1
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
2
|
Vinodh M, Alshammari AA, Al-Azemi TF. Influence of halogen-halogen interactions in the self-assembly of pillar[5]arene-based supramolecular polymers. RSC Adv 2024; 14:20553-20560. [PMID: 38946765 PMCID: PMC11211735 DOI: 10.1039/d4ra03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Halogen-halogen interactions play a pivotal role in the formation and stability of supramolecular assemblies. Herein, we investigate the assembly dynamics and dissociation pathways of linear supramolecular polymers based on pillar[5]arene-mediated by guest halogen-halogen interactions (C-X × X-C) in both the solution and solid states. The structure of the solid-state supramolecular assembly was determined by single-crystal X-ray diffraction analysis. The binding affinities of four different 1,4-dihalobutane guests with pillar[5]arene were investigated by 1H NMR spectroscopic titration and isothermal titration calorimetry (ITC). The formation of the halogen-bonded linear supramolecular polymer in solution was demonstrated using diffusion-ordered spectroscopy (DOSY) and ITC. Our findings highlight the dependence of the dissociation process on halogen nature within the encapsulated guest, revealing that the process is entropically driven (TΔS = 27.12 kJ mol-1) and enthalpically disfavored (ΔH = 9.99 kJ mol-1). Moreover, the disassembly of supramolecular polymers promoted by N-containing compounds was investigated using 1H NMR spectroscopy and ITC, revealing that the process is driven both enthalpically (ΔH = -2.64 kJ mol-1) and entropically (TΔS = 15.70 kJ mol-1). Notably, the data suggest the formation of N⋯I bonding interactions at both ends of the inclusion guest, elucidating the intricate interplay of halogen interactions and host-guest chemistry in supramolecular polymer systems.
Collapse
Affiliation(s)
- Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| | - Anwar A Alshammari
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| | - Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-5631
| |
Collapse
|
3
|
Shao L, Hua B, Zhao X, Lu S, Li G. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores. Chemistry 2023; 29:e202303071. [PMID: 37843981 DOI: 10.1002/chem.202303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorescent supramolecular polymers have garnered significant attention due to their successful integration of supramolecular polymers and fluorescence, offering vast potential for applications in sensing, imaging, optoelectronics, and photonics. In this study, we present a novel supramolecular polymer based on P5-OH, derived from mono-substituted pillararene macrocycles. Notably, these formed supramolecular polymeric aggregates exhibit a prominent blue emission, representing a rare instance of fluorescent polymers devoid of conventional chromophores. Furthermore, through the modification of alkyl chain ending groups attached to pillar[5]arenes, slight shifts in the emission peak could be observed. This research expands the scope of functional supramolecular polymeric systems utilizing pillararenes, providing valuable insights for the design of innovative luminescent materials and optical devices.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shuai Lu
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
4
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
5
|
Filimonova D, Nazarova A, Yakimova L, Stoikov I. Solid Lipid Nanoparticles Based on Monosubstituted Pillar[5]arenes: Chemoselective Synthesis of Macrocycles and Their Supramolecular Self-Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4266. [PMID: 36500889 PMCID: PMC9738619 DOI: 10.3390/nano12234266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Novel monosubstituted pillar[5]arenes with one or two terminal carboxyl groups were synthesized by the reaction of succinic anhydride with pillar[5]arene derivative containing a diethylenetriamine function. The ability for non-covalent self-assembly in chloroform, dimethyl sulfoxide, as well as in tetrahydrofuran-water system was studied. The ability of the synthesized macrocycles to form different types of associates depending on the substituent nature was established. The formation of stable particles with average diameter of 192 nm in chloroform and of 439 nm in DMSO was shown for pillar[5]arene containing two carboxyl fragments. Solid lipid nanoparticles (SLN) based on monosubstituted pillar[5]arenes were synthesized by nanoprecipitation in THF-water system. Minor changes in the structure of the macrocycle substituent can dramatically influence the stability and shape of SLN (spherical and rod-like structures) accordingly to DLS and TEM. The presence of two carboxyl groups in the macrocycle substituent leads to the formation of stable spherical SLN with an average hydrodynamic diameter of 364-454 nm. Rod-like structures are formed by pillar[5]arene containing one carboxyl fragment, which diameter is about of 50-80 nm and length of 700-1000 nm. The synthesized stable SLN open up great prospects for their use as drug storage systems.
Collapse
Affiliation(s)
- Darya Filimonova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia
| |
Collapse
|
6
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Hua B, Shao L, Li M, Liang H, Huang F. Macrocycle-Based Solid-State Supramolecular Polymers. Acc Chem Res 2022; 55:1025-1034. [PMID: 35321546 DOI: 10.1021/acs.accounts.2c00011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular polymers, generated by connecting monomers through noncovalent interactions, have received considerable attention over the past years, as they provide versatile platforms for developing diverse aesthetically pleasing polymeric structures with promising applications in a variety of fields, such as medicine, catalysis, and sensing. In the development of supramolecular polymers, macrocyclic hosts play a very important role. Benefiting from their abundant host-guest chemistry and self-assembly characteristics, macrocycles themselves or their host-guest complexes can self-assemble to form well-ordered supramolecular polymeric architectures including pseudopolyrotaxanes and polyrotaxanes. The integration of these topological structures into supramolecular polymeric materials also imbues them with some unforeseen functions. Current interest in macrocycle-based supramolecular polymers is mostly focused on the development of supramolecular soft materials in solution or gel-state, in which the dynamic nature of noncovalent interactions endows supramolecular polymers with a wealth of "smart" properties, such as multiresponsiveness and self-repair capabilities. While preparation of macrocycle-derived supramolecular polymers in the solid state is a relatively challenging but intriguing prospect, they are an important part of the field of supramolecular polymers. On one hand, the construction of macrocycle-based solid-state supramolecular polymers enables us to obtain new materials with novel properties and functions such as mechano-responsiveness. On the other hand, the molecular structures and arrangements in these materials are well-identified by X-ray crystallography techniques, offering a direct visual representation of the supramolecular polymerization process. The analysis of the role of noncovalent interactions in these architectures allows us to design more sophisticated and elegant supramolecular polymers in a highly rationalized and controllable manner. This Account serves to summarize the research progress on macrocycle-based solid-state supramolecular polymers (MSSPs), including the contributions toward this field made by our group. For constructing MSSPs, the key point is to control noncovalent interactions. Thus, in this Account, we primarily classify these MSSPs by different noncovalent interactions involved to connect the monomers, including metal-ligand interactions, host-guest interactions, π···π stacking, and halogen bonding. These noncovalent interactions are highly associated with the structures and functions of the resultant MSSPs. For instance, using metal-ligand interactions as driving forces, metal clusters can be introduced in MSSPs which afford systems with solid-state luminescence or proton conduction properties; supramolecular polymerization using macrocycle-based host-guest interactions can modulate the molecular arrangement of some specific molecules in the solid state, which further influences their solid-state properties; π···π stacking interactions and halogen bonding give chemists more choice to design MSSPs with various elements. The role of macrocyclic hosts in MSSPs is also revealed in these descriptions. Finally, the remaining challenges are identified for further development of future prospects. We hope that this Account can inspire new discoveries in the realm of supramolecular functional systems and offer new opportunities for the construction of supramolecular architectures and solid-state materials.
Collapse
Affiliation(s)
- Bin Hua
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haozhong Liang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
8
|
Fabricating a novel supramolecular light-activated platform based on internal-driven forces induced by the UV-light. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
10
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
11
|
Ogoshi T, Yoshiki M, Kakuta T, Yamagishi TA, Mizuno M. Polypseudorotaxanes constructed from pillar[5]arenes and polyamides by interfacial polymerization. Chem Commun (Camb) 2021; 57:12468-12471. [PMID: 34730128 DOI: 10.1039/d1cc04491e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypseudorotaxanes constructed from pillar[5]arene rings and polyamide chains were successfully synthesized by interfacial polymerization between diamines and dicarbonyl chlorides in the presence of pillar[5]arene. The dicarbonyl chloride length and the assocation constants of dicarbonyl chloride-pillar[5]arene complexes were important factors in producing polypseudorotaxanes with high cover ratio of pillar[5]arene rings.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. .,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Miyu Yoshiki
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
12
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
14
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021; 60:8115-8120. [DOI: 10.1002/anie.202013701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/12/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
15
|
Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid. CRYSTALS 2021. [DOI: 10.3390/cryst11020198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Halogen bonding is one of the most interesting noncovalent attractions capable of self-assembly and recognition processes in both solution and solid phase. In this contribution, we report on the formation of two solvates of tetrabromoterephthalic acid (H2Br4tp) with acetonitrile (MeCN) and methanol (MeOH) viz. H2Br4tp·2MeCN (1MeCN) and H2Br4tp·2MeOH (2MeOH). The host structures of both 1MeCN and 2MeOH are assembled via the occurrence of simultaneous Br···Br, Br···O, and Br···π halogen bonding interactions, existing between the H2Br4tp molecular tectons. Among them, the cooperative effect of the dominant halogen bond in combination with hydrogen bonding interactions gave rise to different supramolecular assemblies, whereas the strength of the halogen bond depends on the type of hydrogen bond between the molecules of H2Br4tp and the solvents. These materials show a reversible release/resorption of solvent molecules accompanied by evident crystallographic phase transitions.
Collapse
|
16
|
Vulpe E, Grosjean S, Hassan Z, Bulach V, Hosseini MW, Bräse S. Halogen-bonded one-dimensional chains of functionalized ditopic bipyridines co-crystallized with mono-, di-, and triiodofluorobenzenes. CrystEngComm 2021. [DOI: 10.1039/d1ce00494h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of halogen-bonded (XB) 1D and zigzag supramolecular architectures involving a sterically hindered class of homologous para-xylenes bearing bipyridyl moieties at peripheries co-crystallized with mono-, di-, and triiodofluorobenzenes as XB donors are prepared.
Collapse
Affiliation(s)
- Elena Vulpe
- Molecular Tectonics Laboratory
- UMR UDS-CNRS, 7140 & icFRC
- University of Strasbourg
- Strasbourg
- France
| | - Sylvain Grosjean
- Soft Matter Synthesis Laboratory
- Institute for Biological Interfaces 3 (IBG 3)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Zahid Hassan
- Institute of Organic Chemistry (IOC)
- Karlsruhe Institute of Technology (KIT)
- Karlsruhe
- Germany
| | - Véronique Bulach
- Molecular Tectonics Laboratory
- UMR UDS-CNRS, 7140 & icFRC
- University of Strasbourg
- Strasbourg
- France
| | - Mir Wais Hosseini
- Molecular Tectonics Laboratory
- UMR UDS-CNRS, 7140 & icFRC
- University of Strasbourg
- Strasbourg
- France
| | - Stefan Bräse
- Soft Matter Synthesis Laboratory
- Institute for Biological Interfaces 3 (IBG 3)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| |
Collapse
|
17
|
Xiong Z, Wang F, Ke D, Wang Y, Huang B, Xiao Z, Wu P. Diaryl‐λ
3
‐iodane Woven Supramolecular Architecture of Polyoxometalate. ChemistrySelect 2020. [DOI: 10.1002/slct.202001599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhelun Xiong
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Fang Wang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Degang Ke
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Yu Wang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Bo Huang
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Zicheng Xiao
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| | - Pingfan Wu
- Institute of POM-based MaterialsHubei Provincial Key Laboratory of Green Materials for Light IndustrySchool of Materials and Chemical EngineeringHubei University of Technology. Wuhan 430068 China
| |
Collapse
|
18
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
19
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020; 59:9309-9313. [DOI: 10.1002/anie.201916515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
20
|
Biot N, Bonifazi D. Concurring Chalcogen‐ and Halogen‐Bonding Interactions in Supramolecular Polymers for Crystal Engineering Applications. Chemistry 2020; 26:2904-2913. [DOI: 10.1002/chem.201904762] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas Biot
- School of Chemistry Cardiff University Park Place CF10 3AT Cardiff UK
| | - Davide Bonifazi
- School of Chemistry Cardiff University Park Place CF10 3AT Cardiff UK
| |
Collapse
|
21
|
Al-Azemi TF, Vinodh M. Pillar[5]arene-based self-assembled linear supramolecular polymer driven by guest halogen–halogen interactions in solid and solution states. Polym Chem 2020. [DOI: 10.1039/d0py00327a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pillar[5]arene-based linear supramolecular polymer mediated by guest halogen–halogen interactions (C–Br⋯Br–C) was studied in both the solution and solid states.
Collapse
Affiliation(s)
| | - Mickey Vinodh
- Chemistry Department
- Kuwait University
- Safat 13060
- Kuwait
| |
Collapse
|
22
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Nieland E, Weingart O, Schmidt BM. Fluorinated azobenzenes as supramolecular halogen-bonding building blocks. Beilstein J Org Chem 2019; 15:2013-2019. [PMID: 31501668 PMCID: PMC6720338 DOI: 10.3762/bjoc.15.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Han C, Zhao D, Lü Z, Zhan F, Zhang L, Dong S, Jin L. Synthesis of a Difunctionalized Pillar[5]arene with Hydroxyl and Amino Groups at A1/A2 Positions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chengyou Han
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Dezhi Zhao
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Zhifeng Lü
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Fengtao Zhan
- Department of Chemistry; College of Science; China University of Petroleum (East China); 266580 Qingdao P. R. China
| | - Liangliang Zhang
- Institute of Flexible Electronics; College of Science; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; College of Science; Hunan University; 410082 Changsha Hunan P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 710072 Xi'an Shaanxi P. R. China
| |
Collapse
|
25
|
Li H, Yang Y, Xu F, Liang T, Wen H, Tian W. Pillararene-based supramolecular polymers. Chem Commun (Camb) 2019; 55:271-285. [PMID: 30418439 DOI: 10.1039/c8cc08085b] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pillararenes, as a new type of macrocyclic hosts, possess columnar structures and electron-rich cavities. Pillararenes not only recognize suitable cations, but also bind many neutral molecules. Due to the easy modification of pillararenes, various functional groups can be conveniently attached to the rim of pillararenes to provide suitable interaction sites, and the modified pillararenes even bind anionic guests. Thus, pillararenes and their derivatives have presented intriguing and unique host-guest recognition nature in the past few years, which make them ideal building blocks for the preparation of supramolecular polymers. Pillararene-based supramolecular polymers (PSPs) not only possess many merits of traditional covalent polymers but also have many specific properties, such as self-reparability, degradability, and self-adaptation. This feature paper gives an overview of the preparation of PSPs and covers recent research advance and future trends of pillararene-based host-guest pairs, assembly methods, topological architectures, stimuli-responsiveness, and functional features. We expect that the review will be helpful to researchers working in the fields of supramolecular chemistry and polymer science.
Collapse
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Cohen Y, Slovak S. Diffusion NMR for the characterization, in solution, of supramolecular systems based on calixarenes, resorcinarenes, and other macrocyclic arenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00329k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of diffusion NMR in studying calixarenes and other arene-based supramolecular systems is described, emphasizing the pivotal role played by the calixarene community in transforming the methods into a routine tool used in supramolecular chemistry.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Sarit Slovak
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
27
|
Al-Azemi TF, Vinodh M, Alipour FH, Mohamod AA. Chiral discrimination of 2-heptlyaminium salt by planar-chiral monohydroxy-functionalized pillar[5]arenes. Org Chem Front 2019. [DOI: 10.1039/c8qo01343h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A chiral receptor was synthesized based on monohydroxy-functionalized pillar[5]arenes and its ability to discriminate alkyl aminium salts is demonstrated.
Collapse
Affiliation(s)
| | - Mickey Vinodh
- Chemistry Department
- Kuwait University
- Safat 13060
- Kuwait
| | | | | |
Collapse
|
28
|
Nieland E, Topornicki T, Kunde T, Schmidt BM. [2+2] Halogen-bonded boxes employing azobenzenes. Chem Commun (Camb) 2019; 55:8768-8771. [DOI: 10.1039/c9cc03061a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we report the synthesis and crystal structures of three [2+2] supramolecular boxes assembled by halogen bonding.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Thomas Topornicki
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- D-40225 Düsseldorf
- Germany
| |
Collapse
|
29
|
Yuvayapan S, Aydogan A. Counter Cation Dependent and Stimuli Responsive Supramolecular Polymers Constructed by Calix[4]pyrrole Based Host–Guest Interactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Samet Yuvayapan
- Department of Chemistry Istanbul Technical University Maslak 34469 Istanbul Turkey
| | - Abdullah Aydogan
- Department of Chemistry Istanbul Technical University Maslak 34469 Istanbul Turkey
| |
Collapse
|
30
|
Han C, Zhao D, Dong S. Three-dimensional supramolecular polymerization based on pillar[n]arenes (n = 5, 6) and halogen bonding interactions. Chem Commun (Camb) 2018; 54:13099-13102. [DOI: 10.1039/c8cc07993e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three dimensional supramolecular polymerization networks based on pillar[5,6]arenes were constructed both in solution and in the solid state.
Collapse
Affiliation(s)
- Chengyou Han
- Department of Chemistry
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Dezhi Zhao
- Department of Chemistry
- College of Science
- China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
31
|
Ding JD, Chen JF, Lin Q, Yao H, Zhang YM, Wei TB. A multi-stimuli responsive metallosupramolecular polypseudorotaxane gel constructed by self-assembly of a pillar[5]arene-based pseudo[3]rotaxane via zinc ion coordination and its application for highly sensitive fluorescence recognition of metal ions. Polym Chem 2018. [DOI: 10.1039/c8py01319e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pillar[5]arene-based metallosupramolecular polypseudorotaxane gel has been successfully prepared.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|