1
|
Eckert S, Otto L, Mascarenhas EJ, Pietzsch A, Mitzner R, Fondell M, Vaz da Cruz V, Föhlisch A. Electronic structure of aqueous nitrite and nitrate ions from resonant inelastic X-ray scattering. Phys Chem Chem Phys 2025. [PMID: 40304619 DOI: 10.1039/d5cp00748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
In a comparative synchrotron X-ray absorption, non-resonant X-ray emission and resonant inelastic X-ray scattering investigation of aqueous nitrite and nitrate ions, we access both their unoccupied and occupied valence electronic structures. Complementary information is gained through the sensitivity to specific orbitals at the nitrogen and the oxygen 1s absorption edges. In particular, scattering through the pronounced 1s → π* resonances in combination with the scattering anisotropy and symmetry selection rules allow for an unambiguous assignment of molecular orbitals to their detected spectroscopic fingerprints. The nuclear dynamics in the 1s core-excited states are discussed in the context of the vibrational substructure of the detected spectral lines and signatures of core-excited state symmetry breaking are characterized through an analysis of the excitation energy detuning dependent spectra in combination with the involved potentials. A comparison between TD-DFT based spectrum simulations for isolated molecules and sampled structures from a QM/MM simulation reveals signatures of symmetry breaking induced by the solute-solvent interactions and a different response of spectral signatures of in- and out-of-plane orbitals to the solution environment.
Collapse
Affiliation(s)
- Sebastian Eckert
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Laurenz Otto
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Eric J Mascarenhas
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Vinícius Vaz da Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Alexander Föhlisch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Middleton C, Rankine CD, Penfold TJ. An on-the-fly deep neural network for simulating time-resolved spectroscopy: predicting the ultrafast ring opening dynamics of 1,2-dithiane. Phys Chem Chem Phys 2023; 25:13325-13334. [PMID: 37139551 DOI: 10.1039/d3cp00510k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry out high-level simulations which facilitate the interpretation of the underlying dynamics probed during these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The train-test process iterates for each time-step of the dynamics data until the network can predict spectra with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required to produce them, at which point it simulates the time-resolved spectra for longer timescales. The potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly apparent for simulations of larger systems which will exhibit a more notable computational burden, making this approach applicable to the study of a diverse range of complex chemical dynamics.
Collapse
Affiliation(s)
- Clelia Middleton
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Conor D Rankine
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Eckert S, Winghart M, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ETJ. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022; 61:e202200709. [PMID: 35325500 PMCID: PMC9322478 DOI: 10.1002/anie.202200709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/15/2022]
Abstract
Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.
Collapse
Affiliation(s)
- Sebastian Eckert
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Marc‐Oliver Winghart
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Carlo Kleine
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Ambar Banerjee
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Maria Ekimova
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jan Ludwig
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jessica Harich
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Ehud Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Nils Huse
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Philippe Wernet
- Department of Physics and AstronomyUppsala UniversityBox 516 Lägerhyddsvägen 1751 20UppsalaSweden
| | - Michael Odelius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| |
Collapse
|
4
|
Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nat Commun 2022; 13:3414. [PMID: 35701418 PMCID: PMC9198071 DOI: 10.1038/s41467-022-31008-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair. A detailed understanding of ultrafast exciton dynamics is crucial for improving the efficiency of organic light-harvesting-devices. Here, the authors track exciton localization on a sub-50 fs timescale in an organic semiconductor using time resolved soft x-ray absorption spectroscopy.
Collapse
|
5
|
Eckert S, Winghart MO, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ET. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Eckert
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Marc-Oliver Winghart
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Carlo Kleine
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Ambar Banerjee
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Maria Ekimova
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jan Ludwig
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jessica Harich
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Ehud Pines
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Nils Huse
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | | | - Michael Odelius
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Erik T.J. Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie C1 Max Born Strasse 2A D-12489 Berlin GERMANY
| |
Collapse
|
6
|
Montorsi F, Segatta F, Nenov A, Mukamel S, Garavelli M. Soft X-ray Spectroscopy Simulations with Multiconfigurational Wave Function Theory: Spectrum Completeness, Sub-eV Accuracy, and Quantitative Reproduction of Line Shapes. J Chem Theory Comput 2022; 18:1003-1016. [PMID: 35073066 PMCID: PMC8830047 DOI: 10.1021/acs.jctc.1c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Multireference methods are known for their ability to accurately treat states of very different nature in many molecular systems, facilitating high-quality simulations of a large variety of spectroscopic techniques. Here, we couple the multiconfigurational restricted active space self-consistent field RASSCF/RASPT2 method (of the CASSCF/CASPT2 methods family) to the displaced harmonic oscillator (DHO) model, to simulate soft X-ray spectroscopy. We applied such an RASSCF/RASPT2+DHO approach at the K-edges of various second-row elements for a set of small organic molecules that have been recently investigated at other levels of theory. X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) are simulated with a sub-eV accuracy and a correct description of the spectral line shapes. The method is extremely sensitive to the observed spectral shifts on a series of differently fluorinated ethylene systems, provides spectral fingerprints to distinguish between stable conformers of the glycine molecule, and accurately captures the vibrationally resolved carbon K-edge spectrum of formaldehyde. Differences with other theoretical methods are demonstrated, which show the advantages of employing a multireference/multiconfigurational approach. A protocol to systematically increase the number of core-excited states considered while maintaining a contained computational cost is presented. Insight is eventually provided for the effects caused by removing core-electrons from a given atom in terms of bond rearrangement and influence on the resulting spectral shapes within a unitary orbital-based framework for both XPS and XANES spectra.
Collapse
Affiliation(s)
- Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
7
|
Jay RM, Kunnus K, Wernet P, Gaffney KJ. Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annu Rev Phys Chem 2022; 73:187-208. [DOI: 10.1146/annurev-physchem-082820-020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic specificity of X-ray spectroscopies provides a distinct perspective on molecular electronic structure. For 3 d metal coordination and organometallic complexes, the combination of metal- and ligand-specific X-ray spectroscopies directly interrogates metal–ligand covalency—the hybridization of metal and ligand electronic states. Resonant inelastic X-ray scattering (RIXS), the X-ray analog of resonance Raman scattering, provides access to all classes of valence excited states in transition-metal complexes, making it a particularly powerful means of characterizing the valence electronic structure of 3 d metal complexes. Recent advances in X-ray free-electron laser sources have enabled RIXS to be extended to the ultrafast time domain. We review RIXS studies of two archetypical photochemical processes: charge-transfer excitation in ferricyanide and ligand photodissociation in iron pentacarbonyl. These studies demonstrate femtosecond-resolution RIXS can directly characterize the time-evolving electronic structure, including the evolution of the metal–ligand covalency. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Raphael M. Jay
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kristjan Kunnus
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;,
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, California, USA
| |
Collapse
|
8
|
Leier J, Michenfelder NC, Unterreiner AN, Olzmann M. Indications for an intermolecular photo-induced excited-state proton transfer of p-nitrophenol in water. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1975051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Julia Leier
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Nadine C. Michenfelder
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Andreas-Neil Unterreiner
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Matthias Olzmann
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| |
Collapse
|
9
|
Engel RY, Ekimova M, Miedema PS, Kleine C, Ludwig J, Ochmann M, Grimm-Lebsanft B, Ma R, Teubner M, Dziarzhytski S, Brenner G, Czwalinna MK, Rösner B, Kim TK, David C, Herres-Pawlis S, Rübhausen M, Nibbering ETJ, Huse N, Beye M. Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014303. [PMID: 33564694 PMCID: PMC7847311 DOI: 10.1063/4.0000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3d-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers. Here, we demonstrate XANES spectroscopy of molecules in solution at the nitrogen K-edge, performed at FLASH, the Free-Electron Laser (FEL) in Hamburg. A split-beam referencing scheme optimally characterizes the strong shot-to-shot fluctuations intrinsic to the process of self-amplified spontaneous emission on which most FELs are based. Due to this normalization, a sensitivity of 1% relative transmission change is achieved, limited by fundamental photon shot noise. The effective FEL bandwidth is increased by streaking the electron energy over the FEL pulse train to measure a wider spectral window without changing FEL parameters. We propose modifications to the experimental setup with the potential of improving the instrument sensitivity by two orders of magnitude, thereby exploiting the high peak fluence of FELs to enable unprecedented sensitivity for femtosecond XANES spectroscopy on liquids in the soft x-ray spectral region.
Collapse
Affiliation(s)
- Robin Y. Engel
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | - Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Jan Ludwig
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Miguel Ochmann
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Benjamin Grimm-Lebsanft
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Rory Ma
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | | | | | - Günter Brenner
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, South Korea
| | | | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Rübhausen
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Nils Huse
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Martin Beye
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Jay RM, Eckert S, Mitzner R, Fondell M, Föhlisch A. Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Norell J, Odelius M, Vacher M. Ultrafast dynamics of photo-excited 2-thiopyridone: Theoretical insights into triplet state population and proton transfer pathways. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024101. [PMID: 32206689 PMCID: PMC7078009 DOI: 10.1063/1.5143228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Ultrafast non-adiabatic dynamics of the small heteroaromatic compound 2-thiopyridone has been studied with surface hopping simulations based on multi-configurational quantum chemistry. Initial excitation of the bright S 2 ( π , π * ) state is found to promptly relax to S 1 ( n , π * ) through in-plane motion. The subsequent dynamics are oppositely driven by out-of-plane motion, which results in both complex population transfers among all the available states and intersystem crossing predominantly through the "El-Sayed forbidden" S 1 ( n , π * ) to T 2 ( n , π * ) channel, through significant mixing of electronic excitation characters. Despite this complexity, the femto- to picosecond triplet population, expected from several spectroscopic measurements, is well described as a simple exponential decay of the singlet state manifold. No proton transfer is found in the reported trajectories, but two mechanisms for its possible mediation in previously reported experiments are proposed based on the observed structural dynamics: (i) ultrafast intra-molecular transfer driven by the initially coherent in-plane motion and (ii) inter-molecular solvent-mediated transfer driven by the out-of-plane modes that dominate the later motion.
Collapse
Affiliation(s)
- Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
12
|
Norell J, Eckert S, Van Kuiken BE, Föhlisch A, Odelius M. Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone. J Chem Phys 2019; 151:114117. [PMID: 31542028 DOI: 10.1063/1.5109840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- J. Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - S. Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | | | - A. Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - M. Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Norell J, Ljungdahl A, Odelius M. Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone. J Phys Chem B 2019; 123:5555-5567. [PMID: 31244103 DOI: 10.1021/acs.jpcb.9b03084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
2-Thiopyridone (2-TP), a common model system for excited-state proton transfer, has been simulated in aqueous solution with ab initio molecular dynamics. The interplay of electronic structure, protonation, and solvatization is investigated by comparison of three differently protonated molecular forms and between the lowest singlet and triplet electronic states. An interdependence clearly manifests in the mixed-character T1 state for the 2-TP form, systematic structural distortions of the 2-mercaptopyridine (2-MP) form, and photobase protolysis of the 2-TP- form, in the aqueous phase. In comparison, simplified continuum models for the solvatization are found to be significantly inaccurate for several of the species. To facilitate future computational studies, we therefore present a minimal representative solvatization complex for each stable form and electronic state. Our findings demonstrate the importance of explicit solvatization of the compound and sets the stage for including it also in future studies.
Collapse
Affiliation(s)
- Jesper Norell
- Department of Physics, AlbaNova University Center , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Anton Ljungdahl
- Department of Physics, AlbaNova University Center , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Michael Odelius
- Department of Physics, AlbaNova University Center , Stockholm University , SE-106 91 Stockholm , Sweden
| |
Collapse
|
14
|
Hong DL, Luo YH, He XT, Zheng ZY, Su S, Wang JY, Wang C, Chen C, Sun BW. Unraveling the Mechanisms of the Excited-State Intermolecular Proton Transfer (ESPT) for a D-π-A Molecular Architecture. Chemistry 2019; 25:8805-8812. [PMID: 31054168 DOI: 10.1002/chem.201900856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2019] [Indexed: 11/10/2022]
Abstract
Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4 -H2 O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅[H2 O]⋅[ClO4 ]- . As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 μs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.
Collapse
Affiliation(s)
- Dan-Li Hong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Yang-Hui Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Xiao-Tong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Zi-Yue Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Shan Su
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Jia-Ying Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China
| |
Collapse
|
15
|
Eckert S, Norell J, Jay RM, Fondell M, Mitzner R, Odelius M, Föhlisch A. T 1 Population as the Driver of Excited-State Proton-Transfer in 2-Thiopyridone. Chemistry 2019; 25:1733-1739. [PMID: 30452789 PMCID: PMC6470867 DOI: 10.1002/chem.201804166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 01/02/2023]
Abstract
Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N 1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S2 and S4 states both relax promptly through intersystem crossing to the triplet T1 state. The T1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Potsdam, Germany
| | - Jesper Norell
- Department of Physics, Stockholm University, AlbaNova University Centre, 10691, Stockholm, Sweden
| | - Raphael M Jay
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Potsdam, Germany
| | - Mattis Fondell
- Institute for Methods and Instrumentation for, Synchrotron Radiation Research, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for, Synchrotron Radiation Research, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Centre, 10691, Stockholm, Sweden
| | - Alexander Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24/25, 14476, Potsdam, Germany.,Institute for Methods and Instrumentation for, Synchrotron Radiation Research, Helmholtz-Zentrum für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|