia Lindgren
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Tomas Kindahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Lucy Wachira
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Fredrik Ekström
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| |
Collapse
|
19
|
|
20
|
Kulén M, Lindgren M, Hansen S, Cairns AG, Grundström C, Begum A, van der Lingen I, Brännström K, Hall M, Sauer UH, Johansson J, Sauer-Eriksson AE, Almqvist F. Structure-Based Design of Inhibitors Targeting PrfA, the Master Virulence Regulator of Listeria monocytogenes. J Med Chem 2018; 61:4165-4175. [PMID: 29667825 DOI: 10.1021/acs.jmedchem.8b00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (AI), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-AI selective PrfA inhibitors with potent antivirulence properties.
Collapse
|
21
|
Ajani H, Jansa J, Köprülüoğlu C, Hobza P, Kryštof V, Lyčka A, Lepsik M. Imidazo[1,2-c
]pyrimidin-5(6H
)-one as a novel core of cyclin-dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring. J Mol Recognit 2018; 31:e2720. [DOI: 10.1002/jmr.2720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry; Palacký University; Olomouc Czech Republic
| | - Josef Jansa
- Research Institute for Organic Syntheses (VUOS); Pardubice-Rybitví Czech Republic
- Department of Organic Chemistry, Faculty of Science; Palacký University; Olomouc Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry; Palacký University; Olomouc Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry; Palacký University; Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science; Palacký University and Institute of Experimental Botany; Olomouc Czech Republic
| | - Antonín Lyčka
- Research Institute for Organic Syntheses (VUOS); Pardubice-Rybitví Czech Republic
- Faculty of Science; University of Hradec Králové; Hradec Králové Czech Republic
| | | |
Collapse
|
22
|
Pecina A, Brynda J, Vrzal L, Gnanasekaran R, Hořejší M, Eyrilmez SM, Řezáč J, Lepšík M, Řezáčová P, Hobza P, Majer P, Veverka V, Fanfrlík J. Ranking Power of the SQM/COSMO Scoring Function on Carbonic Anhydrase II-Inhibitor Complexes. Chemphyschem 2018; 19:873-879. [PMID: 29316128 DOI: 10.1002/cphc.201701104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 11/11/2022]
Abstract
Accurate prediction of protein-ligand binding affinities is essential for hit-to-lead optimization and virtual screening. The reliability of scoring functions can be improved by including quantum effects. Here, we demonstrate the ranking power of the semiempirical quantum mechanics (SQM)/implicit solvent (COSMO) scoring function by using a challenging set of 10 inhibitors binding to carbonic anhydrase II through Zn2+ in the active site. This new dataset consists of the high-resolution (1.1-1.4 Å) crystal structures and experimentally determined inhibitory constant (Ki ) values. It allows for evaluation of the common approximations, such as representing the solvent implicitly or by using a single target conformation combined with a set of ligand docking poses. SQM/COSMO attained a good correlation of R2 of 0.56-0.77 with the experimental inhibitory activities, benefiting from careful handling of both noncovalent interactions (e.g. charge transfer) and solvation. This proof-of-concept study of SQM/COSMO ranking for metalloprotein-ligand systems demonstrates its potential for hit-to-lead applications.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Ramachandran Gnanasekaran
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Current address: Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Magdalena Hořejší
- Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Palacký University, 77146, Olomouc, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Institute of Molecular Genetics of, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Palacký University, 77146, Olomouc, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
23
|
Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017; 22:molecules22122098. [PMID: 29186056 PMCID: PMC6149722 DOI: 10.3390/molecules22122098] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE. In contrast, structural data on the binding of reversible ligands to BChE are lacking. In a recent effort, an inhibitor competition approach was used to probe the overlap of ligand binding sites in BChE. Here, we extend this study by solving the crystal structures of human BChE in complex with five reversible ligands, namely, decamethonium, thioflavin T, propidium, huprine, and ethopropazine. We compare these structures to equivalent AChE complexes when available in the protein data bank and supplement this comparison with kinetic data and observations from isothermal titration calorimetry. This new information now allows us to define the binding mode of various ligand families and will be of importance in designing specific reversible ligands of BChE that behave as inhibitors or reactivators.
Collapse
|
24
|
Singh A, Sahoo DK, Sethi SK, Jena S, Biswal HS. Nature and Strength of the Inner-Core H⋅⋅⋅H Interactions in Porphyrinoids. Chemphyschem 2017; 18:3625-3633. [DOI: 10.1002/cphc.201700742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ankit Singh
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Srikant Kumar Sethi
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Subhrakant Jena
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur; Via-Jatni, District- Khurda, PIN 752050 Bhubaneswar India
- Homi Bhabha National Institute; Training School Complex; Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
25
|
Pandolfi F, De Vita D, Bortolami M, Coluccia A, Di Santo R, Costi R, Andrisano V, Alabiso F, Bergamini C, Fato R, Bartolini M, Scipione L. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation. Eur J Med Chem 2017; 141:197-210. [PMID: 29031067 DOI: 10.1016/j.ejmech.2017.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
A new series of pyridine derivatives with carbamic or amidic function has been designed and synthesized to act as cholinesterase inhibitors. The synthesized compounds were tested toward EeAChE and hAChE and toward eqBChE and hBChE. The carbamate 8 was the most potent hAChE inhibitor (IC50 = 0.153 ± 0.016 μM) while the carbamate 11 was the most potent inhibitor of hBChE (IC50 = 0.828 ± 0.067 μM). A molecular docking study indicated that the carbamate 8 was able to bind AChE by interacting with both CAS and PAS, in agreement with the mixed inhibition mechanism. Furthermore, the carbamates 8, 9 and 11 were able to inhibit Aβ42 self-aggregation and possessed quite low toxicity against human astrocytoma T67 and HeLa cell lines, being the carbamate 8 the less toxic compound on both cell lines.
Collapse
Affiliation(s)
- Fabiana Pandolfi
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Daniela De Vita
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Martina Bortolami
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Antonio Coluccia
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Roberto Di Santo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Roberta Costi
- Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Francesco Alabiso
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6 /Via Irnerio 48, 40126, Bologna, Italy.
| | - Luigi Scipione
- Department of Chemistry and Technology of Drug, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy.
| |
Collapse
|
26
|
Allgardsson A, David Andersson C, Akfur C, Worek F, Linusson A, Ekström F. An Unusual Dimeric Inhibitor of Acetylcholinesterase: Cooperative Binding of Crystal Violet. Molecules 2017; 22:molecules22091433. [PMID: 28867801 PMCID: PMC6151500 DOI: 10.3390/molecules22091433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
Acetylcholinesterase (AChE) is an essential enzyme that terminates cholinergic transmission by a rapid hydrolysis of the neurotransmitter acetylcholine. AChE is an important target for treatment of various cholinergic deficiencies, including Alzheimer’s disease and myasthenia gravis. In a previous high throughput screening campaign, we identified the dye crystal violet (CV) as an inhibitor of AChE. Herein, we show that CV displays a significant cooperativity for binding to AChE, and the molecular basis for this observation has been investigated by X-ray crystallography. Two monomers of CV bind to residues at the entrance of the active site gorge of the enzyme. Notably, the two CV molecules have extensive intermolecular contacts with each other and with AChE. Computational analyses show that the observed CV dimer is not stable in solution, suggesting the sequential binding of two monomers. Guided by the structural analysis, we designed a set of single site substitutions, and investigated their effect on the binding of CV. Only moderate effects on the binding and the cooperativity were observed, suggesting a robustness in the interaction between CV and AChE. Taken together, we propose that the dimeric cooperative binding is due to a rare combination of chemical and structural properties of both CV and the AChE molecule itself.
Collapse
Affiliation(s)
| | | | | | - Franz Worek
- Department of Toxicological Enzymology, Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | | |
Collapse
|
27
|
Peach ML, Cachau RE, Nicklaus MC. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding. J Mol Recognit 2017; 30:10.1002/jmr.2618. [PMID: 28233410 PMCID: PMC5553890 DOI: 10.1002/jmr.2618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
In this review, we address a fundamental question: What is the range of conformational energies seen in ligands in protein-ligand crystal structures? This value is important biophysically, for better understanding the protein-ligand binding process; and practically, for providing a parameter to be used in many computational drug design methods such as docking and pharmacophore searches. We synthesize a selection of previously reported conflicting results from computational studies of this issue and conclude that high ligand conformational energies really are present in some crystal structures. The main source of disagreement between different analyses appears to be due to divergent treatments of electrostatics and solvation. At the same time, however, for many ligands, a high conformational energy is in error, due to either crystal structure inaccuracies or incorrect determination of the reference state. Aside from simple chemistry mistakes, we argue that crystal structure error may mainly be because of the heuristic weighting of ligand stereochemical restraints relative to the fit of the structure to the electron density. This problem cannot be fixed with improvements to electron density fitting or with simple ligand geometry checks, though better metrics are needed for evaluating ligand and binding site chemistry in addition to geometry during structure refinement. The ultimate solution for accurately determining ligand conformational energies lies in ultrahigh-resolution crystal structures that can be refined without restraints.
Collapse
Affiliation(s)
- Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raul E Cachau
- Data Science and Information Technology Program, Advanced Biomedical Computing Center, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
28
|
Ajani H, Pecina A, Eyrilmez SM, Fanfrlík J, Haldar S, Řezáč J, Hobza P, Lepšík M. Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse Protein-Ligand Complexes in Cognate Docking. ACS OMEGA 2017; 2:4022-4029. [PMID: 30023710 PMCID: PMC6044937 DOI: 10.1021/acsomega.7b00503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/18/2017] [Indexed: 06/08/2023]
Abstract
General and reliable description of structures and energetics in protein-ligand (PL) binding using the docking/scoring methodology has until now been elusive. We address this urgent deficiency of scoring functions (SFs) by the systematic development of corrected semiempirical quantum mechanical (SQM) methods, which correctly describe all types of noncovalent interactions and are fast enough to treat systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO) implicit solvation model in so-called "SQM/COSMO" SFs and have shown unique recognition of native ligand poses in cognate docking in four challenging PL systems, including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL complexes and compare their performance with four widely used classical SFs (Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock). We observe superior performance of the SQM/COSMO SFs and identify challenging systems. This method, due to its generality, comparability across the chemical space, and lack of need for any system-specific parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in structure-based drug design and serving as a reference method for the development of other SFs.
Collapse
Affiliation(s)
- Haresh Ajani
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Palacký University, tř. 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Adam Pecina
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Saltuk M. Eyrilmez
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Palacký University, tř. 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
| | - Jindřich Fanfrlík
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Susanta Haldar
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Jan Řezáč
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| | - Pavel Hobza
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
- Department
of Physical Chemistry, Regional Centre of Advanced Technologies and
Materials, Palacký University, 77146 Olomouc, Czech Republic
| | - Martin Lepšík
- Department
of Computational Chemistry, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nam. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
29
|
Pecina A, Haldar S, Fanfrlík J, Meier R, Řezáč J, Lepšík M, Hobza P. SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein–Ligand Poses. J Chem Inf Model 2017; 57:127-132. [DOI: 10.1021/acs.jcim.6b00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Adam Pecina
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Susanta Haldar
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - René Meier
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jan Řezáč
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Palacký University, 77146 Olomouc, Czech Republic
| |
Collapse
|
30
|
Engdahl C, Knutsson S, Ekström F, Linusson A. Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes. J Med Chem 2016; 59:9409-9421. [DOI: 10.1021/acs.jmedchem.6b00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cecilia Engdahl
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sofie Knutsson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Fredrik Ekström
- Swedish Defense Research Agency, CBRN Defense and
Security, SE-906 21 Umeå, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
31
|
Allgardsson A, Berg L, Akfur C, Hörnberg A, Worek F, Linusson A, Ekström FJ. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proc Natl Acad Sci U S A 2016; 113:5514-9. [PMID: 27140636 PMCID: PMC4878515 DOI: 10.1073/pnas.1523362113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.
Collapse
Affiliation(s)
- Anders Allgardsson
- Department of CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umea, Sweden
| | - Lotta Berg
- Department of Chemistry, Umeå University, SE-90187 Umea, Sweden
| | - Christine Akfur
- Department of CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umea, Sweden
| | | | - Franz Worek
- Department of Toxicological Enzymology, Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umea, Sweden;
| | - Fredrik J Ekström
- Department of CBRN Defence and Security, Swedish Defence Research Agency, SE-90182 Umea, Sweden;
| |
Collapse
|