1
|
Prediction of stable radon fluoride molecules and geometry optimization using first-principles calculations. Sci Rep 2023; 13:2898. [PMID: 36801928 PMCID: PMC9938903 DOI: 10.1038/s41598-023-29313-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Noble gases possess extremely low reactivity because their valence shells are closed. However, previous studies have suggested that these gases can form molecules when they combine with other elements with high electron affinity, such as fluorine. Radon is a naturally occurring radioactive noble gas, and the formation of radon-fluorine molecules is of significant interest owing to its potential application in future technologies that address environmental radioactivity. Nevertheless, because all isotopes of radon are radioactive and the longest radon half-life is only 3.82 days, experiments on radon chemistry have been limited. Here, we study the formation of radon molecules using first-principles calculations; additionally, possible compositions of radon fluorides are predicted using a crystal structure prediction approach. Similar to xenon fluorides, di-, tetra-, and hexafluorides are found to be stabilized. Coupled-cluster calculations reveal that RnF6 stabilizes with Oh point symmetry, unlike XeF6 with C3v symmetry. Moreover, we provide the vibrational spectra of our predicted radon fluorides as a reference. The molecular stability of radon di-, tetra-, and hexafluoride obtained through calculations may lead to advances in radon chemistry.
Collapse
|
2
|
Lozinšek M, Mercier HPA, Schrobilgen GJ. Mixed Noble‐Gas Compounds of Krypton(II) and Xenon(VI); [F
5
Xe(FKrF)AsF
6
] and [F
5
Xe(FKrF)
2
AsF
6
]. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matic Lozinšek
- Department of Chemistry McMaster University Hamilton ON L8S 4M1 Canada
- Present address: Department of Inorganic Chemistry and Technology Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | | | | |
Collapse
|
3
|
Lozinšek M, Mercier HPA, Schrobilgen GJ. Mixed Noble-Gas Compounds of Krypton(II) and Xenon(VI); [F 5 Xe(FKrF)AsF 6 ] and [F 5 Xe(FKrF) 2 AsF 6 ]. Angew Chem Int Ed Engl 2021; 60:8149-8156. [PMID: 33242230 PMCID: PMC8048594 DOI: 10.1002/anie.202014682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 01/10/2023]
Abstract
The coordination chemistry of KrF2 has been limited in contrast with that of XeF2 , which exhibits a far richer coordination chemistry with main-group and transition-metal cations. In the present work, reactions of [XeF5 ][AsF6 ] with KrF2 in anhydrous HF solvent afforded [F5 Xe(FKrF)AsF6 ] and [F5 Xe(FKrF)2 AsF6 ], the first mixed krypton/xenon compounds. X-ray crystal structures and Raman spectra show the KrF2 ligands and [AsF6 ]- anions are F-coordinated to the xenon atoms of the [XeF5 ]+ cations. Quantum-chemical calculations are consistent with essentially noncovalent ligand-xenon bonds that may be described in terms of σ-hole bonding. These complexes significantly extend the XeF2 -KrF2 analogy and the limited chemistry of krypton by introducing a new class of coordination compound in which KrF2 functions as a ligand that coordinates to xenon(VI). The HF solvates, [F5 Xe(FH)AsF6 ] and [F5 Xe(FH)SbF6 ], are also characterized in this study and they provide rare examples of HF coordinated to xenon(VI).
Collapse
Affiliation(s)
- Matic Lozinšek
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Present address: Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Hélène P A Mercier
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Gary J Schrobilgen
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
4
|
Gomila RM, Frontera A. Covalent and Non-covalent Noble Gas Bonding Interactions in XeF n Derivatives ( n = 2-6): A Combined Theoretical and ICSD Analysis. Front Chem 2020; 8:395. [PMID: 32435634 PMCID: PMC7218167 DOI: 10.3389/fchem.2020.00395] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
A noble gas bond (also known in the literature as aerogen bond) can be defined as the attractive interaction between any element of group-18 acting as a Lewis acid and any electron rich atom of group of atoms, thus following the IUPAC recommendation available for similar π,σ-hole interactions involving elements of groups 17 (halogens) and 16 (chalcogens). A significant difference between noble gas bonding (NgB) and halogen (HaB) or chalcogen (ChB) bonding is that whilst the former is scarcely found in the literature, HaB and ChB are very common and their applications in important fields like catalysis, biochemistry or crystal engineering have exponentially grown in the last decade. This article combines theory and experiment to highlight the importance of non-covalent NgBs in the solid state of several xenon fluorides [XeFn]m+ were the central oxidation state of Xe varies from +2 to +6 and the number of fluorine atoms varies from n = 2 to 6. The compounds with an odd number of fluorine atoms (n = 3 and 5) are cationic (m = 1). The Inorganic Crystal Structural Database (ICSD) strongly evidences the relevance of NgBs in the solid state structures of xenon derivatives. The ability of Xe compounds to participate in π,σ-hole interactions has been studied using different types of electron donors (Lewis bases and anions) using DFT calculations (PBE1PBE-D3/def2-TZVP) and the molecular electrostatic potential (MEP) surfaces.
Collapse
Affiliation(s)
- Rosa M Gomila
- Serveis Cientificotècnics, Universitat de les Illes Balears, Palma, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma, Spain
| |
Collapse
|
5
|
Munárriz J, Calatayud M, Contreras-García J. Valence-Shell Electron-Pair Repulsion Theory Revisited: An Explanation for Core Polarization. Chemistry 2019; 25:10938-10945. [PMID: 31206860 DOI: 10.1002/chem.201902244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 11/10/2022]
Abstract
Valence-shell electron-pair repulsion (VSEPR) theory constitutes one of the pillars of theoretical predictive chemistry. It was proposed even before the advent of the concept of "spin", and it is still a very useful tool in chemistry. In this article we propose an extension of VSEPR theory to understand the core structure and predict core polarization in the main-group elements. We show from first principles (Electron Localization Function analysis) how the inner- and outer-core shells are organized. In particular, electrons in these regions are structured following the shape of the dual polyhedron of the valence shell (3rd period) or the equivalent polyhedron (4th and 5th periods). We interpret these results in terms of "hard" and "soft" core character. All the studied systems follow this trend, providing a framework for predicting electron distribution in the core. We also show that lone pairs behave as "standard ligands" in terms of core polarization. The predictive character of the model was tested by proposing the core polarization in different systems not included in the original set (such as XeF4 and [Fe(CN)6 ]3- ) and checking the hypothesis by means of a posteriori calculations. From the experimental point of view, the extension of VSEPR to the core region has consequences for current crystallography research. In particular, it explains the core polarization revealed by high resolution X-ray experiments.
Collapse
Affiliation(s)
- Julen Munárriz
- Departamento de Química Física, and Instituto de Biocomputación y, Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, 50009, Spain.,Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, Paris, 75005, France.,Current address: Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Mónica Calatayud
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, Paris, 75005, France
| | | |
Collapse
|
6
|
Levason W, Monzittu FM, Reid G. Coordination chemistry and applications of medium/high oxidation state metal and non-metal fluoride and oxide-fluoride complexes with neutral donor ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Goettel JT, Mercier HP, Schrobilgen GJ. XeO3 adducts of pyridine, 4-dimethylaminopyridine, and their pyridinium salts. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Gawrilow M, Beckers H, Riedel S, Cheng L. Matrix-Isolation and Quantum-Chemical Analysis of the C 3v Conformer of XeF 6, XeOF 4, and Their Acetonitrile Adducts. J Phys Chem A 2017; 122:119-129. [PMID: 29220184 DOI: 10.1021/acs.jpca.7b09902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A joint experimental-computational study of the molecular structure and vibrational spectra of the XeF6 molecule is reported. The vibrational frequencies, intensities, and in particular the isotopic frequency shifts of the vibrational spectra for 129XeF6 and 136XeF6 isotopologues recorded in the neon matrix agree very well with those obtained from relativistic coupled-cluster calculations for XeF6 in the C3v structure, thereby strongly supporting the observation of the C3v conformer of the XeF6 molecule in the neon matrix. A C3v transition state connecting the C3v and Oh local minima is located computationally. The calculated barrier of 220 cm-1 between the C3v minima and the transition state corroborates the experimental observation of the C3v conformer and the absence of the Oh conformer in solid noble gas matrices. For comparison matrix-isolation spectra have also been recorded and analyzed for the 129XeOF4 and the 136XeOF4 isotopologues. The matrix-isolation complexation shifts obtained for the XeF6·NCCH3 relative to those of free matrix isolated XeF6 and CH3CN are in good agreement with those reported for crystalline XeF6·NCCH3.
Collapse
Affiliation(s)
- Maxim Gawrilow
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin , Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Helmut Beckers
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin , Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin , Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
The σ and π Holes. The Halogen and Tetrel Bondings: Their Nature, Importance and Chemical, Biological and Medicinal Implications. ChemistrySelect 2017. [DOI: 10.1002/slct.201701676] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Kirshenboim O, Kozuch S. How to Twist, Split and Warp a σ-Hole with Hypervalent Halogens. J Phys Chem A 2016; 120:9431-9445. [PMID: 27783513 DOI: 10.1021/acs.jpca.6b07894] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Halogen bonds (XB) are no longer newcomers in the chemistry family. However, XB in hypervalent halogens has not been thoroughly studied. We provide a molecular orbital explanation of the shape and strength of XBs in hypervalent halogens and other species, focusing on the charge transfer and electrostatic aspects of these bonds. Our results show that σ-holes (and subsequently the XBs associated with them) can be easily divided and bent by the influence of equatorial substituents. The inductive effect of both the equatorial and axial groups can affect these distortions, but also the angle between the equatorial ligands has a large influence on the shape of the σ-holes and the molecular orbitals acting as electron acceptor. Although the observation of these warped XB can be hindered by other noncovalent interactions, they may be ubiquitous in crystal structures of hypervalent species, where multiple XB can appear as secondary interactions on each halogen. We propose what can be considered the archetypal hypervalent halogen donor (a pincer type iodosodilactone) and a Lewis dot structure that includes the σ-holes.
Collapse
Affiliation(s)
- Omer Kirshenboim
- Department of Chemistry, Ben-Gurion University of the Negev , Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev , Beer-Sheva 841051, Israel
| |
Collapse
|
11
|
Makarewicz E, Gordon AJ, Berski S. The electronic structure of the xenon insertion compounds XXe–MX2 (X = F, Cl, Br, I; M = B, Al, Ga). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
DeBackere JR, Bortolus MR, Schrobilgen GJ. Synthesis and Characterization of [XeOXe](2+) in the Adduct-Cation Salt, [CH3 CN- - -XeOXe- - -NCCH3 ][AsF6 ]2. Angew Chem Int Ed Engl 2016; 55:11917-20. [PMID: 27560618 DOI: 10.1002/anie.201606851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 11/10/2022]
Abstract
Acetonitrile and [FXeOXe- - -FXeF][AsF6 ] react at -60 °C in anhydrous HF (aHF) to form the CH3 CN adduct of the previously unknown [XeOXe](2+) cation. The low-temperature X-ray structure of [CH3 CN- - -XeOXe- - -NCCH3 ][AsF6 ]2 exhibits a well-isolated adduct-cation that has among the shortest Xe-N distances obtained for an sp-hybridized nitrogen base adducted to xenon. The Raman spectrum was fully assigned by comparison with the calculated vibrational frequencies and with the aid of (18) O-enrichment studies. Natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe-O bonds are semi-ionic whereas the Xe-N bonds may be described as strong electrostatic (σ-hole) interactions.
Collapse
Affiliation(s)
- John R DeBackere
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Mark R Bortolus
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Gary J Schrobilgen
- Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| |
Collapse
|
13
|
DeBackere JR, Bortolus MR, Schrobilgen GJ. Synthesis and Characterization of [XeOXe]2+in the Adduct-Cation Salt, [CH3CN- - -XeOXe- - -NCCH3][AsF6]2. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John R. DeBackere
- Department of Chemistry; McMaster University; Hamilton ON L8S 4M1 Canada
| | - Mark R. Bortolus
- Department of Chemistry; McMaster University; Hamilton ON L8S 4M1 Canada
| | | |
Collapse
|