1
|
Rödl M, Kiefer V, Olthof S, Meerholz K, Jung G, Schwartz HA. Confinement-Driven Aggregate Formation of Photoacids within Porous Metal-Organic Frameworks. ACS OMEGA 2025; 10:4711-4721. [PMID: 39959096 PMCID: PMC11822499 DOI: 10.1021/acsomega.4c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Structurally driven properties of hybrid materials are a fascinating feature of metal-organic framework (MOF) materials that can serve as hosts for various responsive dye molecules. In particular, the formation of aggregates and the related shift of the emission of fluorophors can be tuned as a function of pore confinement. In this work, the fluorosolvatochromic methylated photoacid tris(2,2,2-trifluoroethyl) 8-methoxypyrene-1,3,6-trisulfonate (MePhos) and the free photoacid tris(2,2,2-trifluoroethyl) 8-hydroxypyrene-1,3,6-trisulfonate (Phos) were inserted into various MOF scaffolds, and the resulting emission properties were found to be far beyond the observed red shifts for polar solvents such as methanol or ethanol. Instead of the modulation of the band gap by the local environment given by the physicochemical properties of the MOF pores, there is aggregation of the MePhos molecules depending on the MOF structure, leading either to H- or t o J-like character.
Collapse
Affiliation(s)
- Markus Rödl
- Institute
of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
| | - Viktoria Kiefer
- Biophysical
Chemistry, Saarland University, Campus, Building B2 2, D-66123 Saarbrücken, Germany
| | - Selina Olthof
- Department
of Chemistry, University of Cologne, Greinstraße 4–6, D-50939 Cologne, Germany
| | - Klaus Meerholz
- Department
of Chemistry, University of Cologne, Greinstraße 4–6, D-50939 Cologne, Germany
| | - Gregor Jung
- Biophysical
Chemistry, Saarland University, Campus, Building B2 2, D-66123 Saarbrücken, Germany
| | - Heidi A. Schwartz
- Institute
of General, Inorganic and Theoretical Chemistry, Universität Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Thaggard GC, Kankanamalage BKPM, Park KC, Lim J, Quetel MA, Naik M, Shustova NB. Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410067. [PMID: 39374006 DOI: 10.1002/adma.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution-like response of stimuli-responsive moieties to solid-state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal-organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting-edge advancements in photochromic material development, but also highlights novel, vital-to-pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
3
|
Martin CR, Thaggard GC, Lehman-Andino I, Mollinedo E, Rai BK, Page MA, Taylor-Pashow K, Shustova NB. Photochromic Ln-MOFs: A Platform for Metal-Photoswitch Cooperativity. Inorg Chem 2024; 63:12810-12817. [PMID: 38935401 DOI: 10.1021/acs.inorgchem.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Optoelectronic devices based on lanthanide-containing materials are an emergent area of research due to imminent interest in a new generation of diode materials, optical and magnetic sensors, and ratiometric thermometers. Tailoring material properties through the employment of photo- or thermochromic moieties is a powerful approach that requires a deep fundamental understanding of possible cooperativity between lanthanide-based metal centers and integrated switchable units. In this work, we probe this concept through the synthesis, structural analysis, and spectroscopic characterization of novel photochromic lanthanide-based metal-organic materials containing noncoordinatively integrated photoresponsive 4,4'-azopyridine between lanthanide-based metal centers. As a result, a photophysical material response tailored on demand through the incorporation of photochromic compounds within a rigid matrix was investigated. The comprehensive analysis of photoresponsive metal-organic materials includes single-crystal X-ray diffraction and diffuse reflectance spectroscopic studies that provide guiding principles necessary for understanding photochromic unit-lanthanide-based metal-organic framework (MOF) cooperativity. Furthermore, steady-state and time-resolved diffuse reflectance spectroscopic studies revealed a rapid rate of photoresponsive moiety attenuation upon its integration within the rigid matrix of lanthanide-based MOFs in comparison with that in solution, highlighting a unique role and synergy that occurred between stimuli-responsive moieties and the lanthanide-based MOF platform, allowing for tunability and control of material photoisomerization kinetics.
Collapse
Affiliation(s)
- Corey R Martin
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Eduardo Mollinedo
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Binod K Rai
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Matthew A Page
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | | | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Schwartz HA, Atar M, Spilles M, Fill M, Ott M, Purtscher FRS, Gallmetzer JM, Öcal B, Olthof S, Griesbeck A, Meerholz K, Hofer TS, Ruschewitz U. Polarity profiling of porous architectures: solvatochromic dye encapsulation in metal-organic frameworks. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:8759-8776. [PMID: 38912177 PMCID: PMC11188709 DOI: 10.1039/d4tc01401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Metal-organic frameworks (MOFs) have gathered significant interest due to their tunable porosity leading to diverse potential applications. In this study, we investigate the incorporation of the fluorosolvatochromic dye 2-butyl-5,6-dimethoxyisoindoline-1,3-dione ([double bond, length as m-dash]Phth) into various MOF structures as a means to assess the polarity of these porous materials. As a purely inorganic compound, zeolite Y was tested for comparison. The fluorosolvatochromic behavior of Phth, which manifests as changes in its emission spectra in response to solvent polarity, provides a sensitive probe for characterizing the local environment within the MOF pores. Through systematic variation of the MOF frameworks, we demonstrate the feasibility of using (fluoro-)solvatochromic dyes as probes for assessing the polarity gradients within MOF structures. Additionally, the fluorosolvatochromic response was studied as a function of loading amount. Our findings not only offer insights into the interplay between MOF architecture and guest molecule interactions but also present a promising approach for the rational design and classification of porous materials based on their polarity properties.
Collapse
Affiliation(s)
- Heidi A Schwartz
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Murat Atar
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Matthias Spilles
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Michael Fill
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Manuel Ott
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Felix R S Purtscher
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Josef M Gallmetzer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Baris Öcal
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Selina Olthof
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Axel Griesbeck
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Klaus Meerholz
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Uwe Ruschewitz
- Department of Chemistry, University of Cologne Greinstraße 4-6 D-50939 Cologne Germany
| |
Collapse
|
5
|
Wang G, Feng Y, Ye X, Li Z, Tao S, Jiang D. Light-Gating Crystalline Porous Covalent Organic Frameworks. J Am Chem Soc 2024; 146:10953-10962. [PMID: 38565222 DOI: 10.1021/jacs.4c02164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report light gating in synthetic one-dimensional nanochannels of stable crystalline porous covalent organic frameworks. The frameworks consist of 2D hexagonal skeletons that are extended over the x-y plane and stacked along the z-direction to create dense yet aligned 1D mesoporous channels. The pores are designed to be photoadaptable by covalently integrating tetrafluoro-substituted azobenzene units onto edges, which protrude from walls and offer light-gating machinery confined in the channels. The implanted tetrafluoroazobenzene units are thermally stable yet highly sensitive to visible light to induce photoisomerization between the E and Z forms. Remarkably, photoisomerization induces drastic changes in intrapore polarity as well as pore shape and size, which exert profound effects on the molecular adsorption of a broad spectrum of compounds, ranging from inorganic iodine to organic dyes, drugs, and enzymes. Unexpectedly, the systems respond rapidly to visible lights to gate the molecular release of drugs and enzymes. Photoadaptable covalent organic frameworks with reversibly convertible pores offer a platform for constructing light-gating porous materials and tailorable delivery systems, remotely controlled by visible lights.
Collapse
Affiliation(s)
- Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xingyao Ye
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongping Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
6
|
Griffiths K, Greenfield JL, Halcovitch NR, Fuchter MJ, Griffin JM. Systematic Investigation into the Photoswitching and Thermal Properties of Arylazopyrazole-based MOF Host-Guest Complexes. CRYSTAL GROWTH & DESIGN 2023; 23:7044-7052. [PMID: 37808902 PMCID: PMC10557064 DOI: 10.1021/acs.cgd.2c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/25/2023] [Indexed: 10/10/2023]
Abstract
A series of arylazopyrazole-loaded metal-organic frameworks were synthesized with the general formula Zn2(BDC)2(DABCO)(AAP)x (BDC = 1,4-benzenedicarboxylate; DABCO = 1,4-diazabicyclo-[2.2.2]octane; AAP = arylazopyrazole guest). The empty framework adopts a large pore tetragonal structure. Upon occlusion of the E-AAP guests, the frameworks contract to form narrow pore tetragonal structures. The extent of framework contraction is dependent on guest shapes and pendant groups and ranges between 1.5 and 5.8%. When irradiated with 365 nm light, the framework expands due to the photoisomerization of E-AAP to Z-AAP. The proportion of Z-isomer at the photostationary state varies between 19 and 57% for the AAP guests studied and appears to be limited by the framework which inhibits further isomerization once fully expanded. Interestingly, confinement within the framework significantly extends the thermal half-life of the Z-AAP isomers to a maximum of approximately 56 years. This finding provides scope for the design of photoresponsive host-guest complexes with high stability of the metastable isomer for long-duration information or energy storage applications.
Collapse
Affiliation(s)
- Kieran Griffiths
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Jake L. Greenfield
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Center
for Nanosystems Chemistry (CNC), Institut
für Organische Chemie, Universität, Würzburg, Würzburg 97074, Germany
| | | | - Matthew J. Fuchter
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - John M. Griffin
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
7
|
Greussing V, Kremer S, Ober I, Küssner K, Rödl M, Huppertz H, Schwartz HA. Mechanochemical Loading: An Alternative Route to form Spiropyran@MOF Composite Materials. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Victoria Greussing
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Stephane Kremer
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Isabell Ober
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Kira Küssner
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Markus Rödl
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Hubert Huppertz
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| | - Heidi A. Schwartz
- Institute of General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 A-6020 Innsbruck Austria
| |
Collapse
|
8
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
10
|
Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, Birarda G, Kargl R, Falcaro P, Amenitsch H. Unraveling the timescale of the structural photo-response within oriented metal-organic framework films. Chem Sci 2022; 13:11869-11877. [PMID: 36320901 PMCID: PMC9580475 DOI: 10.1039/d2sc02405e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023] Open
Abstract
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
Collapse
Affiliation(s)
- Sumea Klokic
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- IOM-CNR, Laboratorio TASC S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste - SISSI Bio Beamline S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Rupert Kargl
- Institute of Chemistry and Technology of Bio-Based Systems, Graz University of Technology 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
11
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible-Light-Responsive Self-Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination. Angew Chem Int Ed Engl 2022; 61:e202205701. [PMID: 35972841 PMCID: PMC9541570 DOI: 10.1002/anie.202205701] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.
Collapse
Affiliation(s)
| | | | - Ruoming Tian
- Crystallography laboratoryMark Wainwright Analytical CentreUNSW SydneySydneyNSW 2052Australia
| | - Jason R. Price
- School of ChemistryUNSW SydneySydneyNSW 2052Australia
- ANSTOThe Australian Synchrotron800 Blackburn RdClaytonVic 3168Australia
| | | | | | | |
Collapse
|
12
|
Semionova VV, Glebov EM. SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622090086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible‐Light‐Responsive Self‐Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ray G. DiNardi
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | - Ruoming Tian
- Crystallography laboratory Mark Wainwright Analytical Centre UNSW Sydney Sydney NSW 2052 Australia
| | - Jason R. Price
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
- ANSTO The Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia
| | - Mohammad Tajik
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | | |
Collapse
|
14
|
Geng K, Yang X, Zhao Y, Cui Y, Ding J, Hou H. Efficient Strategy for Investigating the Third-Order Nonlinear Optical (NLO) Properties of Solid-State Coordination Polymers. Inorg Chem 2022; 61:12386-12395. [PMID: 35895943 DOI: 10.1021/acs.inorgchem.2c01785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The investigation of third-order nonlinear optical (NLO) properties of coordination polymers (CPs) based on solid samples is very difficult but is crucial for practical applications. Herein, we show a method for preparing high optical quality CP films in a polymer matrix to study the third-order NLO performance of solid-state CPs. Two novel azobenzene-based CPs, [CdL(DMAc)(H2O)]n (1) and {[CuL(4,4'-azobpy)]·3H2O}n (2) (H2L = 5-((4-(phenyldiazenyl)phenoxy)methyl)isophthalic acid), were selected as study subjects. The corresponding microcrystals with a grain size of around 3 μm were doped into poly(vinyl alcohol) (PVA), forming CP films (1-MC/PVA and 2-MC/PVA). 1-MC/PVA and 2-MC/PVA exhibit NLO absorption switching behavior from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing pulse energy. Moreover, their NLO properties can also be efficiently modulated by photostimulation energy due to the trans → cis isomerization of an azobenzene moiety. The density functional theory (DFT) results show that the narrower the band gap between the conduction band minimum and the valence band maximum, the denser the electron density distribution in the central mental and coordination atoms, which is beneficial to exhibit better third-order NLO performance. This work provides a feasible method for the wider practical application of solid materials with excellent third-order NLO performance.
Collapse
Affiliation(s)
- Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaoqian Yang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jie Ding
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
15
|
Rödl M, Reka A, Panic M, Fischereder A, Oberlechner M, Mairegger T, Kopacka H, Huppertz H, Hofer TS, Schwartz HA. Fundamental Study of the Optical and Vibrational Properties of Fx-AZB@MOF systems as Functions of Dye Substitution and the Loading Amount. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4295-4309. [PMID: 35344366 PMCID: PMC9009183 DOI: 10.1021/acs.langmuir.1c03482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Controlling the switching efficiency of photoactive hybrid systems is an obligatory key prerequisite for systematically improving the design of functional materials. By modulating the degree of fluorination and the amount being embedded into porous hosts, the E/Z ratios of fluorinated azobenzenes were adjusted as both functions of substitution and the degree of loading. Octafluoroazobenzene (F8-AZB) and perfluoroazobenzene (F10-AZB) were inserted into porous DMOF-1. Especially for perfluoroazobenzene (F10-AZB), an immense stabilization of the E isomer was observed. In complementary molecular dynamics simulations performed at the DFTB (density functional tight binding) level, an in-depth characterization of the interactions of the different photoisomers and the host structure was carried out. On the basis of the resulting structural and energetic data, the experimentally observed increase in the amount of the Z conformer for F8-AZB can be explained, while the stabilization of E-F10-AZB can be directly related to a fundamentally different interaction motif compared to its tetra- and octafluorinated counterparts.
Collapse
|
16
|
Drake HF, Xiao Z, Day GS, Vali SW, Daemen LL, Cheng Y, Cai P, Kuszynski JE, Lin H, Zhou HC, Ryder MR. Influence of Metal Identity on Light-Induced Switchable Adsorption in Azobenzene-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11192-11199. [PMID: 35192321 DOI: 10.1021/acsami.1c18266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Energy-efficient capture and release of small gas molecules, particularly carbon dioxide (CO2) and methane (CH4), are of significant interest in academia and industry. Porous materials such as metal-organic frameworks (MOFs) have been extensively studied, as their ultrahigh porosities and tunability enable significant amounts of gas to be adsorbed while also allowing specific applications to be targeted. However, because of the microporous nature of MOFs, the gas adsorption performance is dominated by high uptake capacity at low pressures, limiting their application. Hence, methods involving stimuli-responsive materials, particularly light-induced switchable adsorption (LISA), offer a unique alternative to thermal methods. Here, we report the mechanism of a well-known LISA system, the azobenzene-based material PCN-250, for CO2 and CH4 adsorption. There is a noticeable difference in the LISA effect dependent on the metal cluster involved, with the most significant being PCN-250-Al, where the adsorption can change by 83.1% CH4 and 56.1% CO2 at 298 K and 1 bar and inducing volumetric storage changes of 36.2 and 33.9 cm3/cm3 at 298 K between 5 and 85 bar (CH4) and 2 and 9 bar (CO2), respectively. Using UV light in both single-crystal X-ray diffraction and gas adsorption testing, we show that upon photoirradiation, the framework undergoes a "localized heating" phenomenon comparable to an increase of 130 K for PCN-250-Fe and improves the working capacity. This process functions because of the constrained nature of the ligand, preventing the typical trans-to-cis isomerization observed in free azobenzene. In addition, we observed that the degree of localized heating is highly dependent on the metal cluster involved, with the series of isostructural PCN-250 systems showing variable performance based upon the degree of interaction between the ligand and the metal center.
Collapse
Affiliation(s)
- Hannah F Drake
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory S Day
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jason E Kuszynski
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science, Texas A&M University, College Station, Texas 77843, United States
| | - Matthew R Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
17
|
Griffiths K, Halcovitch NR, Griffin JM. Efficient solid-state photoswitching of methoxyazobenzene in a metal-organic framework for thermal energy storage. Chem Sci 2022; 13:3014-3019. [PMID: 35382460 PMCID: PMC8905824 DOI: 10.1039/d2sc00632d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Efficient photoswitching in the solid-state remains rare, yet is highly desirable for the design of functional solid materials. In particular, for molecular solar thermal energy storage materials high conversion to the metastable isomer is crucial to achieve high energy density. Herein, we report that 4-methoxyazobenzene (MOAB) can be occluded into the pores of a metal-organic framework Zn2(BDC)2(DABCO), where BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2.2.2]octane. The occluded MOAB guest molecules show near-quantitative E → Z photoisomerization under irradiation with 365 nm light. The energy stored within the metastable Z-MOAB molecules can be retrieved as heat during thermally-driven relaxation to the ground-state E-isomer. The energy density of the composite is 101 J g-1 and the half-life of the Z-isomer is 6 days when stored in the dark at ambient temperature.
Collapse
Affiliation(s)
- Kieran Griffiths
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
| | | | - John M Griffin
- Department of Chemistry, Lancaster University Lancaster LA14YB UK
- Materials Science Institute, Lancaster University Lancaster LA14YB UK
| |
Collapse
|
18
|
Soldatenko AS, Lazareva NF. 2,2′-Bis[(chloromethyl)diorganylsilyloxy]azobenzenes. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363221120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
21
|
Tu M, Díaz Ramírez ML, Ibarra IA, Hofkens J, Ameloot R. Fluorescence Photoswitching in a Series of Metal‐Organic Frameworks Loaded with Different Anthracenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Tu
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven – University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Science Shanghai Shanghai 200050 China
| | - Mariana Lizeth Díaz Ramírez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Johan Hofkens
- Department of Molecular Visualization and Photonics KU Leuven-University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven – University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
22
|
Kremer S, Ober I, Greussing V, Kopacka H, Gallmetzer HG, Trübenbacher B, Demmel D, Olthof S, Huppertz H, Schwartz HA. Modulating the Optical Characteristics of Spiropyran@Metal-Organic Framework Composites as a Function of Spiropyran Substitution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7834-7842. [PMID: 34143632 DOI: 10.1021/acs.langmuir.1c01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the interactions between the single components of hybrid systems is essential to drive the development of advanced functional materials. A prerequisite for this is the systematic variation of the building blocks of such compounds. Focusing on spiropyran@metal-organic framework (MOF) composite materials with noncovalently attached spiropyran dyes, both the host scaffold and the dye molecules can be systematically tuned. In this work, a broad substitution pattern was applied to systematically elucidate the characteristics of the resulting hybrid materials as a function of the supplemental substitution on spiropyran. The newly developed 12 composites exhibit substitution and host-dependent optical characteristics, which are particularly affected by the substitution of the 6'-position on the chromene ring. Through the favorable combination of the MOF host's polarity and an adequate strength of the spiropyran's indolinedonor-chromeneacceptor pair, reversible conversion between photoisomers is efficiently accomplished, especially for nitro-substituted spiropyrans inside MIL-68(In).
Collapse
Affiliation(s)
- Stephane Kremer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Isabell Ober
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Victoria Greussing
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Holger Kopacka
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Hans G Gallmetzer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Benedikt Trübenbacher
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - David Demmel
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Selina Olthof
- Institute of Physical Chemistry, University of Cologne, Greinstraße 4-6, D-50939 Cologne, Germany
| | - Hubert Huppertz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Heidi A Schwartz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| |
Collapse
|
23
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Rödl M, Kerschbaumer S, Kopacka H, Blaser L, Purtscher FRS, Huppertz H, Hofer TS, Schwartz HA. Structural, dynamical, and photochemical properties of ortho-tetrafluoroazobenzene inside a flexible MOF under visible light irradiation. RSC Adv 2021; 11:3917-3930. [PMID: 35424349 PMCID: PMC8694203 DOI: 10.1039/d0ra10500g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Considering porous materials as host matrices is an elegant way to enable photoswitching of non-covalently attached organic dyes even in the solid state. By focusing on the resulting optical properties as a function of loading degree and synthesis procedure, the occurring host-guest and guest-guest interactions can be determined and further exploited. In the course of this study, the photochromic behavior of ortho-tetrafluoroazobenzene (tF-AZB) inside flexible DMOF-1 was investigated from these points of view. It was found that depending on the loading degree and temperature, tF-AZB shows varying E/Z ratios and switching efficiency. For systems with low loading, reversible visible light induced isomerization was observed over ten switching cycles: Upon violet light exposure, formation of 100% E isomer was generated, while green light irradiation resulted in ∼60% Z-tF-AZB. Complementary molecular dynamics simulations at DFTB (density functional tight binding)-level revealed changing binding sites for Z-tF-AZB inside DMOF-1. For the E isomer, only low oscillations have been found, which in turn display a rare T-stacking interaction. Although the interaction strengths of the E and Z isomers with DMOF-1 are in the same range, the different mobility of both isomers due to varying binding sites explains the preference of the E isomer even upon green light exposure.
Collapse
Affiliation(s)
- Markus Rödl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Samuel Kerschbaumer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Holger Kopacka
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Laura Blaser
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Felix R S Purtscher
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Hubert Huppertz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Heidi A Schwartz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| |
Collapse
|
25
|
Paul A, Upadhyay KK, Backović G, Karmakar A, Vieira Ferreira LF, Šljukić B, Montemor MF, Guedes da Silva MFC, Pombeiro AJL. Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorg Chem 2020; 59:16301-16318. [PMID: 33100004 DOI: 10.1021/acs.inorgchem.0c02084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new 2D coordination polymers (CPs) [M(L)2(H2O)2]n [M = CoII (1) and NiII (2); L = 4-(pyridin-3-ylcarbamoyl)benzoate] were synthesized from pyridyl amide-functionalized benzoic acid (HL). They were characterized by elemental, Fourier transform infrared, thermogravimetric, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (XRD) structural analyses. Single-crystal XRD analysis revealed the presence of a 2D polymeric architecture, and topological analyses disclose a 2,4-connected binodal net. A thermochromic effect leads to the production of two new CPs, 1' and 2', by heating at ca. 220 °C, accompanied by a color change from orange to purple in the case of 1 and from blue to green in the case of 2. The transformation of 1 to 1' takes place through an intermediate (1a) with a different twist of the L- ligand, leading to the formation of a 1D polymeric architecture, as proven by single-crystal XRD analysis. The addition of water or keeping 1' or 2' in air for several days leads to regeneration of 1 or 2, respectively. The thermochromic-triggered structural transformations of 1 and 2 were further substantiated by PXRD and UV-vis ground-state diffuse-reflectance absorption studies. The supercapacitance ability of the CPs 1 and 2 and a Ni-Co composite (made from mixing the CPs 1 and 2) was investigated by electroanalytical techniques, such as cyclic voltammetry and electrochemical impedance spectroscopy. The CP 2 exhibits the highest specific capacity of 273.8 C g-1 at an applied current density of 1.5 A g-1. These newly developed CPs further act as electrocatalysts for the water-splitting reaction.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Kush K Upadhyay
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - Gordana Backović
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Luís F Vieira Ferreira
- Centro de Química-Física Molecular, Institute for Nanosciences and Nanotechnologies, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Biljana Šljukić
- CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria F Montemor
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa. Portugal
| |
Collapse
|
26
|
Schwartz HA, Werker M, Tobeck C, Christoffels R, Schaniel D, Olthof S, Meerholz K, Kopacka H, Huppertz H, Ruschewitz U. Novel Photoactive Spirooxazine Based Switch@MOF Composite Materials. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Heidi A. Schwartz
- Institute of Inorganic ChemistryUniversity of Cologne Greinstraße 6 50939 Cologne Germany
- Institute of General, Inorganic, and Theoretical ChemistryUniversity of Innsbruck Center for Chemistry and Biomedicine Innrain 80–82 6020 Innsbruck Austria
| | - Melanie Werker
- Institute of Inorganic ChemistryUniversity of Cologne Greinstraße 6 50939 Cologne Germany
| | - Christian Tobeck
- Institute of Inorganic ChemistryUniversity of Cologne Greinstraße 6 50939 Cologne Germany
| | - Ronja Christoffels
- Institute of Inorganic ChemistryUniversity of Cologne Greinstraße 6 50939 Cologne Germany
| | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2 Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre les Nancy France
| | - Selina Olthof
- Institute of Physical ChemistryUniversity of Cologne Greinstraße 4–6 50939 Cologne Germany
| | - Klaus Meerholz
- Institute of Physical ChemistryUniversity of Cologne Greinstraße 4–6 50939 Cologne Germany
| | - Holger Kopacka
- Institute of General, Inorganic, and Theoretical ChemistryUniversity of Innsbruck Center for Chemistry and Biomedicine Innrain 80–82 6020 Innsbruck Austria
| | - Hubert Huppertz
- Institute of General, Inorganic, and Theoretical ChemistryUniversity of Innsbruck Center for Chemistry and Biomedicine Innrain 80–82 6020 Innsbruck Austria
| | - Uwe Ruschewitz
- Institute of Inorganic ChemistryUniversity of Cologne Greinstraße 6 50939 Cologne Germany
| |
Collapse
|
27
|
Schwartz HA, Laurenzen H, Kerschbaumer S, Werker M, Olthof S, Kopacka H, Huppertz H, Meerholz K, Ruschewitz U. High fatigue resistance of a photochromic dithienylethene embedded into the pores of a metal–organic framework (MOF). Photochem Photobiol Sci 2020; 19:1730-1740. [DOI: 10.1039/d0pp00002g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incorporation of photochromic dyes into porous metal–organic frameworks (MOFs) is an attractive way to transfer the photochromic properties of the dye to a solid crystalline material.
Collapse
Affiliation(s)
- Heidi A. Schwartz
- Institute of Inorganic Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
- Institute of General, Inorganic, and Theoretical Chemistry
| | - Hannah Laurenzen
- Institute of Inorganic Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| | - Samuel Kerschbaumer
- Institute of General, Inorganic, and Theoretical Chemistry
- University of Innsbruck
- Center for Chemistry and Biomedicine
- A-6020 Innsbruck
- Austria
| | - Melanie Werker
- Institute of Inorganic Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| | - Selina Olthof
- Institute of Physical Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| | - Holger Kopacka
- Institute of General, Inorganic, and Theoretical Chemistry
- University of Innsbruck
- Center for Chemistry and Biomedicine
- A-6020 Innsbruck
- Austria
| | - Hubert Huppertz
- Institute of General, Inorganic, and Theoretical Chemistry
- University of Innsbruck
- Center for Chemistry and Biomedicine
- A-6020 Innsbruck
- Austria
| | - Klaus Meerholz
- Institute of Physical Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| | - Uwe Ruschewitz
- Institute of Inorganic Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| |
Collapse
|
28
|
Schwartz HA, Schaniel D, Ruschewitz U. Tracking the light-induced isomerization processes and the photostability of spiropyrans embedded in the pores of crystalline nanoporous MOFs via IR spectroscopy. Photochem Photobiol Sci 2020; 19:1433-1441. [DOI: 10.1039/d0pp00267d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Difference IR spectroscopy of spiropyran@MOF systems to obtain the characteristic signatures of the spiropyran and merocyanine form at ambient conditions.
Collapse
Affiliation(s)
- Heidi A. Schwartz
- Institute of General
- Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | | | - Uwe Ruschewitz
- Department of Chemistry
- University of Cologne
- D-50939 Cologne
- Germany
| |
Collapse
|
29
|
Rice AM, Martin CR, Galitskiy VA, Berseneva AA, Leith GA, Shustova NB. Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. Chem Rev 2019; 120:8790-8813. [PMID: 31638383 DOI: 10.1021/acs.chemrev.9b00350] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this Review, we showcase the upsurge in the development and fundamental photophysical studies of more than 100 metal-organic frameworks (MOFs) as versatile stimuli-responsive platforms. The goal is to provide a comprehensive analysis of the field of photoresponsive MOFs while delving into the underlying photophysical properties of various classes of photochromic molecules including diarylethene, azobenzene, and spiropyran as well as naphthalenediimide and viologen derivatives integrated inside a MOF matrix as part of a framework backbone, as a ligand side group, or as a guest. In particular, the geometrical constraints, photoisomerization rates, and electronic structures of photochromic molecules integrated inside a rigid MOF scaffold are discussed. Thus, this Review reflects on the challenges and opportunities of using photoswitchable MOFs in next-generation multifunctional stimuli-responsive materials while highlighting their use in optoelectronics, erasable inks, or as the next generation of sensing devices.
Collapse
Affiliation(s)
- Allison M Rice
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vladimir A Galitskiy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
30
|
Li P, Guo MY, Yin XM, Gao L, Yang SL, Bu R, Gong T, Gao EQ. Interpenetration-Enabled Photochromism and Fluorescence Photomodulation in a Metal–Organic Framework with the Thiazolothiazole Extended Viologen Fluorophore. Inorg Chem 2019; 58:14167-14174. [DOI: 10.1021/acs.inorgchem.9b02220] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Meng-Yue Guo
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xue-Mei Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Lu−Lu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| |
Collapse
|
31
|
Khayyami A, Philip A, Karppinen M. Atomic/Molecular Layer Deposited Iron–Azobenzene Framework Thin Films for Stimuli‐Induced Gas Molecule Capture/Release. Angew Chem Int Ed Engl 2019; 58:13400-13404. [DOI: 10.1002/anie.201908164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Aida Khayyami
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| | - Anish Philip
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| | - Maarit Karppinen
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| |
Collapse
|
32
|
Khayyami A, Philip A, Karppinen M. Atomic/Molecular Layer Deposited Iron–Azobenzene Framework Thin Films for Stimuli‐Induced Gas Molecule Capture/Release. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aida Khayyami
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| | - Anish Philip
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| | - Maarit Karppinen
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 00076 Aalto Finland
| |
Collapse
|