1
|
Hao H, Zhang W, Zhu W, Bao W, Gu G, Zhao Y. Hypervalent Iodine-Mediated Selective Monofunctionalization of Calix[4]arenes. Org Lett 2025. [PMID: 40305165 DOI: 10.1021/acs.orglett.5c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The selective introduction of a single functionality on the upper rim of calix[4]arene is challenging due to the identical reactivity of its four aryl units. In this study, we introduce a novel strategy for monofunctional modification of calix[4]arenes using a hypervalent iodine-mediated C-H functionalization. This process yields a calix[4]arene-iodonium salt, which can be easily isolated due to its distinct solubility compared to the native calixarene. This versatile intermediate efficiently undergoes C-O, C-N, and C-S couplings with a variety of nucleophiles, including amines, phenols, thiols, and sulfinate salts under mild conditions. This strategy enables streamlined structural diversification of calix[4]arenes, opening new avenues for the design of supramolecular macrocycles with tailored functions.
Collapse
Affiliation(s)
- Haoliang Hao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zhu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjing Bao
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangxing Gu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanchuan Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Sun G, Zhang X, Zheng Z, Zhang ZY, Dong M, Sessler JL, Li C. Chiral Macrocycles for Enantioselective Recognition. J Am Chem Soc 2024; 146:26233-26242. [PMID: 39269922 DOI: 10.1021/jacs.4c07924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The efficient synthesis of chiral macrocycles with highly enantioselective recognition remains a challenge. We have addressed this issue by synthesizing a pair of chiral macrocycles, namely, R/S-BINOL[2], achieving total isolated yields of up to 62% through a two-step reaction sequence. These macrocycles are readily purified by column chromatography over silica gel without the need for chiral separation, thus streamlining the overall synthesis. R/S-BINOL[2] demonstrated enantioselective recognition toward chiral ammonium salts, with enantioselectivity (KS/KR) values reaching up to 13.2, although less favorable separations were seen for other substrates. R/S-BINOL[2] also displays blue circularly polarized luminescence with a |glum| value of up to 2.2 × 10-3. The R/S-BINOL[2] macrocycles of this study are attractive as chiral hosts in that they both display enantioselective guest recognition and benefit from a concise, high-yielding synthesis. As such, they may have a role to play in chiral separations.
Collapse
Affiliation(s)
- Guang Sun
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xue Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhe Zheng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zhi-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Ming Dong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| |
Collapse
|
3
|
Yang T, Duan H, Nian H, Wang P, Yan C, Cao F, Li Q, Cao L. Unraveling the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in aqueous host-guest complexation. Biosens Bioelectron 2024; 258:116342. [PMID: 38705071 DOI: 10.1016/j.bios.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In biological systems, nucleosides play crucial roles in various physiological processes. In this study, we designed and synthesized four achiral anthracene-based tetracationic nanotubes (1-4) as artificial hosts and chiroptical sensors for nucleosides in aqueous media. Notably, different nanotubes exhibit varied chirality sensing on circular dichroism (CD)/circularly polarized luminescence (CPL) spectra through the host-guest complexation, which prompted us to explore the factors influencing their chiroptical responses. Through systematic host-guest experiments, the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in the host-guest complexation was unraveled. Firstly, the CD response originates from the anthracene rings situated at the side-wall position, resulting from the right-handed (P)- or left-handed (M)-twisted conformation of the macrocyclic structure. Secondly, the CPL signal is influenced by the presence of anthracene rings at the linking-wall position, which results from intermolecular chiral twisted stacking between these anthracene rings. Therefore, these nanotubes can serve as chiroptical sensor arrays to enhance the accuracy of nucleotide recognition through principal component analysis (PCA) analysis based on the diversified CD spectra. This study provides insights for the construction of adaptive chirality from achiral nanotubes with dynamic conformational nature and might facilitate further design of chiral functional materials for several applications.
Collapse
Affiliation(s)
- Ting Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Xian North Qinghua Electrical Co., Ltd, Xi'an, 710054, China
| | - Hao Nian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fan Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Quan J, Yan H, Periyasami G, Li H. A Visible-Light Regulated ATP Transport in Retinal-Modified Pillar[6]arene Layer-by-Layer Self-Assembled Sub-Nanochannel. Chemistry 2024; 30:e202401045. [PMID: 38693094 DOI: 10.1002/chem.202401045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Natural light-responsive rhodopsins play a critical role in visual conversion, signal transduction, energy transmission, etc., which has aroused extensive interest in the past decade. Inspired by these gorgeous works of living beings, scientists have constructed various biomimetic light-responsive nanochannels to mimic the behaviors of rhodopsins. However, it is still challenging to build stimuli-responsive sub-nanochannels only regulated by visible light as the rhodopsins are always at the sub-nanometer level and regulated by visible light. Pillar[6]arenes have an open cavity of 6.7 Å, which can selectively recognize small organic molecules. They can be connected to ions of ammonium or carboxylate groups on the rims. Therefore, we designed and synthesized the amino and carboxyl-derived side chains of pillar[6]arenes with opposite charges. The sub-nanochannels were constructed through the electrostatic interaction of layer-by-layer self-assembled amino and carboxyl-derived pillar[6]arenes. Then, the natural chromophore of the retinal with visible light-responsive performance was modified on the upper edge of the sub-nanochannel to realize the visible light switched on and off. Finally, we successfully constructed a visible light-responsive sub-nanochannel, providing a novel method for regulating the selective transport of energy-donating molecules of ATP.
Collapse
Affiliation(s)
- Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Hewei Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
5
|
Ohtani S, Akine S, Kato K, Fa S, Shi TH, Ogoshi T. Silapillar[ n]arenes: Their Enhanced Electronic Conjugation and Conformational Versatility. J Am Chem Soc 2024; 146:4695-4703. [PMID: 38324921 DOI: 10.1021/jacs.3c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
During recent decades, methylene-bridged macrocyclic arenes have been widely used in supramolecular chemistry. However, their π-conjugations are very weak, as the methylene bridges disrupt the electronic communication between π orbitals of the aromatic units. Herein, we successfully synthesized a series of silapillar[n]arenes (n = 4, 6, and 8) using silylene bridging. These showed enhanced electronic conjugation compared with the parent pillar[n]arenes because of σ*-π* conjugation between σ* (Si-C) orbitals and π* orbitals of the benzenes. Owing to the longer Si-C bond compared with the C-C bond, silylene-bridging provides additional structural flexibility into the pillar[n]arene scaffolds; a strained silapillar[4]arene was formed, which is unavailable in the parent pillar[n]arenes because of the steric requirements. Furthermore, silapillar[n]arenes displayed interesting size-dependent structural and optical properties.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Gambhir D, Kumar K, Murugesan P, Yadav A, Sinha Ray S, Koner RR. Amino Acid-Based Molecular and Membranous Chiral Tools for Enantiomeric Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2745-2753. [PMID: 38279959 DOI: 10.1021/acs.langmuir.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Given the need, both academic and industrial, for new approaches and technologies for chiral discrimination of enantiomers, the present work demonstrates the development through rational design and integration of two new chiral platforms (molecular and membranous) for enantioselective recognition through visual as well as microscopic observation. The molecular platform (TPT) is based on the tryptophan derivative developed through the condensation of two tryptophan units with terepthaloyl chloride. While TPT based on l-tryptophan recognizes R-mandelic acid over the S-isomer, the host with reverse chirality (TPDT) recognizes S-mandelic acid over R-isomer. The role of chemical functionality in this sensitive recognition process was established experimentally by developing an analogue of TPT and by judiciously using different chiral analytes. Importantly, a detailed theoretical study at the molecular level revealed the U-shaped conformation of TPT, creating a cavity for accommodating a chiral guest with selective functional interaction resulting in the discrimination of enantiomers. Finally, a chiral polymeric mat of poly(methyl methacrylate) (PMMA)/polyacrylonitrile (PAN) (2:3) impregnated with TPT was developed via electrospinning. The resulting fibrous mat was successfully utilized for chiral recognition through microscopic and architectural observation. Hence, the present work reports simple chiral tools for enantiomeric recognition.
Collapse
Affiliation(s)
- Diksha Gambhir
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Krishan Kumar
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Premkumar Murugesan
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Arti Yadav
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sumit Sinha Ray
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Rik Rani Koner
- School of Mechanical and Materials Engineering, Indian Institute of Technology, Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
7
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
8
|
Chen Z, He Q, Deng X, Peng J, Du K, Sun Y. Engineering solid nanochannels with macrocyclic host-guest chemistry for stimuli responses and molecular separations. Chem Commun (Camb) 2023; 59:1907-1916. [PMID: 36688813 DOI: 10.1039/d2cc06562b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biological channels in the cell membrane play a critical role in the regulation of signal transduction and transmembrane transport. Researchers have been committed to building biomimetic nanochannels to imitate the above significant biological processes. Unlike the fragile feature of biological channels, numerous solid nanochannels have aroused extensive interests for their controllable chemical properties on the surface and superior mechanical properties. Surface functionalization has been confirmed to be vital to determine the properties of solid nanochannels. Macrocyclic hosts (e.g., the crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, pillar[n]arenes, and trianglamine) can be tailored to the interior surface of the nanochannels with the performance of stimuli response and separation. Macrocycles have good reversibility and high selectivity toward specific ions or molecules, promoting functionalies of solid nanochannels. Hence, the combination of macrocyclic hosts and solid nanochannels is conducive to taking both advantages and achieving applications in functional nanochannels (e.g., membranes separations, biosensors, and smart devices). In this review, the most recent advances in nanochannel membranes decorated by macrocyclic host-guest chemistry are briefed. A variety of macrocyclic hosts-based responsive nanochannels are organized (e.g., the physical stimuli and specific molecules or ions stimuli) and nanochannels are separated (e.g., water purifications, enantimerseparations, and organic solvent nanofiltration), respectively. Hopefully, this review can enlighten on how to effectively build functional nanochannels and facilitate their practical applications in membrane separations.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Qiang He
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaowen Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiehai Peng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
9
|
Li G, Gong W, Yang L, Cheng M, Yan H, Quan J, Zhang F, Lu Z, Li H. Guest-Induced Planar-Chiral Pillar[5]arene Surface for Selectively Adsorbing Protein Based on Host-Guest Chemistry. Bioconjug Chem 2022; 33:2237-2244. [PMID: 34898177 DOI: 10.1021/acs.bioconjchem.1c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In living systems, the adsorption of a protein on biointerfaces is a universal phenomenon, such as the specific binding of an antibody and antigen, which plays an important role in body growth and life maintenance. The exploration of a protein-selective adsorption on the biointerface is of great significance for understanding the life process and treatment in vitro. Herein, on the basis of biomimetic strategies, we fabricated a planar-chiral NH2-pillar[5]arene modified silicon surface (pR-/pS-NP5 surfaces) for a highly enantioselective adsorption of protein by taking advantage of the guest-induced planar chirality of pillar[5]arenes. Results from practical experiments and theoretical calculations show that the pR-NP5 surface possesses a high adsorption capacity and chiral selectivity for bovine serum albumin (BSA). Moreover, it was identified that the guest-induced chiral effect the generation and amplification of planar chirality, which was much beneficial for enhancing the interaction between planar-chiral pillar[5]arene host and BSA. The binding capacity of pR-NP5 and BSA is stronger than that of pS-NP5, thus promoting the chiral selective adsorption of BSA. This work affords a deeper understanding of the chiral influence of protein adsorption on biointerfaces and meanwhile provides a new perspective for chiral-sensing applications.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province, Wuhan 430030, P. R. China
| | - Lei Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jiaxin Quan
- Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, P. R. China
| | - Fan Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyan Lu
- Department of Forensic Medicine, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang District, Wuhan 430071, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Li W, Xu W, Zhang S, Li J, Zhou J, Tian D, Cheng J, Li H. Supramolecular Biopharmaceutical Carriers Based on Host-Guest Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12746-12759. [PMID: 36094144 DOI: 10.1021/acs.jafc.2c04822] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional drugs have the disadvantages of poor permeability and low solubility, which makes the utilization of pesticides lower and brings many side effects. With the continuous development of supramolecular chemistry in recent years, it has also played an irreplaceable role in the field of pharmaceutical science. Supramolecular macrocycles, such as crown ethers, cyclodextrins, calixarenes, pillararenes and cucurbiturils, are potentially good candidates for drug carriers due to their biocompatibility, hydrophobic cavity and ease of derivatization. The encapsulation of drugs based on host-guest interaction has the advantage of being adjustable and reversible as well as improving the low availability of drugs. Here, the recent advances in methods and strategies for drug encapsulation and release based on supramolecular macrocycles with host-guest interactions have been systematically summarized, laying a bright foundation for the development of novel nanopesticide preparations in the future and pointing out future directions of novel biopesticide research.
Collapse
Affiliation(s)
- Wenjie Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jia Li
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, 430079, PR China
| |
Collapse
|
11
|
Abstract
The construction of chemical sensors that can distinguish molecular chirality has attracted increasing attention in recent years due to the significance of chiral organic molecules and the importance of detecting their absolute configuration and chiroptical purity. The supramolecular chirality sensing strategy has shown promising potential due to its advantages of high throughput, sensitivity, and fast chirality detection. This review focuses on chirality sensors based on macrocyclic compounds. Macrocyclic chirality sensors usually have inherent complexing ability towards certain chiral guests, which combined with the signal output components, could offer many unique advantages/properties compared to traditional chiral sensors. Chirality sensing based on macrocyclic sensors has shown rapid progress in recent years. This review summarizes recent advances in chirality sensing based on both achiral and chiral macrocyclic compounds, especially newly emerged macrocyclic molecules.
Collapse
|
12
|
Wu Q, Zhu F, Cheng M, Cheng J, Mao X, Liang F, Li H. Capturing Methomyl Droplet by Calix[4]arene Modified Surface. ChemistrySelect 2021. [DOI: 10.1002/slct.202101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qifa Wu
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Xiaowei Mao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances Institute of Environment and Health Jianghan University Wuhan 430056 P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
13
|
Xu W, Cheng M, Zhang S, Wu Q, Liu Z, Dhinakaran MK, Liang F, Kovaleva EG, Li H. Recent advances in chiral discrimination on host-guest functionalized interfaces. Chem Commun (Camb) 2021; 57:7480-7492. [PMID: 34264255 DOI: 10.1039/d1cc01501j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral discrimination has gained much focus in supramolecular chemistry, since it is one of the fundamental processes in biological systems, enantiomeric separation and biochemical sensors. Though most of the biochemical processes can routinely recognize biological enantiomers, enantioselective identification of chiral molecules in artificial systems is currently one of the challenging topics in the field of chiral discrimination. Inaccuracy, low separation efficiency and expensive instrumentation were considered typical problems in artificial systems. Recently, chiral recognition on the interfaces has been widely used in the fields of electrochemical detection and biochemical sensing. For the moment, a series of macrocyclic host functionalized interfaces have been developed for use as chiral catalysts or for enantiomeric separation. Here, we have briefly exposited the most recent advances in the fabrication of supramolecular functionalized interfaces and their application for chiral recognition.
Collapse
Affiliation(s)
- Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang L, Schubert US, Hoeppener S. Surface chemical reactions on self-assembled silane based monolayers. Chem Soc Rev 2021; 50:6507-6540. [PMID: 34100051 DOI: 10.1039/d0cs01220c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this review, we aim to update our review "Chemical modification of self-assembled silane-based monolayers by surface reactions" which was published in 2010 and has developed into an important guiding tool for researchers working on the modification of solid substrate surface properties by chemical modification of silane-based self-assembled monolayers. Due to the rapid development of this field of research in the last decade, the utilization of chemical functionalities in self-assembled monolayers has been significantly improved and some new processes were introduced in chemical surface reactions for tailoring the properties of solid substrates. Thus, it is time to update the developments in the surface functionalization of silane-based molecules. Hence, after a short introduction on self-assembled monolayers, this review focuses on a series of chemical reactions, i.e., nucleophilic substitution, click chemistry, supramolecular modification, photochemical reaction, and other reactions, which have been applied for the modification of hydroxyl-terminated substrates, like silicon and glass, which have been reported during the last 10 years.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| | | | | |
Collapse
|
15
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
16
|
Ma H, Zou J, Li X, Chen G, Dong Y. Homochiral Covalent Organic Frameworks for Asymmetric Catalysis. Chemistry 2020; 26:13754-13770. [DOI: 10.1002/chem.202001006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Hui‐Chao Ma
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University Jinan 250014 P.R. China
| | - Jie Zou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University Jinan 250014 P.R. China
| | - Xue‐Tian Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University Jinan 250014 P.R. China
| | - Gong‐Jun Chen
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University Jinan 250014 P.R. China
| | - Yu‐Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education, Shandong Normal University Jinan 250014 P.R. China
| |
Collapse
|
17
|
Zhu F, Wang J, Xie S, Zhu Y, Wang L, Xu J, Liao S, Ren J, Liu Q, Yang H, Chen X. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition. Anal Chem 2020; 92:12040-12048. [DOI: 10.1021/acs.analchem.0c02668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jiwei Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
18
|
Chen Y, Lu Z, Li G, Hu Y. β-Cyclodextrin porous polymers with three-dimensional chiral channels for separation of polar racemates. J Chromatogr A 2020; 1626:461341. [DOI: 10.1016/j.chroma.2020.461341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|
19
|
Mei Y, Quan J, Gu Y, Yang Y, Huang J, Sun K, Li H. Chiral Selective Adhesion of Protein Droplets on Calix[4]arene-Enantiomer-Modified Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:1226-1232. [DOI: 10.1021/acsabm.9b01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxiao Mei
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiaxin Quan
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yulin Gu
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Yuxia Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Jinmei Huang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kunpeng Sun
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
20
|
Zhu F, Tan S, Dhinakaran MK, Cheng J, Li H. The light-driven macroscopic directional motion of a water droplet on an azobenzene-calix[4]arene modified surface. Chem Commun (Camb) 2020; 56:10922-10925. [PMID: 32808622 DOI: 10.1039/d0cc00519c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel photo-responsive surface was constructed via modifying azobenzene-calix[4]arene (ABC4) on a microstructured silicon surface. Asymmetric UV light irradiation could drive the macroscopic directional motion of a water droplet on this photo-responsive surface.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Shiliang Tan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
21
|
Ma J, Yan H, Quan J, Bi J, Tian D, Li H. Enantioselective Dynamic Self-Assembly of Histidine Droplets on Pillar[5]arene-Modified Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1665-1671. [PMID: 30561183 DOI: 10.1021/acsami.8b18202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The self-assembly of macroscopic droplets on interfaces has attracted much attention and shown promising potential in the field of materials as a sensing or delivery system. Herein, we reported a new strategy to construct a d-tartaric acid-functionalized pillar[5]arene (d-TP5) interface for macroscopic differentiation of histidine enantiomers. At the molecular level, it has been proved that d-TP5 has the ability to distinguish between l-Histidine and d-Histidine ( KL/ KD = 4.6). Furthermore, a functional d-TP5 surface was constructed by a click reaction and characterized by contact angle measurements and attenuated total reflection-Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. The d-TP5 surface exhibited the selective dynamic adhesion of l-His droplets on the tilted interface. It means that a d-TP5 surface can distinguish histidine enantiomers at a macrolevel. The amount of d/l-His absorbed by a d-TP5 surface and the morphology of His particles formed by removing the solvent have been investigated to prove that the self-assembly of His occurs on the d-TP5 surface. The possible mechanism has been discussed from host-guest interaction and chiral recognition. The proposed chiral material displays rapidly remarkable selectivity and is convenient to be utilized, which should be suitable for comprehending chiral recognition processing and applied to chiral recognition detection of histidine in a living body.
Collapse
Affiliation(s)
- Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry , School of Pharmacy Hubei University of Medicine , Shiyan 442000 , Hubei Province, China
| | - Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Jiahai Bi
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , China
| |
Collapse
|