1
|
Salerno G, Franchi D, Dessì A, Bartolini M, Manfredi N, Abbotto A, Bettucci O. Optimizing DSSCs Performance for Indoor Lighting: Matching Organic Dyes Absorption and Indoor Lamps Emission Profiles to Maximize Efficiency. ChemistryOpen 2025:e202400464. [PMID: 39876654 DOI: 10.1002/open.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Indexed: 01/30/2025] Open
Abstract
The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting. By testing four organic dyes with different UV-Vis absorption spectra (L1, Y123, S1, and TP1) under two different common indoor light sources (OSRAM 930 and OSRAM 765 lamp), a significant dye-lamp correlation was demonstrated. Notably, low-priced dyes like S1 and TP1, characterized by easier synthetic routes and with an optimal overlap with the dye-lamp spectrum, exhibited competitive efficiencies, narrowing the performance gap with high-performing dyes like Y123, which require more demanding preparation approaches. The study highlights the critical importance of tailoring dye selection to specific indoor lighting environments, addressing a significant gap and paving the way for more sustainable and cost-effective energy solutions for indoor applications.
Collapse
Affiliation(s)
- Giorgia Salerno
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Invariante 12/B, Via Giovanni Paolo II, 132, Fisciano (SA), I-84084, Italy
| | - Daniele Franchi
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Alessio Dessì
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Matteo Bartolini
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Norberto Manfredi
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| | - Alessandro Abbotto
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| | - Ottavia Bettucci
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| |
Collapse
|
2
|
Salerno G, Bettucci O, Manfredi N, Stendardo L, Veronese E, Metrangolo P, Abbotto A. Tailored Metal-Porphyrin Based Molecular Electrocatalysts for Enhanced Artificial Nitrogen Fixation to Green Ammonia. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300345. [PMID: 39006055 PMCID: PMC11237181 DOI: 10.1002/gch2.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical nitrogen reduction (E-NRR) is one of the most promising approaches to generate green NH3. However, scarce ammonia yields and Faradaic efficiencies (FE) still limit their use on a large scale. Thus, efforts are focusing on different E-NRR catalyst structures and formulations. Among present strategies, molecular electrocatalysts such as metal-porphyrins emerge as an encouraging option due to their planar structures which favor the interaction involving the metal center, responsible for adsorption and activation of nitrogen. Nevertheless, the high hydrophobicity of porphyrins limits the aqueous electrolyte-catalyst interaction lowering yields. This work introduces a new class of metal-porphyrin based catalysts, bearing hydrophilic tris(ethyleneglycol) monomethyl ether chains (metal = Cu(II) and CoII)). Experimental results show that the presence of hydrophilic chains significantly increases ammonia yields and FE, supporting the relevance of fruitful catalyst-electrolyte interactions. This study also investigates the use of hydrophobic branched alkyl chains for comparison, resulting in similar performances with respect to the unsubstituted metal-porphyrin, taken as a reference, further confirming that the appropriate design of electrocatalysts carrying peripheral hydrophilic substituents is able to improve device performances in the generation of green ammonia.
Collapse
Affiliation(s)
- Giorgia Salerno
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM)University of SalernoInvariante 12/B, Via Giovanni Paolo II, 132Fisciano (SA)I‐84084Italy
| | - Ottavia Bettucci
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Luca Stendardo
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Eleonora Veronese
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. MancinelliMilano20131Italy
| | - Pierangelo Metrangolo
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. MancinelliMilano20131Italy
| | - Alessandro Abbotto
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| |
Collapse
|
3
|
Pishro KA, Gonzalez MH. Use of deep eutectic solvents in environmentally-friendly dye-sensitized solar cells and their physicochemical properties: a brief review. RSC Adv 2024; 14:14480-14504. [PMID: 38708112 PMCID: PMC11063684 DOI: 10.1039/d4ra01610f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
A novel way to mitigate the greenhouse effect is to use dye-sensitized solar cells (DSSCs) to convert carbon dioxide from the air into useful products, such as hydrocarbons, which can also store energy from the sun, a plentiful, clean, and safe resource. The conversion of CO2 can help reduce the impacts of greenhouse gas emissions that contribute to global warming. However, there is a major obstacle in using DSSCs, since many solar devices operate with organic electrolytes, producing pollutants including toxic substances. Therefore, a key research area is to find new eco-friendly electrolytes that can effectively dissolve carbon dioxide. One option is to use deep eutectic solvents (DESs), which are potential substitutes for ionic liquids (ILs) and have similar advantages, such as being customizable, economical, and environmentally friendly. DESs are composed of low-cost materials and have very low toxicity and high biodegradability, making them suitable for use as electrolytes in DSSCs, within the framework of green chemistry. The purpose of this brief review is to explore the existing knowledge about how CO2 dissolves in DESs and how these solvents can be used as electrolytes in solar devices, especially in DSSCs. The physical and chemical properties of the DESs are described, and areas are suggested where further research should be focused.
Collapse
Affiliation(s)
- Khatereh A Pishro
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| |
Collapse
|
4
|
Ferreira C, Sarraguça M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals (Basel) 2024; 17:124. [PMID: 38256957 PMCID: PMC10820243 DOI: 10.3390/ph17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The extraction of bioactive compounds of pharmaceutical interest from natural sources has been significantly explored in recent decades. However, the extraction techniques used were not very efficient in terms of time and energy consumption; additionally, the solvents used for the extraction were harmful for the environment. To improve the environmental impact of the extractions and at the same time increase the extraction yields, several new extraction techniques were developed. Among the most used ones are ultrasound-assisted extraction and microwave-assisted extraction. These extraction techniques increased the yield and selectivity of the extraction in a smaller amount of time with a decrease in energy consumption. Nevertheless, a high volume of organic solvents was still used for the extraction, causing a subsequent environmental problem. Neoteric solvents appeared as green alternatives to organic solvents. Among the neoteric solvents, deep eutectic solvents were evidenced to be one of the best alternatives to organic solvents due to their intrinsic characteristics. These solvents are considered green solvents because they are made up of natural compounds such as sugars, amino acids, and carboxylic acids having low toxicity and high degradability. In addition, they are simple to prepare, with an atomic economy of 100%, with attractive physicochemical properties. Furthermore, the huge number of compounds that can be used to synthesize these solvents make them very useful in the extraction of bioactive compounds since they can be tailored to be selective towards a specific component or class of components. The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical interest. Additionally, an overview of the more recent and sustainable extraction techniques is also given.
Collapse
Affiliation(s)
| | - Mafalda Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
5
|
Theoretical and experimental study of new deep eutectic solvents for extraction of perfluorinated iodoalkanes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
6
|
Dokoohaki MH, Zolghadr AR, Klein A. Highly Efficient Dye-Sensitized Solar Cells Based on Electrolyte Solutions Containing Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: Electrolyte Optimization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Amin Reza Zolghadr
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Axel Klein
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
- Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, Köln D-50939, Germany
| |
Collapse
|
7
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
8
|
Boldrini CL, Quivelli AF, Manfredi N, Capriati V, Abbotto A. Deep Eutectic Solvents in Solar Energy Technologies. Molecules 2022; 27:709. [PMID: 35163969 PMCID: PMC8838785 DOI: 10.3390/molecules27030709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Deep Eutectic Solvents (DESs) have been widely used in many fields to exploit their ecofriendly characteristics, from green synthetic procedures to environmentally benign industrial methods. In contrast, their application in emerging solar technologies, where the abundant and clean solar energy is used to properly respond to most important societal needs, is still relatively scarce. This represents a strong limitation since many solar devices make use of polluting or toxic components, thus seriously hampering their eco-friendly nature. Herein, we review the literature, mainly published in the last few years, on the use of DESs in representative solar technologies, from solar plants to last generation photovoltaics, featuring not only their passive role as green solvents, but also their active behavior arising from their peculiar chemical nature. This collection highlights the increasing and valuable role played by DESs in solar technologies, in the fulfillment of green chemistry requirements and for performance enhancement, in particular in terms of long-term temporal stability.
Collapse
Affiliation(s)
- Chiara Liliana Boldrini
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Andrea Francesca Quivelli
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Norberto Manfredi
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Alessandro Abbotto
- Solar Energy Research Center MIBSOLAR, Department of Materials Science, INSTM Milano-Bicocca Research Unit, University of Milano-Bicocca, Via Cozzi 55, I-20125 Milano, Italy; (C.L.B.); (A.F.Q.); (N.M.)
| |
Collapse
|
9
|
Rajput MK, Konwar M, Sarma D. Preparation of a novel environmentally friendly hydrophobic deep eutectic solvent ChCl-THY and its application in removal of hexavalent chromium from aqueous solution. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2250-2260. [PMID: 34097782 DOI: 10.1002/wer.1597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A liquid-liquid extraction methodology was developed for the removal of Cr(VI) from contaminated water using a novel green hydrophobic deep eutectic solvent (DES) as an efficient sole extracting agent. The hydrophobic DES was obtained by mixing choline chloride and thymol in 1:4 molar ratio at 70°C for 10 min and was denoted as ChCl-THY(1:4). The ChCl-THY(1:4) works efficiently for removal of high (20 mg/L) and low (500 µg/L) concentration of Cr(VI) from artificially contaminated natural water with >95% extraction efficiency (E%) at optimized reaction conditions (pH 2-6, 40°C). The DES was characterized by 1 H NMR and FTIR spectroscopy, and the data suggest that interaction occurs between Cl- ion of choline chloride and H atoms of thymol molecules. Physicochemical properties such as density, melting point, moisture, and solubility were studied and discussed. Herein, no sharp melting point was observed for ChCl-THY(1:4) in DSC curve. DES was regenerated using 0.1 M NaOH as stripping agent, and 50%-60% extraction efficiency could be attained in the next cycle. A plausible mechanism of interaction between Cr(VI) species and DES was also explored with the help of FTIR spectroscopy. PRACTITIONER POINTS: A novel hydrophobic DES (ChCl-THY) is prepared by mixing choline chloride and thymol at 1:4 molar ratio. ChCl-THY(1:4) is employed for the first time as sole extracting agent to remove the Cr(VI) from contaminated aqueous solution. >95% extraction efficiency was achieved by ChCl-THY(1:4) in natural water conditions at µg/L and mg/L level of contamination. Both the component used to prepare the DES are naturally abundant; hence, DES is not toxic for biota. The element present in natural water did not show any interference with extraction of Cr(VI).
Collapse
Affiliation(s)
| | - Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
- Department of Chemistry, Dibru College, Dibrugarh, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
10
|
|
11
|
Malik A, Kashyap HK. Multiple evidences of dynamic heterogeneity in hydrophobic deep eutectic solvents. J Chem Phys 2021; 155:044502. [PMID: 34340384 DOI: 10.1063/5.0054699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hydrophobic deep eutectic solvents (HDESs) have gained immense popularity because of their promising applications in extraction processes. Herein, we employ atomistic molecular dynamics simulations to unveil the dynamics of DL-menthol (DLM) based HDESs with hexanoic (C6), octanoic (C8), and decanoic (C10) acids as hydrogen bond donors. The particular focus is on understanding the nature of dynamics with changing acid tail length. For all three HDESs, two modes of hydrogen bond relaxations are observed. We observe longer hydrogen bond lifetimes of the inter-molecular hydrogen bonding interactions between the carbonyl oxygen of the acid and hydroxyl oxygen of menthol with hydroxyl hydrogen of both acids and menthol. We infer strong hydrogen bonding between them compared to that between hydroxyl oxygen of acids and hydroxyl hydrogens of menthol and acids, marked by a faster decay rate and shorter hydrogen bond lifetime. The translational dynamics of the species in the HDES becomes slower with increasing tail length of the organic acid. Slightly enhanced caging is also observed for the HDES with a longer tail length of the acids. The evidence of dynamic heterogeneity in the displacements of the component molecules is observed in all the HDESs. From the values of the α-relaxation time scale, we observe that the molecular displacements become random in a shorter time scale for DLM-C6. The analysis of the self-van Hove function reveals that the overall distance covered by DLM and acid molecules in the respective HDES is more than what is expected from ideal diffusion. As marked by the shorter time scale associated with hole filling, the diffusion of the oxygen atom of menthol and the carbonyl oxygen of acid from one site to the other is fastest for hexanoic acid containing HDES.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Lan X, Wang X, Du W, Mu T, Lan XZ. Thermal properties and cold crystallization kinetics of deep eutectic solvents confined in nanopores. Phys Chem Chem Phys 2021; 23:13785-13788. [PMID: 34159986 DOI: 10.1039/d1cp01876k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the phase behaviors of both bulk and confined deep eutectic solvents in controlled pore glasses were first investigated. Glass transition, cold crystallization and melting behaviors alter significantly in the nanopores due to the size effect and interfacial interactions. Kinetic analysis of the crystallization reveals increased effective activation energies and pre-exponential factors under nanoconfinement.
Collapse
Affiliation(s)
- Xue Lan
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Xin Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Xiao Zheng Lan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
13
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Cicco L, Hernández-Fernández JA, Salomone A, Vitale P, Ramos-Martín M, González-Sabín J, Presa Soto A, Perna FM, Capriati V, García-Álvarez J. Copper-catalyzed Goldberg-type C-N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Org Biomol Chem 2021; 19:1773-1779. [PMID: 33543179 DOI: 10.1039/d0ob02501a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Luciana Cicco
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain. and Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Jose A Hernández-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Antonio Salomone
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Marina Ramos-Martín
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Javier González-Sabín
- EntreChem SL, Vivero Ciencias de la Salud, Santo Domingo de Guzmán, E-33011, Oviedo, Spain
| | - Alejandro Presa Soto
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy.
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain.
| |
Collapse
|
15
|
Malik A, Kashyap HK. Heterogeneity in hydrophobic deep eutectic solvents: SAXS prepeak and local environments. Phys Chem Chem Phys 2021; 23:3915-3924. [DOI: 10.1039/d0cp05407k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The observation of the prepeak in the simulated total X-ray scattering structure function (S(q)) reveals the presence of intermediate-range structural heterogeneity in hydrophobic deep eutectic solvents.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| | - Hemant K. Kashyap
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| |
Collapse
|
16
|
Cicco L, Dilauro G, Perna FM, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org Biomol Chem 2021; 19:2558-2577. [DOI: 10.1039/d0ob02491k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
17
|
Lima F, Dietz CHJT, Silvestre AJD, Branco LC, Canongia Lopes J, Gallucci F, Shimizu K, Held C, Marrucho IM. Vapor Pressure Assessment of Sulfolane-Based Eutectic Solvents: Experimental, PC-SAFT, and Molecular Dynamics. J Phys Chem B 2020; 124:10386-10397. [PMID: 33167621 DOI: 10.1021/acs.jpcb.0c04837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since their discovery, deep eutectic solvents (DES) have been explored in multiple applications. However, the complete physicochemical characterization is still nonexistent for many of the proposed and used DES. In particular, vapor pressure, which is a crucial property for the application of DES as solvents, is very rarely available. In this work, the measurement of the total and partial pressures of two sulfolane-based DES, tetrabutylammonium bromide:sulfolane and tetrabutylphosphonium bromide:sulfolane, in several proportions, from 40 to 100 °C and atmospheric pressure, was performed using headspace gas chromatography mass spectrometry, HS-GC-MS. A large decrease on the total pressure was recorded which, together with the finding that total pressures showed negative deviations from Raoult's law, is indicative of the favorable, strong interactions between the two components within the DES. Additionally, the study of vapor pressure change with DES molar composition was carried out, and surprisingly, the existence of inflection points in the pressure curve was observed. Experimental results were modeled using the PC-SAFT equation of state, and in addition, MD simulations were performed to provide a molecular understanding of the pressure data. Considering the different results and insights obtained from the used strategies, it can be concluded that both DES systems have especially strong interactions between salt and sulfolane, at high sulfolane content, due to the different structural rearrangement of the liquid state.
Collapse
Affiliation(s)
- Filipa Lima
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.,CICECO-Aveiro Institute of Materials and Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal.,Solchemar, Lda, Rua 5 de Outubro n° 121C, 1°E, 7580-128 Alcácer do Sal, Portugal
| | - Carin H J T Dietz
- Chemical Process Intensification, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luis C Branco
- Solchemar, Lda, Rua 5 de Outubro n° 121C, 1°E, 7580-128 Alcácer do Sal, Portugal.,LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - José Canongia Lopes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fausto Gallucci
- Chemical Process Intensification, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karina Shimizu
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christoph Held
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Isabel M Marrucho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
18
|
Liu C, Shen Y, Zhao Y, Ye K, Yuan K. The effect of halogen on arylsulfonylated phenothiazines for solid-sate luminescence and photocatalytic performance. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Pelliccioli V, Dilauro G, Grecchi S, Arnaboldi S, Graiff C, Perna FM, Vitale P, Licandro E, Aliprandi A, Cauteruccio S, Capriati V. Ligand‐Free Suzuki–Miyaura Cross‐Coupling Reactions in Deep Eutectic Solvents: Synthesis of Benzodithiophene Derivatives and Study of their Optical and Electrochemical Performance. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 70125 Bari Italy
| | - Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Serena Arnaboldi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/a 43124 Parma Italy
| | - Filippo M. Perna
- Dipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 70125 Bari Italy
| | - Paola Vitale
- Dipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 70125 Bari Italy
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alessandro Aliprandi
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) Université de Strasbourg 67083 Strasbourg Cedex France
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Vito Capriati
- Dipartimento di Farmacia‐Scienze del Farmaco Università degli Studi di Bari “Aldo Moro” Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
20
|
Makoś P, Słupek E, Gębicki J. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Positive Impact of Natural Deep Eutectic Solvents on the Biocatalytic Performance of 5-Hydroxymethyl-Furfural Oxidase. Catalysts 2020. [DOI: 10.3390/catal10040447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deep eutectic solvents (DESs) have been applied as cosolvents in various biocatalytic processes during recent years. However, their use in combination with redox enzymes has been limited. In this study, we have explored the beneficial effects of several DES as cosolvents on the performance of 5-hydroxymethylfurfural oxidase (HMFO), a valuable oxidative enzyme for the preparation of furan-2,5-dicarboxylic acid (FDCA), and other compounds, such as carbonyl compounds and carboxylic acids. The use of natural DESs, based on glucose and fructose, was found to have a positive effect. Higher conversions are obtained for the synthesis of several oxidized compounds, including FDCA. Depending on the type of DES, the stability of HMFO could be significantly improved. As the use of DES increases the solubility of many substrates while they only mildly affect dioxygen solubility, this study demonstrates that biocatalysis based on HMFO and other redox biocatalysts can benefit from a carefully selected DES.
Collapse
|
22
|
Boldrini CL, Manfredi N, Perna FM, Capriati V, Abbotto A. Eco‐Friendly Sugar‐Based Natural Deep Eutectic Solvents as Effective Electrolyte Solutions for Dye‐Sensitized Solar Cells. ChemElectroChem 2020. [DOI: 10.1002/celc.202000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR University of Milano-Bicocca, and INSTM Milano-Bicocca Research Unit Via Cozzi 55 I-20125 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR University of Milano-Bicocca, and INSTM Milano-Bicocca Research Unit Via Cozzi 55 I-20125 Milano Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S Via E. Orabona 4 I-70125 Bari Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S Via E. Orabona 4 I-70125 Bari Italy
- Dipartimento di Chimica Istituto di Chimica dei Composti Organometallici (ICCOM) – CNR Via E. Orabona 4 I-70125 Bari Italy
| | - Alessandro Abbotto
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR University of Milano-Bicocca, and INSTM Milano-Bicocca Research Unit Via Cozzi 55 I-20125 Milano Italy
| |
Collapse
|
23
|
Deep Eutectic Solvents as Effective Reaction Media for the Synthesis of 2-Hydroxyphenylbenzimidazole-based Scaffolds en Route to Donepezil-Like Compounds. Molecules 2020; 25:molecules25030574. [PMID: 32013037 PMCID: PMC7037276 DOI: 10.3390/molecules25030574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
An unsubstituted 2-hydroxyphenylbenzimidazole has recently been included as a scaffold in a series of hybrids (including the hit compound PZ1) based on the framework of the acetylcholinesterase (AChE) inhibitor Donepezil, which is a new promising multi-target ligand in Alzheimer’s disease (AD) treatment. Building upon these findings, we have now designed and completed the whole synthesis of PZ1 in the so-called deep eutectic solvents (DESs), which have emerged as an unconventional class of bio-renewable reaction media in green synthesis. Under optimized reaction conditions, the preparation of a series of 2-hydroxyphenylbenzimidazole-based nuclei has also been perfected in DESs, and comparison with other routes which employ toxic and volatile organic solvents (VOCs) provided. The functionalization of the aromatic ring can have implications on some important biological properties of the described derivatives and will be the subject of future studies of structure-activity relationships (SARs).
Collapse
|
24
|
|
25
|
Cao J, Wu R, Dong Q, Zhao L, Cao F, Su E. Effective Release of Intracellular Enzymes by Permeating the Cell Membrane with Hydrophobic Deep Eutectic Solvents. Chembiochem 2019; 21:672-680. [DOI: 10.1002/cbic.201900502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Cao
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Rong Wu
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Qihui Dong
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
| | - Linguo Zhao
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
| | - Erzheng Su
- Department of Food Science and TechnologyCollege of Light Industry and Food EngineeringNanjing Forestry University Nanjing 210037 P. R. China
- Co-innovation Center for the Sustainable Forestry in Southern, ChinaCollege of ForestryNanjing Forestry University Nanjing 210037 P. R. China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
26
|
Florindo C, Branco LC, Marrucho IM. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. CHEMSUSCHEM 2019; 12:1549-1559. [PMID: 30811105 DOI: 10.1002/cssc.201900147] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Deep eutectic solvents (DESs) consist of a mixture of two or more solid components, which gives rise to a lower melting point compared to the starting materials. Until recently only hydrophilic DESs were available, and despite their revolutionary role in the alternative-solvents field, important issues in chemistry, and chemical engineering (such as water-related problems and the replacement of toxic volatile organic compounds) could not be tackled. Hydrophobic (deep)-here in parenthesis due to the different depths of the eutectic melting points-eutectic solvents are a subclass of DESs where both components are hydrophobic. The low toxicity, high biodegradability, and straightforward preparation without further purification steps of naturally occurring low-cost compounds are among the key advantages. Although research on hydrophobic DESs is scarce (the first report was only published in 2015), some interesting features and applications have been reported and deserve to be evaluated and comparisons established. This Minireview is divided into two parts: The first part provides a brief general introduction to DESs and the second part discusses the nomenclature using solid-liquid phase diagram analysis, chemical stability, thermophysical properties comparison, and finally the most important emerging fields of application.
Collapse
Affiliation(s)
- Catarina Florindo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2780-901, Oeiras, Portugal
| | - Luís C Branco
- REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Isabel M Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
27
|
Grande M, Bianco GV, Perna FM, Capriati V, Capezzuto P, Scalora M, Bruno G, D'Orazio A. Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Sci Rep 2019; 9:5463. [PMID: 30940845 PMCID: PMC6445085 DOI: 10.1038/s41598-019-41806-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/19/2019] [Indexed: 11/09/2022] Open
Abstract
Electrolytically tunable graphene “building blocks” for reconfigurable and optically transparent microwave surfaces and absorbers have been designed and fabricated by exploiting Deep Eutectic Solvents (DESs). DESs have been first explored as electrolytic and environmentally friendly media for tuning sheet resistance and Fermi level of graphene together with its microwave response (reflection, transmission and absorption). We consider the tunability of the reconfigurable surfaces in terms of transmittance, absorption and reflectance, respectively, over the X and Ku bands when the gate voltage is varied in the −1.4/+1.4 V range. The numerical simulations and experimental measurements also show the ability of the absorber, in the Salisbury screen configuration, to achieve near perfect absorption with a modulation of about 20%. These results could find applications in several technological fields, ranging from electromagnetic pollution to integrated multi-physical regulation systems, thereby helping the advance of the performance of microwave cloaking systems, stealth windows, frequency selective surfaces, modulators and polarizers.
Collapse
Affiliation(s)
- Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Via Re David 200, 70125, Bari, Italy. .,Istituto di Nanotecnologia - CNR-NANOTEC, Via Orabona, 4, 70125, Bari, Italy.
| | | | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Pio Capezzuto
- Istituto di Nanotecnologia - CNR-NANOTEC, Via Orabona, 4, 70125, Bari, Italy
| | - Michael Scalora
- Charles M. Bowden Research Center, RDECOM, Redstone Arsenal, Alabama, 35898-5000, USA
| | - Giovanni Bruno
- Istituto di Nanotecnologia - CNR-NANOTEC, Via Orabona, 4, 70125, Bari, Italy
| | - Antonella D'Orazio
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Via Re David 200, 70125, Bari, Italy
| |
Collapse
|
28
|
Deep eutectic solvents for redox biocatalysis. J Biotechnol 2019; 293:24-35. [DOI: 10.1016/j.jbiotec.2018.12.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 11/23/2022]
|