1
|
Liao H, Su J, Han J, Xiao T, Sun X, Cui G, Duan X, Shi P. An Intrinsic Self-Healable, Anti-Freezable and Ionically Conductive Hydrogel for Soft Ionotronics Induced by Imidazolyl Cross-Linker Molecules Anchored with Dynamic Disulfide Bonds. Macromol Rapid Commun 2024; 45:e2300613. [PMID: 38157222 DOI: 10.1002/marc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Hydrogels are ideal materials for flexible electronic devices based on their smooth ion channels and considerable mechanical flexibility. A substantial volume of aqueous solution is required to enable the smooth flow of ions, resulting in the agony of low-temperature freezing; besides, long-term exposure to bending/tensile tress triggers fatigue issues. Therefore, it is a great challenge to prepare hydrogels with both freeze-resistance and long-term durability. Herein, a polyacrylic acid-based hydrogel with both hydrophobic interaction and dynamic reversible covalent bonding cross-linking networks is preparing (DC-hydrogel) by polymerizing a bi-functional imidazole-type ionic liquid monomer with integrated disulfide and alkene bonds (DS/DB-IL) and an octadecyl methacrylate, achieving self-healing. The DS/DB-IL anchored into the polymer backbone has a high affinity with water, reducing the freezing point of water, while the DS/DB-IL with free ions provides superior ionic conductivity to the DC-hydrogel. The polyacrylic acid with abundant carboxyl gives hydrogel good self-adhesiveness to different substrates. Ionotronics with resistance-type sensors with stable output performance are fabricated and explored its application to joint motion and health information. Moreover, hydrogel-based sensing arrays with high resolution and accuracy are fabricated to identify 2D distribution of stress. The hydrogels have great promise for various ionotronics in many fields.
Collapse
Affiliation(s)
- Haiyang Liao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
- China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd, Shaoxing, Zhejiang, 312071, China
| | - Jiayi Su
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Jieling Han
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Tieming Xiao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Xiao Sun
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Guixin Cui
- China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd, Shaoxing, Zhejiang, 312071, China
| | - Xiaofei Duan
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Pu Shi
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| |
Collapse
|
2
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
3
|
Xin Y, Liang J, Ren L, Gao W, Qiu W, Li Z, Qu B, Peng A, Ye Z, Fu J, Zeng G, He X. Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules 2023; 24:1287-1298. [PMID: 36745900 DOI: 10.1021/acs.biomac.2c01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion conductive hydrogels (ICHs) have attracted great interest in the application of ionic skin because of their superior characteristics. However, it remains a challenge for ICHs to achieve balanced properties of high strength, large fracture strain, self-healing and freezing tolerance. In this study, a strong, stretchable, self-healing and antifreezing ICH was demonstrated by rationally designing a multiphysically cross-linked network structure consisting of the hydrophobic association, metal-ion coordination and chain entanglement among poly(acrylic acid) (PAA) polymer chains. The deliberately designed Brij S 100 acrylate (Brij-100A) micelle cross-linker can effectively dissipate energy and endow hydrogels with desirable stretchability. The self-healing ability of hydrogels originates from the reversible hydrophobic association in micelles and Fe3+-COO- coordination. After the addition of NaCl, the chain-entangled physical network caused by the salting-out effect can both enhance mechanical strength and promote electron transport. With the synergy of hydrophobic association, mental-ligand coordination and chain entanglement, the PAA/Brij-100A/Fe3+/NaCl (PAA/BA/Fe3+/NaCl) hydrogels exhibited a high tensile strain of 1140%, a tensile strength of 0.93 MPa and a toughness of 3.48 MJ m-3. Besides, the PAA/BA/Fe3+/NaCl hydrogels exhibited a high conductivity of 0.43 S m-1 and good freezing resistance. The ionic skin based on the PAA/BA/Fe3+/NaCl hydrogels showed high sensitivity (GF = 5.29), wide strain range (0-950%), fast response time (220 ms) and good stability. Also, the self-healing ability of the ionic skin can significantly prolong its service time, and the antifreezing property can broaden its applicable temperature. This study offers new insight into the design of multifunctional ionic skin for wearable electronics.
Collapse
Affiliation(s)
- Yue Xin
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, Guangdong, P. R. China
| | - Jionghong Liang
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Lantu Ren
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Wenshuo Gao
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Weicheng Qiu
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Zhenhan Li
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Baoliu Qu
- School of Textile Materials and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Aijian Peng
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Zhixin Ye
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, Guangdong, P. R. China
| | - Guang Zeng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, Guangdong, P. R. China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| |
Collapse
|
4
|
Sun S, Cui Y, Yuan B, Dou M, Wang G, Xu H, Wang J, Yin W, Wu D, Peng C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1117647. [PMID: 36793443 PMCID: PMC9923112 DOI: 10.3389/fbioe.2023.1117647] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Drug delivery systems composed of osteogenic substances and biological materials are of great significance in enhancing bone regeneration, and appropriate biological carriers are the cornerstone for their construction. Polyethylene glycol (PEG) is favored in bone tissue engineering due to its good biocompatibility and hydrophilicity. When combined with other substances, the physicochemical properties of PEG-based hydrogels fully meet the requirements of drug delivery carriers. Therefore, this paper reviews the application of PEG-based hydrogels in the treatment of bone defects. The advantages and disadvantages of PEG as a carrier are analyzed, and various modification methods of PEG hydrogels are summarized. On this basis, the application of PEG-based hydrogel drug delivery systems in promoting bone regeneration in recent years is summarized. Finally, the shortcomings and future developments of PEG-based hydrogel drug delivery systems are discussed. This review provides a theoretical basis and fabrication strategy for the application of PEG-based composite drug delivery systems in local bone defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dankai Wu
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| | - Chuangang Peng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Hosseinzadeh B, Ahmadi M. Coordination geometry in metallo-supramolecular polymer networks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Zhang W, Liang H, Qin X, Yuan J, Wang X, Wang Z, Wang Y, Zhang J, Yang D. Double-Network Luminescent Films Constructed Using Sulfur Quantum Dots and Lanthanide Complexes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40136-40144. [PMID: 36031815 DOI: 10.1021/acsami.2c12490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although UV light-switchable luminescent films are of importance for application in soft optical devices and anticounterfeiting labels, there are still challenges in developing such films integrated with outstanding luminescent property, high self-healing efficiency, and simultaneously excellent mechanical strength. Herein, double-network (DN) luminescent films are designed and constructed via an intermolecular hydrogen bond crosslinking strategy of poly(ethylene glycol) (PEG) in sulfur quantum dots (S-QDs) and polyurethane (PU), where S-QDs ("stone" one) play dual roles of acting both as a soft segment to crosslink another segment PU ("bird" one) and also as the origin of a luminescence center ("bird" two) in films. In addition, lanthanide(III) complexes (LnCs, Ln═Eu3+, Tb3+) are employed as another emission source to embed in the films and switch the emission colors of DN films from the multicolor (red-yellow-green) of LnCs to the blue color of S-QDs by changing the ultraviolet excitation wavelength from 254 to 365 nm. It is worth noting that the crosslinking network strategy can effectively prevent S-QDs and LnCs from aggregating or leaking and enable both luminescence centers to homogeneously distribute, resulting in luminescent DN films possessing extraordinary UV light-switchable luminescence, improved mechanical property, and excellent self-healing ability. This work presents a viable method for the design and fabrication of luminescent films with multifunctional applications in flexible robotics, wearable devices, and dual-luminescent anticounterfeiting materials.
Collapse
Affiliation(s)
- Wenyu Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Haiduo Liang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Xueying Qin
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Jiamei Yuan
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Xi Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Zhenguang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Ying Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Jinchao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| | - Daqing Yang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding 071002, Hebei, China
| |
Collapse
|
7
|
Trung ND, Huy DTN, Jade Catalan Opulencia M, Lafta HA, Abed AM, Bokov DO, Shomurodov K, Van Thuc Master H, Thaeer Hammid A, Kianfar E. Conductive Gels: Properties and Applications of Nanoelectronics. NANOSCALE RESEARCH LETTERS 2022; 17:50. [PMID: 35499625 PMCID: PMC9061932 DOI: 10.1186/s11671-022-03687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.
Collapse
Affiliation(s)
| | - Dinh Tran Ngoc Huy
- Banking University HCMC, Ho Chi Minh city, Vietnam
- International University of Japan, Niigata, Japan
| | | | | | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Kahramon Shomurodov
- Department of Maxillo-Facial Surgery, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan, 100147
| | - Hoang Van Thuc Master
- Thai Nguyen University, University of Information and Communication Technology, Thái Nguyên, Vietnam
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| |
Collapse
|
8
|
Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. Int J Mol Sci 2022; 23:4578. [PMID: 35562969 PMCID: PMC9104506 DOI: 10.3390/ijms23094578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Tao Jiang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| | | | - Zirong Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| |
Collapse
|
9
|
Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022; 23:641-660. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.
Collapse
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
10
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
11
|
Kadumudi FB, Hasany M, Pierchala MK, Jahanshahi M, Taebnia N, Mehrali M, Mitu CF, Shahbazi MA, Zsurzsan TG, Knott A, Andresen TL, Dolatshahi-Pirouz A. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100047. [PMID: 34247417 DOI: 10.1002/adma.202100047] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.
Collapse
Affiliation(s)
- Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Masoud Hasany
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | | | | | - Nayere Taebnia
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mehdi Mehrali
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Mechanical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Cristian Florian Mitu
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tiberiu-Gabriel Zsurzsan
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Arnold Knott
- Department of Electrical Engineering, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
12
|
Wu Y, Zhao W, Ou J. Stable, superfast and self-healing fluid coating with active corrosion resistance. Adv Colloid Interface Sci 2021; 295:102494. [PMID: 34343903 DOI: 10.1016/j.cis.2021.102494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Fluid material can recover from damage rapidly with no demand of external triggering in contrast with the traditional self-healing material which presents low healing efficiency and demands external triggering, such as heat, light, moisture, electricity, etc. However, due to its low viscosity, fluid material is easy to flow away from the surface and thus it is difficult to form a stable coating on the surface to provide practical corrosion resistance to the substrate. Herein, a stable and superfast self-healing coating on steel substrate has been obtained by incorporating carbon nanotube (CNT) into the fluid matrix of epoxy resin (EP) or silicone oil (OIL). To further achieve the active corrosion resistance, 1H, 1H, 2H, 2H- perfluorooctyltriethoxysilane (PTES) which can react with the water inside the coating is added. The coating possesses superfast (tens of seconds) self-healing properties against millimeter-scale scratch repeatedly and excellent corrosion resistance in the aqueous solution of HCl (1 M) and NaOH (1 M). In-situ self-healing and electrochemical behavior in scanning vibrating electrode technique (SVET) measurement indicate the fluid coating possesses infinite self-healing capacity theoretically. Due to its excellent durability and infinite self-healing capacity with short responding time, the optimized fluid coating can be a smart corrosion barrier coating for metals.
Collapse
|
13
|
Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2':6',2″-terpyridine Ligand: Kinetic Studies and Mechanical Properties. Polymers (Basel) 2021; 13:polym13111760. [PMID: 34072063 PMCID: PMC8199432 DOI: 10.3390/polym13111760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2′:6′,2″-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π–π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals.
Collapse
|
14
|
Fan P, Xue C, Zhou X, Yang Z, Ji H. Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2680. [PMID: 34065375 PMCID: PMC8160654 DOI: 10.3390/ma14102680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
As stiff polymers are difficult to self-heal, the balance between polymers' self-healing ability and mechanical properties is always a big challenge. Herein, we have developed a novel healable stiff polymer based on the Si-OR and Si-OSi dynamic covalent bonds. The self-healing mechanism was tested and proved by the small molecule model experiments and the contrast experiments of polymers. This polymer possesses excellent tensile, bending properties as well as room temperature self-healing abilities. Moreover, due to the sticky and shapeable properties under wetting conditions, the polymer could be used as an adhesive. Besides, even after four cycles of recycling, the polymer maintains its original properties, which meets the requirements of recyclable materials. It was demonstrated that the polymer exhibits potential application in some fields, such as recyclable materials and healable adhesives.
Collapse
Affiliation(s)
- Ping Fan
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Xiantai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Zujin Yang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
15
|
Wang T, Ren X, Bai Y, Liu L, Wu G. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor. Carbohydr Polym 2021; 254:117298. [DOI: 10.1016/j.carbpol.2020.117298] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
|
16
|
Breul K, Seiffert S. Amphiphilic poly(ether urethanes) carrying associative terpyridine side groups with controlled spacing. Polym Chem 2021. [DOI: 10.1039/d1py00121c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A synthesis for metallo-supramolecular crosslinkable polyurethanes with uniform vs. random sticker spacings is presented to study how sticker density and distribution affect the mechanical properties of the corresponding gels.
Collapse
Affiliation(s)
- Katharina Breul
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Sebastian Seiffert
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
17
|
Zheng C, Lu K, Lu Y, Zhu S, Yue Y, Xu X, Mei C, Xiao H, Wu Q, Han J. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr Polym 2020; 250:116905. [DOI: 10.1016/j.carbpol.2020.116905] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
|
18
|
Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2472-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Dzhardimalieva GI, Yadav BC, Singh S, Uflyand IE. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Trans 2020; 49:3042-3087. [DOI: 10.1039/c9dt04360h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent achievements and problems associated with the use of metallopolymers as self-healing and shape memory materials are presented and evaluated.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers
- The Institute of Problems of Chemical Physics RAS
- Chernogolovka
- 142432 Russian Federation
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Shakti Singh
- Nanomaterials and Sensors Research Laboratory
- Department of Physics
- Babasaheb Bhimrao Ambedkar University
- Lucknow-226025
- India
| | - Igor E. Uflyand
- Department of Chemistry
- Southern Federal University
- Rostov-on-Don
- 344006 Russian Federation
| |
Collapse
|
20
|
Chen Y, Lu K, Song Y, Han J, Yue Y, Biswas SK, Wu Q, Xiao H. A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with A Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1737. [PMID: 31817640 PMCID: PMC6956062 DOI: 10.3390/nano9121737] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
Keywords: nanocellulose; polyacrylic acid; polypyrrole; hydrogel; self-healing and conductive.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Materials Science and Engineering, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (K.L.); (Y.S.)
| | - Kaiyue Lu
- College of Materials Science and Engineering, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (K.L.); (Y.S.)
| | - Yuhan Song
- College of Materials Science and Engineering, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (K.L.); (Y.S.)
| | - Jingquan Han
- College of Materials Science and Engineering, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (K.L.); (Y.S.)
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Subir Kumar Biswas
- Laboratory of Active Bio-based Materials Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| |
Collapse
|
21
|
Wang T, Zhang X, Wang Z, Zhu X, Liu J, Min X, Cao T, Fan X. Smart Composite Hydrogels with pH-Responsiveness and Electrical Conductivity for Flexible Sensors and Logic Gates. Polymers (Basel) 2019; 11:E1564. [PMID: 31561467 PMCID: PMC6836247 DOI: 10.3390/polym11101564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Stimuli-responsive conductive hydrogels have a wide range of applications due to their intelligent sensing of external environmental changes, which are important for smart switches, soft robotics, and flexible sensors. However, designing stimuli-responsive conductive hydrogels with logical operation, such as smart switches, remains a challenge. In this study, we synthesized pH-responsive conductive hydrogels, based on the copolymer network of acrylic acid and hydroxyethyl acrylate doped with graphene oxide. Using the good flexibility and conductivity of these hydrogels, we prepared a flexible sensor that can realize the intelligent analysis of human body motion signals. Moreover, the pH-responsive conductive hydrogels were integrated with temperature-responsive conductive hydrogels to develop logic gates with sensing, analysis, and driving functions, which realized the intellectualization of conductive hydrogels.
Collapse
Affiliation(s)
- Tong Wang
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Xuan Zhang
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Zichao Wang
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Xiuzhong Zhu
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jie Liu
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Xin Min
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Tao Cao
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| | - Xiaodong Fan
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China; (T.W.); (Z.W.); (X.Z.); (J.L.); (X.M.); (T.C.)
| |
Collapse
|
22
|
Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi‐Pirouz A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801664. [PMID: 31453048 PMCID: PMC6702654 DOI: 10.1002/advs.201801664] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/04/2019] [Indexed: 05/18/2023]
Abstract
Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Mehdi Mehrali
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Nayere Taebnia
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell ResearchDepartment of Health Science and TechnologyAalborg UniversityFredrik Bajers vej 3B9220AalborgDenmark
| | - Firoz Babu Kadumudi
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Javad Foroughi
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Masoud Hasany
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Mehdi Nikkhah
- School of Biological Health and Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of Victoria3800VictoriaCanada
- Center for Advanced Materials and Related TechnologiesUniversity of Victoria3800VictoriaCanada
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
- BTI Biotechnology InstituteVitoria01007Spain
| | - Alireza Dolatshahi‐Pirouz
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterPhilips van Leydenlaan 25Nijmegen6525EXThe Netherlands
| |
Collapse
|
23
|
Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J. Self-Healing Polymeric Hydrogel Formed by Metal-Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800837. [PMID: 30672628 DOI: 10.1002/marc.201800837] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Indexed: 01/28/2023]
Abstract
Self-healing hydrogels based on metal-ligand coordination chemistry provide new and exciting properties that improve injectability, rheological behaviors, and even biological functionalities. The inherent reversibility of coordination bonds improves on the covalent cross-linking employed previously, allowing for the preparation of completely self-healing hydrogels. In this article, recent advances in the development of this class of hydrogels are summarized and their applications in biology and medicine are discussed. Various chelating ligands such as bisphosphonate, catechol, histidine, thiolate, carboxylate, pyridines (including bipyridine and terpyridine), and iminodiacetate conjugated onto polymeric backbones, as well as the chelated metal ions and metal ions containing inorganic particles, which are used to form dynamic networks, are highlighted. This article provides general ideas and methods for the design of self-healing hydrogel biomaterials based on coordination chemistry.
Collapse
Affiliation(s)
- Liyang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.,Division of Polymer Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, 75121, Sweden
| | - Pinghui Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dmitri Ossipov
- Department of Biosciences and Nutrition, Karolinska Institute, Häsovägen 7c,, Huddinge, 14157, Sweden
| | - Jöns Hilborn
- Division of Polymer Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, 75121, Sweden
| |
Collapse
|
24
|
Zhou B, Zuo C, Xiao Z, Zhou X, He D, Xie X, Xue Z. Self‐Healing Polymer Electrolytes Formed via Dual‐Networks: A New Strategy for Flexible Lithium Metal Batteries. Chemistry 2018; 24:19200-19207. [DOI: 10.1002/chem.201803943] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Binghua Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Zhuliu Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xingping Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|