1
|
Zhou Z, Hatzios SK. Microbial metabolism of host-derived antioxidants. Curr Opin Chem Biol 2025; 84:102565. [PMID: 39721219 PMCID: PMC11863140 DOI: 10.1016/j.cbpa.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Humans are exposed to a wide variety of small molecules with antioxidant properties that are poorly metabolized by mammalian cells. However, gastrointestinal microbes encode enzymes that convert these redox-active molecules into nutrient sources and electron acceptors to support bacterial growth in the gut. Here, we describe recent studies highlighting how microbial metabolism of host-derived antioxidants modulates interspecies interactions and provide an overview of the interdisciplinary approaches being used to map these metabolic pathways in vivo. Uncovering microbe-driven biotransformations of redox-active small molecules could create new opportunities to improve human health by modulating redox reactions at the host-microbe interface.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Feng C, Yan Q, Li X, Zhao H, Huang H, Zhang X. Discovery of a Gut Bacterial Pathway for Ergothioneine Catabolism. J Am Chem Soc 2025; 147:257-264. [PMID: 39700343 DOI: 10.1021/jacs.4c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Ergothioneine is a diet-derived micronutrient for humans. However, enzymes involved in the catabolism of ergothioneine in human gut bacteria have not yet been identified. Herein, we characterize a sulfidogenic pathway for gut bacterial catabolism of this micronutrient, which involves an unprecedented reductive desulfurization reaction catalyzed by members of the xanthine oxidoreductase family (XOR), a class of molybdenum-containing flavoproteins. Notably, this is the first C-S bond cleavage reaction known to be catalyzed by XORs. Evidence for operation of this pathway was gained through in vitro reconstruction using heterologously produced enzymes derived from the human gut bacterium Blautia producta ATCC 27340. This catabolic activity enables B. producta ATCC 27340 to use ergothioneine as an alternative electron acceptor source. Homologues of the pathway enzymes are shown to be present not only in human gut bacteria but also in many environmental bacteria, suggesting the wide distribution of this catabolic strategy. In relation to the sulfur-containing metabolite, this discovery provides significant insight into biogeochemical sulfur cycling in diverse anoxic habitats beyond the human gut and, moreover, the design of new approaches for controlling intestinal hydrogen sulfide (H2S) production.
Collapse
Affiliation(s)
- Chenxi Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xianyi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hong Zhao
- Shenzhen Readline Biotech CO., Ltd., Wanhe Medicine Park, Nanshan, Shenzhen 518057, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Zhuang J, Zhang S, Chen H, Qiu C, Feng T, Zhou W, Han X, Song Z. Evidence of microbiota-host dysbiosis between periodontitis and cerebral small vessel disease. Oral Dis 2025; 31:248-263. [PMID: 38923260 DOI: 10.1111/odi.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the correlation between periodontitis and cerebral small vessel disease (CSVD) from the clinical and microbiological aspects. SUBJECTS AND METHODS Periodontitis patients (CP group, n = 31) and CSVD patients (CSVD group, n = 30) were examined for neurological and periodontal condition. Subgingival plaque was collected and performed using 16S rRNA sequencing. Logistic regression and LASSO regression were used to analyze the periodontal parameters and subgingival microbiota related to CSVD, respectively. Inflammatory factors in gingival crevicular fluid (GCF) were also detected and compared between the two groups. RESULTS Clinical attachment level (CAL), teeth number and plaque index demonstrated a significant difference between CP and CSVD group, meanwhile, CAL was independently associated with CSVD. Besides, the microbial richness and composition were distinct between two groups. Five genera related to periodontal pathogens (Treponema, Prevotella, Streptococcus, Fusobacterium, Porphyromonas) were screened out by LASSO regression, suggesting a potential association with CSVD. Finally, the levels of inflammatory factors in GCF were statistically higher in CSVD group than those in CP group. CONCLUSIONS Cerebral small vessel disease patients demonstrated worse periodontal condition, meanwhile the interaction between microbiota dysbiosis and host factors (inflammation) leading to a better understanding of the association between periodontitis and CSVD.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shufan Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Nalivaiko EY, Seebeck FP. A Rhodanese-Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid. Chembiochem 2024; 25:e202400131. [PMID: 38597743 DOI: 10.1002/cbic.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Many actinobacterial species contain structural genes for iron-dependent enzymes that consume ergothioneine by way of O2-dependent dioxygenation. The resulting product ergothioneine sulfinic acid is stable under physiological conditions unless cleavage to sulfur dioxide and trimethyl histidine is catalyzed by a dedicated desulfinase. This report documents that two types of ergothioneine sulfinic desulfinases have evolved by convergent evolution. One type is related to metal-dependent decarboxylases while the other belongs to the superfamily of rhodanese-like enzymes. Pairs of ergothioneine dioxygenases (ETDO) and ergothioneine sulfinic acid desulfinase (ETSD) occur in thousands of sequenced actinobacteria, suggesting that oxidative ergothioneine degradation is a common activity in this phylum.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| |
Collapse
|
5
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
6
|
Vasseur CM, Karunasegaram D, Seebeck FP. Structure and Substrate Specificity of S-Methyl Thiourocanate Hydratase. ACS Chem Biol 2024; 19:718-724. [PMID: 38389448 DOI: 10.1021/acschembio.3c00745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a common cofactor in enzyme-catalyzed reactions that involve hydride transfers. In contrast, urocanase and urocanase-like enzymes use NAD+ for covalent electrophilic catalysis. Deciphering avenues by which this unusual catalytic strategy has diversified by evolution may point to approaches for the design of novel enzymes. In this report, we describe the S-methyl thiourocanate hydratase (S-Me-TUC) from Variovorax sp. RA8 as a novel member of this small family of NAD+-dependent hydratases. This enzyme catalyzes the 1,4-addition of water to S-methyl thiourocanate as the second step in the catabolism of S-methyl ergothioneine. The crystal structure of this enzyme in complex with the cofactor and a product analogue identifies critical sequence motifs that explain the narrow and nonoverlapping substrate scopes of S-methyl thiourocanate-, urocanate-, thiourocanate-, and Nτ-methyl urocanate-specific hydratases. The discovery of a S-methyl ergothioneine catabolic pathway also suggests that S-methylation or alkylation may be a significant activity in the biology of ergothioneine.
Collapse
Affiliation(s)
- Camille M Vasseur
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| | - Dishani Karunasegaram
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, Basel 4002, Switzerland
| |
Collapse
|
7
|
Brack Y, Sun C, Yi D, Bornscheuer UT. Systematic Analysis of the MIO-forming Residues of Aromatic Ammonia Lyases. Chembiochem 2024; 25:e202400016. [PMID: 38323706 DOI: 10.1002/cbic.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
Aromatic ammonia lyases (AALs) and tyrosine/phenylalanine ammonia mutases (TAM/PAM) are 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO)-dependent enzymes. Usually, the MIO moiety is autocatalytically formed from the tripeptide Ala-Ser-Gly (ASG) and acts as an electrophile during the enzymatic reaction. However, the MIO-forming residues (ASG) have some diversity in this enzyme class. In this work, a systematic investigation on the variety of MIO-forming residues was carried out using in-depth sequence analyses. Several protein clusters of AAL-like enzymes with unusual MIO-forming residues such as ACG, TSG, SSG, and CSG were identified, including two novel histidine ammonia lyases and one PAM with CSG and TSG residues, respectively, as well as three novel ergothioneine trimethylammonia lyases without MIO motif. The mutagenesis of common MIO-groups confirmed the function of these MIO variants, which provides good starting points for future functional prediction and mutagenesis research of AALs.
Collapse
Affiliation(s)
- Yannik Brack
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Chenghai Sun
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Dong Yi
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
- National Key Laboratory of Lead Druggability Research, Research Center for Systems Biosynthesis, China State Institute of Pharmaceutical Industry, Gebaini Road 285, 201203, Shanghai, China
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| |
Collapse
|
8
|
Nalivaiko EY, Vasseur CM, Seebeck FP. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine. Angew Chem Int Ed Engl 2024; 63:e202318445. [PMID: 38095354 DOI: 10.1002/anie.202318445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Ergothioneine is a sulfur-containing metabolite that is produced by bacteria and fungi, and is absorbed by plants and animals as a micronutrient. Ergothioneine reacts with harmful oxidants, including singlet oxygen and hydrogen peroxide, and may therefore protect cells against oxidative stress. Herein we describe two enzymes from actinobacteria that cooperate in the specific oxidative degradation of ergothioneine. The first enzyme is an iron-dependent thiol dioxygenase that produces ergothioneine sulfinic acid. A crystal structure of ergothioneine dioxygenase from Thermocatellispora tengchongensis reveals many similarities with cysteine dioxygenases, suggesting that the two enzymes share a common mechanism. The second enzyme is a metal-dependent ergothioneine sulfinic acid desulfinase that produces Nα-trimethylhistidine and SO2 . The discovery that certain actinobacteria contain the enzymatic machinery for O2 -dependent biosynthesis and O2 -dependent degradation of ergothioneine indicates that these organisms may actively manage their ergothioneine content.
Collapse
Affiliation(s)
- Egor Y Nalivaiko
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Camille M Vasseur
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| |
Collapse
|
9
|
Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022; 185:4526-4540.e18. [PMID: 36347253 PMCID: PMC9691600 DOI: 10.1016/j.cell.2022.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Anna B Seminara
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Emily R Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
10
|
Cheah IK, Lee JZ, Tang RMY, Koh PW, Halliwell B. Does Lactobacillus reuteri influence ergothioneine levels in the human body? FEBS Lett 2022; 596:1241-1251. [PMID: 35486429 DOI: 10.1002/1873-3468.14364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
The dietary thione-thiol, ergothioneine (ET), accumulates in human and animal tissues and may play important roles in disease prevention. ET biosynthesis has only been described in fungi and certain bacteria, and humans and animals are widely assumed to accumulate ET solely from diet. However, a recent study suggested that Lactobacillus/Limosilactobacillus reuteri, a commensal gut bacterium, may produce ET, thereby protecting the host against social defeat stress and sleep disturbances. Upon our further investigation, no evidence of ET biosynthesis was observed in L. reuteri when a heavy-labelled histidine precursor was administered. Instead, we discovered that L. reuteri avidly accumulates ET. This observation may indicate a possible mechanism by which the gut microbiota could influence tissue levels of ET in the host.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Jovan Z Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596
| | - Richard M Y Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Pei Wen Koh
- Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596.,Neurobiology Programme, Centre for Life Sciences, Life Science Institute, National University of Singapore, Singapore, 117456
| |
Collapse
|
11
|
Yan Q, Huang H, Zhang X. In Vitro Reconstitution of a Bacterial Ergothioneine Sulfonate Catabolic Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qiongxiang Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hua Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xinshuai Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
12
|
Duncombe TA, Ponti A, Seebeck FP, Dittrich PS. UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Droplets. Anal Chem 2021; 93:13008-13013. [PMID: 34533299 DOI: 10.1021/acs.analchem.1c02822] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features. An optimized UV-vis detection region extended the absorbance path length for droplets and allowed for the direct protein quantification down to 10 μM of bovine serum albumin at 280 nm. UV-vis spectral data can distinguish a variety of different chemicals or spurious events (such as air bubbles) that are inaccessible at a single wavelength. The platform is used to measure ergothionase enzyme activity from monoclonal microcolonies isolated in droplets. In a label-free manner, we directly measure the ergothioneine substrate to thiourocanic acid product conversion while tracking the microcolony formation. UVADS represents an important new tool for high-throughput label-free in-droplet chemical analysis.
Collapse
Affiliation(s)
- Todd A Duncombe
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Florian P Seebeck
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Proc Natl Acad Sci U S A 2021; 118:2101498118. [PMID: 34362844 PMCID: PMC8364193 DOI: 10.1073/pnas.2101498118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient l-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent l-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the l-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis We identify a set of genes up-regulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a putative flavin cofactor to catalyze a redox-neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from l-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of l-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Collapse
|
14
|
Beliaeva MA, Leisinger F, Seebeck FP. In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chem Biol 2021; 16:397-403. [PMID: 33544568 DOI: 10.1021/acschembio.0c00968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ergothioneine is a histidine-derived sulfur metabolite that is biosynthesized by bacteria and fungi. Plants and animals absorb ergothioneine as a micronutrient from their environment or nutrition. Several different mechanisms of microbial ergothioneine production have been described in the past ten years. Much less is known about the genetic and structural basis for ergothioneine catabolism. In this report, we describe the in vitro reconstitution of a five-step pathway that degrades ergothioneine to l-glutamate, trimethylamine, hydrogen sulfide, carbon dioxide, and ammonia. The first two steps are catalyzed by the two enzymes ergothionase and thiourocanate hydratase. These enzymes are closely related to the first two enzymes in histidine catabolism. However, the crystal structure of thiourocanate hydratase from the firmicute Paenibacillus sp. reveals specific structural features that strictly differentiate the activity of this enzyme from that of urocanate hydratases. The final two steps are catalyzed by metal-dependent hydrolases that share most homology with the last two enzymes in uracil catabolism. The early and late part of this pathway are connected by an entirely new enzyme type that catalyzes desulfurization of a thiohydantoin intermediate. Homologous enzymes are encoded in many soil-dwelling firmicutes and proteobacteria, suggesting that bacterial activity may have a significant impact on the environmental availability of ergothioneine.
Collapse
Affiliation(s)
- Mariia A. Beliaeva
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| | - Florian Leisinger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| | - Florian P. Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland
| |
Collapse
|
15
|
Cheah IK, Halliwell B. Ergothioneine, recent developments. Redox Biol 2021; 42:101868. [PMID: 33558182 PMCID: PMC8113028 DOI: 10.1016/j.redox.2021.101868] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent surge of interest in the unique low molecular weight dietary thiol/thione, ergothioneine. This compound can accumulate at high levels in the body from diet and may play important physiological roles in human health and development, and possibly in prevention and treatment of disease. Blood levels of ergothioneine decline with age and onset of various diseases. Here we highlight recent advances in our knowledge of ergothioneine.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; Life Science Institute, Neurobiology Programme, Centre for Life Sciences, National University of Singapore, 117456, Singapore.
| |
Collapse
|
16
|
|
17
|
Beliaeva MA, Burn R, Lim D, Seebeck FP. In Vitro Production of Ergothioneine Isotopologues. Angew Chem Int Ed Engl 2021; 60:5209-5212. [PMID: 32996678 DOI: 10.1002/anie.202011096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Ergothioneine is an emerging component of the redox homeostasis system in human cells and in microbial pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei. The synthesis of stable isotope-labeled ergothioneine derivatives may provide important tools for deciphering the distribution, function, and metabolism of this compound in vivo. We describe a general protocol for the production of ergothioneine isotopologues with programmable 2 H, 15 N, 13 C, 34 S, and 33 S isotope labeling patterns. This enzyme-based approach makes efficient use of commercial isotope reagents and is also directly applicable to the synthesis of radio-isotopologues.
Collapse
Affiliation(s)
- Mariia A Beliaeva
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Reto Burn
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - David Lim
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
18
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|