1
|
Babaei D, Saeedian Moghadam E, Navidpour L, Amini M. The Most Up-to-Date Advancements in the Design and Development of Urease Inhibitors (January 2020-March 2024). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3795-3815. [PMID: 39924915 DOI: 10.1021/acs.jafc.4c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The aim of this review is to address the most up-to-date information on the design and development, structure-activity relationship (SAR), and molecular docking study of novel and effective urease inhibitors between January 2020 and March 2024. Herein, the importance of the substituents and their effect on bioactivity of the reported compounds have been investigated. Besides, the relation between the most important residues inside the active site of the urease enzyme for interactions of the inhibitors and the active site of the enzyme has also been reviewed. This review has been classified into main reported scaffolds, namely, barbiturates, thiobarbiturates, Schiff bases, semicarbazides, thiosemcarbazides, benzimidazoles, 1,3,4-thiadiazoles, and 1,3,4-oxadiazoles, to provide better insight into the newly developed urease inhibitors.
Collapse
Affiliation(s)
- Danial Babaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Latifeh Navidpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
2
|
Mazzei L, Ranieri S, Silvestri D, Greene-Cramer R, Cioffi C, Montelione GT, Ciurli S. An isothermal calorimetry assay for determining steady state kinetic and Ensitrelvir inhibition parameters for SARS-CoV-2 3CL-protease. Sci Rep 2024; 14:32175. [PMID: 39741150 PMCID: PMC11688438 DOI: 10.1038/s41598-024-81990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CLpro, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CLpro is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CLpro activity, allowing for the direct derivation of the kinetic enzymatic constants KM and kcat by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed. The manuscript highlights several advantages of the proposed ITC-based assay over traditional methods used to study 3CLpro, such as Förster Resonance Energy Transfer (FRET) and Liquid Chromatography-Mass Spectrometry (LC-MS) and overcomes the need for non-biological substrates or discontinuous post-reaction steps. The ease of application of the ITC method allowed for the determination of the temperature dependence of the catalytic constants, enabling the estimation of the reaction activation energy. Additionally, the assay was used to determine the inhibition mode and kinetic parameters for 3CLpro inhibition by Ensitrelvir. This molecule was revealed to act as a slow- and tight-binding inhibitor that forms an initial E•I complex (KI = 9.9 ± 0.7 nM) quickly transitioning to a tighter E•I* assembly (KI* = 1.1 ± 0.2 nM). This versatile calorimetric method is proposed for general use in the discovery and development of drugs targeting 3CLpro.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.
| | - Sofia Ranieri
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy
| | - Davide Silvestri
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy
| | - Rebecca Greene-Cramer
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Christopher Cioffi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127, Bologna, Italy.
| |
Collapse
|
3
|
Mazzei L, Tria G, Ciurli S, Cianci M. Exploring the conformational space of the mobile flap in Sporosarcina pasteurii urease by cryo-electron microscopy. Int J Biol Macromol 2024; 283:137904. [PMID: 39571870 DOI: 10.1016/j.ijbiomac.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
To fully understand enzymatic dynamics, it is essential to explore the complete conformational space of a biological catalyst. The catalytic mechanism of the nickel-dependent urease, the most efficient enzyme known, holds significant relevance for medical, pharmaceutical, and agro-environmental applications. A critical aspect of urease function is the conformational change of a helix-turn-helix motif that covers the active site cavity, known as the mobile flap. This motif has been observed in either an open or a closed conformation through X-ray crystallography studies and has been proposed to stabilize the coordination of a urea molecule to the essential dinuclear Ni(II) cluster in the active site, a requisite for subsequent substrate hydrolysis. This study employs cryo-electron microscopy (cryo-EM) to investigate the transient states within the conformational space of the mobile flap, devoid of the possible constraints of crystallization conditions and solid-state effects. By comparing two cryo-EM structures of Sporosarcina pasteurii urease, one in its native form and the other inhibited by N-(n-butyl) phosphoric triamide (NBPTO), we have unprecedently identified an intermediate state between the open and the catalytically efficient closed conformation of the helix-turn-helix motif, suggesting a role of its tip region in this transition between the two states.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Giancarlo Tria
- Florence Center for Electron Nanoscopy (FloCEN), c/o Chemistry Department "Ugo Schiff", University of Florence, I-50019 Sesto Fiorentino, (FI), Italy; National Research Council, Institute of Cristallography URT Caserta c/o University of Campania "Luigi Vanvitelli", I-81100 Caserta, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy.
| |
Collapse
|
4
|
Moghadam ES, Al-Sadi AM, Moghadam MS, Bayati B, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Benzimidazole-acrylonitrile hybrid derivatives act as potent urease inhibitors with possible fungicidal activity. Future Med Chem 2024; 16:2151-2168. [PMID: 39297549 PMCID: PMC11559371 DOI: 10.1080/17568919.2024.2393570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 11/13/2024] Open
Abstract
Aim: A series of benzimidazole-acrylonitrile derivatives TM1-TM53 were designed with urease inhibition approach.Materials & methods: TM1-TM53 were synthesized and characterized (1H Nuclear Magnetic Resonance (NMR), 13C NMR, Mass Spectroscopy (MS) and IR) and subjected to urease inhibition assay using commercial assay kit. A molecular docking study was also performed using Autodock tool software.Results: Except six compounds, target molecules exhibited a higher urease inhibition effect (IC50: 1.22-28.45 μM) than hydroxyurea (IC50: 100 μM). kinetic study on TM11, clarified its mode of action as a mixed inhibitor. A molecular docking study on TM6, TM11 and TM21, was performed and the results showed the main residues inside the active site of the enzyme. All TM1-TM53 were also studied in silico using molecular docking techniques to evaluate their potential to inhibit succinate dehydrogenase in comparison to fluxapyroxad as standard. Docking study revealed the high potential of TM1-TM53 as a fungicides.Conclusion: Obtained results exhibited the high activity of benzimidazole-acrylonitrile derivatives as urease inhibitors and their possible potential as fungicide agents. So, it will be beneficial to do more bioactivity investigation on this family of compounds.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Massoud Amanlou
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohsen Amini
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| |
Collapse
|
5
|
Mazzei L, Paul A, Cianci M, Devodier M, Mandelli D, Carloni P, Ciurli S. Kinetic and structural details of urease inactivation by thiuram disulphides. J Inorg Biochem 2024; 250:112398. [PMID: 37879152 DOI: 10.1016/j.jinorgbio.2023.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, Ancona I-60131, Italy
| | - Marta Devodier
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Università degli Studi di Parma, Via Università 12, Parma I-43121, Italy
| | - Davide Mandelli
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Department of Physics and Universitätsklinikum, RWTH Aachen University, Aachen D-52074, Germany
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| |
Collapse
|
6
|
Singh R, Kumar P, Devi M, Sindhu J, Kumar A, Lal S, Singh D, Kumar H, Kumar S. Urease Inhibition and Structure‐Activity Relationship Study of Thiazolidinone‐, Triazole‐, and Benzothiazole‐Based Heterocyclic Derivatives: A Focus Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Jayant Sindhu
- Department of Chemistry COBS&H, CCS Haryana gricultural University Hisar 125004 India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences GJUS&T Hisar 125001 India
| | - Sohan Lal
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Devender Singh
- Department of Chemistry Maharshi Dayanand University Rohtak 124001 India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences Central university Haryana Mahendergarh India
| | - Sumit Kumar
- Department of Chemistry DCR University of Science & Technology, Murthal Haryana 131039 India
| |
Collapse
|
7
|
Mazzei L, Cianci M, Ciurli S. Inhibition of Urease by Hydroquinones: A Structural and Kinetic Study. Chemistry 2022; 28:e202201770. [PMID: 35994380 PMCID: PMC9826003 DOI: 10.1002/chem.202201770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/11/2023]
Abstract
Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheVia Brecce Bianche 1060131AnconaItaly
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| |
Collapse
|
8
|
Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields. Nat Commun 2021; 12:6734. [PMID: 34795241 PMCID: PMC8602674 DOI: 10.1038/s41467-021-26975-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
Developing more productive and sustainable crops will be essential to achieving food security in coming decades. A core process in plant evolution has been the transfer of chloroplast-encoded genes to the nuclear genome. We propose reverting this process as a new approach to improve plant disease resistance and photosynthesis in future crops.
Collapse
|
9
|
Mazzei L, Massai L, Cianci M, Messori L, Ciurli S. Medicinal Au(I) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition. Dalton Trans 2021; 50:14444-14452. [PMID: 34585201 DOI: 10.1039/d1dt02488d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A few gold compounds were recently found to show antimicrobial properties in vitro, holding great promise for the discovery of new drugs to overcome antibiotic resistance. Here, the inhibition of the bacterial virulence factor urease by four Au(I)-compounds, namely Au(PEt3)Cl, Au(PEt3)Br, Au(PEt3)I and [Au(PEt3)2]Cl, obtained from the antiarthritic Au(I)-drug Auranofin and earlier reported to act as antimicrobials, is investigated. The three monophosphino Au(I) complexes showed IC50 values in the 30-100 nM range, while the diphosphino Au(I) complex, though being less active, still showed a IC50 value of 7 μM. The structural basis for this inhibition was provided by solving the crystal structures of urease co-crystallized with Au(PEt3)I and [Au(PEt3)2]Cl: at least two Au(I) ions bind the enzyme in a flap domain involved in the catalysis, thus obliterating enzyme activity. Peculiar changes observed in the two structures reveal implications for the mechanism of soft metal binding and enzyme inactivation.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| |
Collapse
|
10
|
Lou D, Liu X, Tan J. An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application. Protein Pept Lett 2021; 28:1206-1219. [PMID: 34397319 DOI: 10.2174/0929866528666210816114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining of novel 7α-hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
11
|
Nickel as a virulence factor in the Class I bacterial carcinogen, Helicobacter pylori. Semin Cancer Biol 2021; 76:143-155. [PMID: 33865991 DOI: 10.1016/j.semcancer.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023]
Abstract
Helicobacter pylori is a human bacterial pathogen that causes peptic ulcers and has been designated a Class I carcinogen by the International Agency for Research on Cancer (IARC). Its ability to survive in the acid environment of the stomach, to colonize the stomach mucosa, and to cause cancer, are linked to two enzymes that require nickel-urease and hydrogenase. Thus, nickel is an important virulence factor and the proteins involved in nickel trafficking are potential antibiotic targets. This review summarizes the nickel biochemistry of H. pylori with a focus on the roles of nickel in virulence, nickel homeostasis, maturation of urease and hydrogenase, and the unique nickel trafficking that occurs between the hydrogenase maturation pathway and urease nickel incorporation that is mediated by the metallochaperone HypA and its partner, HypB.
Collapse
|
12
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni-Enzyme: The Reactivity of a Key Thiol With Mono- and Di-Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021; 60:6029-6035. [PMID: 33245574 DOI: 10.1002/anie.202014706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/30/2022]
Abstract
The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.
Collapse
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| |
Collapse
|
13
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni‐Enzyme: The Reactivity of a Key Thiol With Mono‐ and Di‐Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Chemistry and Biology of Metals Université Grenoble Alpes, CEA CNRS 17 Avenue des Martyrs 38000 Grenoble France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Via Brecce Bianche 60131 Ancona Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| |
Collapse
|
14
|
Cunha ES, Chen X, Sanz-Gaitero M, Mills DJ, Luecke H. Cryo-EM structure of Helicobacter pylori urease with an inhibitor in the active site at 2.0 Å resolution. Nat Commun 2021; 12:230. [PMID: 33431861 PMCID: PMC7801526 DOI: 10.1038/s41467-020-20485-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Infection of the human stomach by Helicobacter pylori remains a worldwide problem and greatly contributes to peptic ulcer disease and gastric cancer. Without active intervention approximately 50% of the world population will continue to be infected with this gastric pathogen. Current eradication, called triple therapy, entails a proton-pump inhibitor and two broadband antibiotics, however resistance to either clarithromycin or metronidazole is greater than 25% and rising. Therefore, there is an urgent need for a targeted, high-specificity eradication drug. Gastric infection by H. pylori depends on the expression of a nickel-dependent urease in the cytoplasm of the bacteria. Here, we report the 2.0 Å resolution structure of the 1.1 MDa urease in complex with an inhibitor by cryo-electron microscopy and compare it to a β-mercaptoethanol-inhibited structure at 2.5 Å resolution. The structural information is of sufficient detail to aid in the development of inhibitors with high specificity and affinity.
Collapse
Affiliation(s)
- Eva S. Cunha
- grid.5510.10000 0004 1936 8921Structural Biology and Drug Discovery Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
| | - Xiaorui Chen
- grid.266093.80000 0001 0668 7243Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA ,grid.506938.10000 0004 0633 8088Present Address: Genomics Research Center, Academia Sinica, 128 Academia Road, Sect. 2, Nankang District, Taipei, Taiwan
| | - Marta Sanz-Gaitero
- grid.5510.10000 0004 1936 8921Structural Biology and Drug Discovery Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318 Oslo, Norway
| | - Deryck J. Mills
- grid.419494.50000 0001 1018 9466Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Luecke
- Structural Biology and Drug Discovery Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, 0318, Oslo, Norway. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA. .,Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway. .,Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Pagoni A, Grabowiecka A, Tabor W, Mucha A, Vassiliou S, Berlicki Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J Med Chem 2020; 64:404-416. [PMID: 33369409 DOI: 10.1021/acs.jmedchem.0c01143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
16
|
Righetto RD, Anton L, Adaixo R, Jakob RP, Zivanov J, Mahi MA, Ringler P, Schwede T, Maier T, Stahlberg H. High-resolution cryo-EM structure of urease from the pathogen Yersinia enterocolitica. Nat Commun 2020; 11:5101. [PMID: 33037208 PMCID: PMC7547064 DOI: 10.1038/s41467-020-18870-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023] Open
Abstract
Urease converts urea into ammonia and carbon dioxide and makes urea available as a nitrogen source for all forms of life except animals. In human bacterial pathogens, ureases also aid in the invasion of acidic environments such as the stomach by raising the surrounding pH. Here, we report the structure of urease from the pathogen Yersinia enterocolitica at 2 Å resolution from cryo-electron microscopy. Y. enterocolitica urease is a dodecameric assembly of a trimer of three protein chains, ureA, ureB and ureC. The high data quality enables detailed visualization of the urease bimetal active site and of the impact of radiation damage. The obtained structure is of sufficient quality to support drug development efforts. Urease is a nickel enzyme responsible for catalyzing the conversion of urea into ammonia and carbon dioxide. Here the authors report a high resolution cryo-EM structure of urease from the bacterial pathogen Yersinia enterocolitica, providing a detailed visualization of the urease bimetal active site and a basis for drug development.
Collapse
Affiliation(s)
- Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Leonie Anton
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Ricardo Adaixo
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Jasenko Zivanov
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Mohamed-Ali Mahi
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland.
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
17
|
Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12156018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Currently, nitrogen fertilizers are utilized to meet 48% of the total global food demand. The demand for nitrogen fertilizers is expected to grow as global populations continue to rise. The use of nitrogen fertilizers is associated with many negative environmental impacts and is a key source of greenhouse and harmful gas emissions. In recent years, urease and nitrification inhibitors have emerged as mitigation tools that are presently utilized in agriculture to prevent nitrogen losses and reduce greenhouse and harmful gas emissions that are associated with the use of nitrogen-based fertilizers. Both classes of inhibitor work by different mechanisms and have different physiochemical properties. Consequently, each class must be evaluated on its own merits. Although there are many benefits associated with the use of these inhibitors, little is known about their potential to enter the food chain, an event that may pose challenges to food safety. This phenomenon was highlighted when the nitrification inhibitor dicyandiamide was found as a residual contaminant in milk products in 2013. This comprehensive review aims to discuss the uses of inhibitor technologies in agriculture and their possible impacts on dairy product safety and quality, highlighting areas of concern with regards to the introduction of these inhibitor technologies into the dairy supply chain. Furthermore, this review discusses the benefits and challenges of inhibitor usage with a focus on EU regulations, as well as associated health concerns, chemical behavior, and analytical detection methods for these compounds within milk and environmental matrices.
Collapse
|
18
|
Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Molecules 2020; 25:molecules25122911. [PMID: 32599898 PMCID: PMC7355429 DOI: 10.3390/molecules25122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein–protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein–protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.
Collapse
|
19
|
Buruaga-Ramiro C, Valenzuela SV, Valls C, Roncero MB, Pastor FIJ, Díaz P, Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose. Int J Biol Macromol 2020; 158:S0141-8130(20)33100-7. [PMID: 32360968 DOI: 10.1016/j.ijbiomac.2020.04.234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) has emerged as an attractive adsorptive material for antimicrobial agents due to its fine network structure, its large surface area, and its high porosity. In the present study, BC paper was first produced and then lysozyme was immobilized onto it by physical adsorption, obtaining a composite of lysozyme-BC paper. The morphology and the crystalline structure of the composite were similar to that of BC paper as examined by scanning electron microscopy and X-ray diffraction, respectively. Regarding operational properties, specific activities of immobilized and free lysozyme were similar. Moreover, immobilized enzyme showed a broader working temperature and higher thermal stability. The composites maintained its activity for at least 80 days without any special storage. Lysozyme-BC paper displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, inhibiting their growth by 82% and 68%, respectively. Additionally, the presence of lysozyme increased the antioxidant activity of BC paper by 30%. The results indicated that BC is a suitable material to produce bioactive paper as it provides a biocompatible environment without compromising the activity of the immobilized protein. BC paper with antimicrobial and antioxidant properties may have application in the field of active packaging.
Collapse
Affiliation(s)
- Carolina Buruaga-Ramiro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Susana V Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Cristina Valls
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - M Blanca Roncero
- CELBIOTECH_Paper Engineering Research Group, EGE Department, Universitat Politècnica de Catalunya, Barcelona Tech, 08222 Terrassa, Spain.
| | - F I Javier Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Pilar Díaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Josefina Martinez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
20
|
Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:307-330. [DOI: 10.1016/bs.pmbts.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Abstract
The advancements of quantum chemical methods and computer power allow detailed mechanistic investigations of metalloenzymes. In particular, both quantum chemical cluster and combined QM/MM approaches have been used, which have been proven to successfully complement experimental studies. This review starts with a brief introduction of nickel-dependent enzymes and then summarizes theoretical studies on the reaction mechanisms of these enzymes, including NiFe hydrogenase, methyl-coenzyme M reductase, nickel CO dehydrogenase, acetyl CoA synthase, acireductone dioxygenase, quercetin 2,4-dioxygenase, urease, lactate racemase, and superoxide dismutase.
Collapse
|