1
|
Devi K, Anand V, Barot Y, Mishra R, Kumar P, Mutreja V. Natural Pigments-Based Two-Component White Light Emitting Systems. J Fluoresc 2025; 35:2071-2085. [PMID: 38492176 DOI: 10.1007/s10895-024-03624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
In this paper, a new class of two component white light emitting systems viz, JaB (java plum + beetroot) {I}, and CaB (carrot + beetroot) {II} were developed through resonance energy transfer (RET) phenomenon by using a fruit (java plum) and two vegetable (carrot and beetroot) extracts. In these white light emitting systems, java plum and carrot are the donors while beetroot is the acceptor. The primary fluorescent pigments present in the natural extracts (i.e., anthocyanin in java plum, β-carotene in carrot, and betanin in beetroot) were responsible for the white light emission. The CIE (Commission Internationale d'Eclairage) coordinates for I and II were {0.32, 0.34} and {0.33, 0.33}, respectively, in solution phase. Interestingly, the white light emission (WLE) was also achieved in agar-agar gel medium. In gel medium, the CIE values were {0.31, 0.34} and {0.33, 0.32} for I and II, respectively. The donor-acceptor distance (r) for I and II were found to be 0.5 and 0.4 nm, respectively. Furthermore, the rate of energy transfer was also quantified with the values of 2.78 × 109 s-1 for JaB (I) and 1.02 × 108 s-1 for CaB (II) systems. The mechanistic investigation of the two white light systems was further supported by DFT studies.
Collapse
Affiliation(s)
- Kailash Devi
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Vivek Anand
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Yash Barot
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Roli Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gujarat, 382426, India
| | - Prashant Kumar
- Department of Chemistry, Government Model Degree College, Kapoori Govindpur, Saharanpur, 247665, Uttar Pradesh, India.
| | - Vishal Mutreja
- Department of Chemistry, University Institute of Science, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
2
|
Huber A, Schmidt L, Gatz T, Bublitz J, Rex T, Sailaja STN, Verheggen E, Höfmann L, Wölper C, Strassert CA, Knauer SK, Voskuhl J. Stepwise Modulation of Bridged Single-Benzene-Based Fluorophores for Materials Science. Chemistry 2025; 31:e202404263. [PMID: 39714890 PMCID: PMC11886771 DOI: 10.1002/chem.202404263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler π scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms. These minimalized emitters show full-color tunable emission properties and exhibit moderate-to-high photoluminescence quantum yield values reaching up to 0.78 in dimethyl sulfoxide (DMSO). In addition to demonstrating excellent compatibility in poly(methyl methacrylate) (PMMA) films and additive manufacturing using stereolithography (SLA), white light emission was achieved in both solution and 3D-printed materials by controlling the mixing ratio of the compounds. Employing density-functional theory (DFT), well-correlating theoretical absorption and emission wavelengths were calculated as average values of the different possible conformers. Furthermore, cellular internalization of the substances was accomplished using Pluronic® F-127 nanoparticles. Overall, this study emphasizes the remarkable properties of single-benzene-based emitters, showcasing their accessibility and potential applications in biomedical fields and materials science.
Collapse
Affiliation(s)
- Alexander Huber
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Laura Schmidt
- Department of Molecular Biology IICenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 245141EssenGermany
| | - Tim Gatz
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Jana Bublitz
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Tobias Rex
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNUniversität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Sidharth Thulaseedharen Nair Sailaja
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Elisabeth Verheggen
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Lea Höfmann
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Christoph Wölper
- Faculty of Chemistry (Inorganic Chemistry)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNUniversität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Shirley K. Knauer
- Department of Molecular Biology IICenter of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 245141EssenGermany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry)CENIDE and Center of Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstraße 745141EssenGermany
| |
Collapse
|
3
|
Osawa M. Study of the molecular design and synthesis status of metal complexes as unimolecular luminescent materials for white light emission. Dalton Trans 2025; 54:3106-3112. [PMID: 39652361 DOI: 10.1039/d4dt03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
White organic light-emitting diodes (WOLEDs) are promising light-emitting devices. A typical method for generating white light is to superimpose the three primary colours of light - red, green, and blue - or the two colours of light - blue and yellow. These colours are generated from each emitting material doped into the emission layers of the device. To achieve high-quality white light, the emission colours and intensities should be properly adjusted in the device. Apart from the superimposition of colours of light, white light can also be generated by doping with a single molecule that emits visible light in the wavelength range of 380-780 nm. In this review, we have listed some white-light-emitting complexes that are expected to drastically simplify the device fabrication process for OLEDs. We have shed light on these metal complexes and outlined the current status of their synthesis and device applications, looking toward promising future prospects.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| |
Collapse
|
4
|
Dubey Y, Kanvah S. Multi-organelle imaging with dye combinations: targeting the ER, mitochondria, and plasma membrane. J Mater Chem B 2025; 13:2446-2456. [PMID: 39815810 DOI: 10.1039/d4tb02456g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles. By utilizing binary mixtures, we successfully demonstrated multiple imaging of the sub-cellular organelles, such as the endoplasmic reticulum, plasma membrane, and mitochondria in HeLa cells, and dual imaging of the endoplasmic reticulum and mitochondria in A549 lung carcinoma cells with the help of blue and red-emitting fluorophores without any spectral spillover. Additionally, these photostable probes allowed precise cell staining and differentiation, structural features, and live cell dynamics. This approach of utilizing fluorescent mixtures can gain traction for various cellular studies and investigations.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
5
|
Mencaroni L, Bianconi T, Aurora Mancuso M, Sheokand M, Elisei F, Misra R, Carlotti B. Unlocking the Potential of Push-Pull Pyridinic Photobases: Aggregation-Induced Excited-State Proton Transfer. Chemistry 2025; 31:e202403388. [PMID: 39531467 PMCID: PMC11739827 DOI: 10.1002/chem.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The pH effect on the photophysics of three push-pull compounds bearing dimethoxytriphenylamine (TPA-OMe) as electron donor and pyridine as electron acceptor, with different ortho-functionalization (-H, -Br, and -TPA-OMe), is assessed through steady-state and time-resolved spectroscopic techniques in DMSO/water mixed solutions and in water dispersions over a wide pH range. The enhanced intramolecular charge transfer upon protonation of the pyridinic ring leads to the acidochromic (from colorless to yellow) and acido(fluoro)chromic (from cyan to pink) behaviours of the investigated compounds. In dilute DMSO/buffer mixtures these molecules exhibited low pKa values (≤3.5) and extremely short singlet lifetimes. Nevertheless, it is by exploiting the aggregation phenomenon in aqueous environment that the practical use of these compounds largely expands: i) the basicity increases (pKa≈4.5) approaching the optimum values for pH-sensing in cancer cell recognition; ii) the fluorescence efficiencies are boosted due to Aggregation-Induced Emission (AIE), making these compounds appealing as fluorescent probes; iii) longer singlet lifetimes enable Excited-State Proton Transfer, paving the way for the application of these molecules as photobases (pKa*=9.1). The synergy of charge and proton transfers combined to the AIE behaviour in these pyridines allows tunable multi-responsive optical properties providing valuable information for the design of new light-emitting photobases.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of ChemistryBiology and Biotechnology and CEMINUniversity of Perugia06123PerugiaItaly
| | - Tommaso Bianconi
- Department of ChemistryBiology and Biotechnology and CEMINUniversity of Perugia06123PerugiaItaly
- Department of ChemistryUniversity of Wisconsin-Madison53706MadisonUSA
| | - Maria Aurora Mancuso
- Department of ChemistryBiology and Biotechnology and CEMINUniversity of Perugia06123PerugiaItaly
- Istituto di Tecnologie Avanzate per l'Energia ‘'Nicola Giordano'' (CNR-ITAE)98126MessinaItaly
| | - Manju Sheokand
- Department of ChemistryIndian Institute of Technology453552IndoreIndia
| | - Fausto Elisei
- Department of ChemistryBiology and Biotechnology and CEMINUniversity of Perugia06123PerugiaItaly
| | - Rajneesh Misra
- Department of ChemistryIndian Institute of Technology453552IndoreIndia
| | - Benedetta Carlotti
- Department of ChemistryBiology and Biotechnology and CEMINUniversity of Perugia06123PerugiaItaly
| |
Collapse
|
6
|
Deori U, Nanda GP, Murawski C, Rajamalli P. A perspective on next-generation hyperfluorescent organic light-emitting diodes. Chem Sci 2024:d4sc05489j. [PMID: 39444559 PMCID: PMC11494416 DOI: 10.1039/d4sc05489j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability. Hyperfluorescence is mediated through Förster resonance energy transfer (FRET) from a TADF sensitizer to the final fluorescent emitter. However, competing loss mechanisms such as Dexter energy transfer (DET) of triplet excitons and direct charge trapping on the final emitter need to be mitigated in order to achieve fluorescence emission with high efficiency. Despite tremendous progress, appropriate guidelines and fine optimization are still required to address these loss channels and to improve the device operational lifetime. This perspective aims to provide an overview of the evolution of HF-OLEDs by reviewing both molecular and device design pathways for highly efficient narrowband devices covering all colors of the visible spectrum. Existing challenges and potential solutions, such as molecules with peripheral inert substitution, multi-resonant (MR) TADF emitters as final dopants, and exciplex-sensitized HF-OLEDs, are discussed. Furthermore, the operational device lifetime is reviewed in detail before concluding with suggestions for future device development.
Collapse
Affiliation(s)
- Upasana Deori
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Gyana Prakash Nanda
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Caroline Murawski
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 04736 Waldheim Germany
- Faculty of Chemistry and Food Chemistry, Faculty of Electrical and Computer Engineering, Technische Universität Dresden 01062 Dresden Germany
| | | |
Collapse
|
7
|
John J, Pillai AA, John J, Thomas RL, Thomas J, Thomas V, Unnikrishnan NV, Prakash P. Resonant energy transfer among naturally available bio materials for white light emission. Nat Prod Res 2024:1-8. [PMID: 38829307 DOI: 10.1080/14786419.2024.2360687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
In this work we have studied the fluorescence of natural dyes and generated nearly pure white light with chromaticity intensity (CIE) coordinate (0.35,0.35). The colour rendering index (CRI) and colour temperature corresponding to the CIE coordinate are calculated and these dyes are ideal for cool white light emission. It was observed that a broadband and simultaneous emission involving anthocyanin and polyphenol ellergic acid from jamun, curcumin and chlorophyll from spinach leaves played a vital role in obtaining a CIE index close to that of pure white light. The white light emission is due to the Förster resonance energy transfer (FRET) from curcumin to anthocyanin and ellergic acid to curcumin. Efficiency of FRET is calculated and different possibilities studied. For the polyphenol ellergic acid, curcumin FRET pair the spectral overlap integral and the efficiency are 3.29 × 10-24 m2, 99.97% and for the curcumin, anthocyanin pair, they are 4.03 × 10-24 m2, 76%, respectively.
Collapse
Affiliation(s)
- Josmi John
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Ajai A Pillai
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Jancy John
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Rose Leena Thomas
- Department of Physics, St. Joseph's College for Women, University of Kerala, Alappuzha, India
| | | | - Vinoy Thomas
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - N V Unnikrishnan
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India
| | - P Prakash
- Department of Chemistry, Thiagarajar College, Madurai, India
| |
Collapse
|
8
|
Zhang JY, Hu JH, Li Q, Liu ZN, Pan DW, Xiong Y, Hou RX, Wu L, Tao Z, Xiao X. A multifunctional supramolecular assembly based on cucurbit[7]uril: White light material and Fe(CN) 63- detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123165. [PMID: 37490841 DOI: 10.1016/j.saa.2023.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
White light emitting materials have broad application prospects in fields such as displays, lighting devices, etc., but developing such materials faces considerable challenges. In this study, 1,3,5-tris[4-(pyridine-4-butyl)phenyl]benzene derivative (BTPY) was synthesized and a supramolecular assembly with AIE properties named BTPY@Q[7] was prepared with cucurbit[7]uril (Q[7]). Furthermore, by adding rhodamine 6G (R6G) to it, and controlling its ratio with R6G, a dual-emission white light system (0.33, 0.33) was synthesized and used for white light emitting materials as well as anti-counterfeiting fields. In addition, based on the BTPY@Q[7]-R6G system, a light harvesting system in aqueous phase was constructed, with an energy transfer efficiency (ΦET) of 26.19 % and an antenna effect (AE) of 10.21. Interestingly, the supramolecular self-assembly can also be used as a fluorescent probe, specifically recognize Fe(CN)63- ions in water, with a detection limit of 2.5 × 10-8 M.
Collapse
Affiliation(s)
- Jia-Yi Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| | - Zhi-Nian Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Ding-Wu Pan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| | - Yu Xiong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Run-Xin Hou
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Li Wu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Shibu A, Jones S, Tolley PL, Diaz D, Kwiatkowski CO, Jones DS, Shivas JM, Foley JJ, Schmedake TA, Walter MG. Correlating structure and photophysical properties in thiazolo[5,4- d]thiazole crystal derivatives for use in solid-state photonic and fluorescence-based optical devices. MATERIALS ADVANCES 2023; 4:6321-6332. [PMID: 38021465 PMCID: PMC10680346 DOI: 10.1039/d3ma00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-d]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established. Herein, we have studied four TTz-based materials functionalized with alkyl appendages of varying carbon chain lengths. We report the single crystal structures of the TTz derivatives, three of which were previously unknown. The packing modes of the crystals reveal that molecular arrangements are largely governed by a chorus of synergistic intermolecular non-covalent interactions. Three crystals packed in herringbone mode and one crystal packed in slipped stacks proving that alkyl appendages modulate structural organization in TTz-based materials. Steady state and time-resolved photophysical properties of these crystals were studied via diffuse-reflectance, micro-Raman, and photoluminescence spectroscopy. The crystals fluoresce from orange-red to blue spanning through the whole gamut of the visible spectrum. We have established that photophysical properties are a function of crystal packing in symmetrically substituted TTz-based materials. This correlation was then utilized to fabricate crystalline blends. We demonstrate, for the first time, that symmetrically substituted donor-acceptor-donor TTz-based materials can be used for phosphor-converted color-tuning and white-light emission. Given the cost effectiveness, ease of synthesis and now a structure-photophysics correlation, we present a compelling case for the adoption of TTz-based materials in solid-state photonic and fluorescence-based optical devices.
Collapse
Affiliation(s)
- Abhishek Shibu
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Sean Jones
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - P Lane Tolley
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - David Diaz
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Carly O Kwiatkowski
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Daniel S Jones
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Jessica M Shivas
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Jonathan J Foley
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Thomas A Schmedake
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| | - Michael G Walter
- Department of Chemistry, University of North Carolina at Charlotte Charlotte North Carolina 28223 USA
| |
Collapse
|
10
|
Fan Y, Fan S, Liu L, Guo S, He J, Li X, Lian Z, Guo W, Chen X, Wang Y, Jiang H. Efficient manipulation of Förster resonance energy transfer through host-guest interaction enables tunable white-light emission and devices in heterotopic bisnanohoops. Chem Sci 2023; 14:11121-11130. [PMID: 37860654 PMCID: PMC10583698 DOI: 10.1039/d3sc04358d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
In this study, we synthesized and reported the heterotopic bisnanohoops P5-[8,10]CPPs containing cycloparaphenylenes (CPPs) and a pillar[5]arene unit, which act not only as energy donors but also as a host for binding energy acceptors. We demonstrated that a series of elegant FRET systems could be constructed successfully through self-assembly between donors P5-[8,10]CPPs and acceptors with different emissions via host-guest interaction. These FRET systems further allow us to finely adjust the donors P5-[8,10]CPPs and acceptors (BODIPY-Br and Rh-Br) for achieving multiple color-tunable emissions, particularly white-light emission. More importantly, these host-guest complexes were successfully utilized in the fabrication of white-light fluorescent films and further integrated with a 365 nm LED lamp to create white LED devices. The findings highlight a new application of carbon nanorings in white-light emission materials, beyond the common recognition of π-conjugated molecules.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Weijie Guo
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
11
|
Biesen L, Müller TJJ. Single molecule aggregation-induced dual and white-light emissive etherified aroyl- S, N-ketene acetals via one-pot synthesis. RSC Adv 2023; 13:16867-16871. [PMID: 37283871 PMCID: PMC10240259 DOI: 10.1039/d3ra02935b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Etherified aroyl-S,N-ketene acetals are readily synthesized by a novel one-pot addition-elimination-Williamson-etherification sequence. Although the underlying chromophore remains constant, derivatives show pronounced color-tuning of solid-state emission and AIE characteristics, whereas a hydroxy-methyl derivative represents an easily accessible mono molecular aggregation-induced white-light emitter.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| |
Collapse
|
12
|
Wu Z, Choi H, Hudson ZM. Achieving White-Light Emission Using Organic Persistent Room Temperature Phosphorescence. Angew Chem Int Ed Engl 2023:e202301186. [PMID: 37189285 DOI: 10.1002/anie.202301186] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 05/17/2023]
Abstract
Artificial lighting currently consumes approximately one-fifth of global electricity production. Organic emitters with white persistent RTP have potential for applications in energy-efficient lighting technologies, due to their ability to harvest both singlet and triplet excitons. Compared to heavy metal phosphorescent materials, they have significant advantages in cost, processability, and reduced toxicity. Phosphorescence efficiency can be improved by introducing heteroatoms, heavy atoms, or by incorporating luminophores within a rigid matrix. White-light emission can be achieved by tuning the ratio of fluorescence to phosphorescence intensity or by pure phosphorescence with a broad emission spectrum. This review summarizes recent advances in the design of purely organic RTP materials with white-light emission, describing single-component and host-guest systems. White phosphorescent carbon dots and representative applications of white-light RTP materials are also introduced.
Collapse
Affiliation(s)
- Zhu Wu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
13
|
Fujii T, Kusukawa T, Imoto H, Naka K. Pnictogen-Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry 2023; 29:e202202572. [PMID: 36125391 DOI: 10.1002/chem.202202572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/04/2023]
Abstract
In this study, pnictogen (Pn)-bridged diphenyl sulfones were synthesized as motifs for photoinduced dynamic rearrangement. The newly synthesized sulfones exhibited dual fluorescence at 298 K. Density functional theory calculations revealed that the longer-wavelength fluorescence was derived from the geometries after structural relaxation through photo-driven pnictogen bond formation between the O atom lone pair of the sulfonyl moiety and the antibonding orbital of the Pn-C bond. This is the first report on emission dynamics driven by pnictogen bond formation upon photoexcitation.
Collapse
Affiliation(s)
- Toshiki Fujii
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
14
|
Pandey D, Vennapusa SR. ESIPT pathways and optical properties of 7-Hydroxy-1-Indanones. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Baykov S, Tarasenko M, Kotlyarova V, Shetnev A, Zelenkov LE, Boyarskaya IA, Boyarskiy VP. 2‐(1,2,4‐Oxadiazol‐5‐yl)aniline as a New Scaffold for Blue Luminescent Materials. ChemistrySelect 2022. [DOI: 10.1002/slct.202201201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey Baykov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University 634034 Tomsk Russian Federation
| | - Marina Tarasenko
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Valentina Kotlyarova
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Anton Shetnev
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Lev E. Zelenkov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- ITMO University 191002 Saint Petersburg Russian Federation
| | - Irina A. Boyarskaya
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim P. Boyarskiy
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
16
|
Kundu S, Das S, Jaiswal S, Patra A. Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS APPLIED BIO MATERIALS 2022; 5:3623-3648. [PMID: 35834795 DOI: 10.1021/acsabm.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the dynamics of intracellular organelles has gained immense attention due to their subtle control over diverse, complex biological processes such as cellular metabolism, energy homeostasis, and autophagy. In this context, molecular materials, including small-organic fluorescent probes and their supramolecular self-assembled nano-/microarchitectures, have been employed to explore the diverse intracellular biological events. However, only a handful of fluorescent probes and self-assembled emissive structures have been successfully used to track different organelle's movements, circumventing the issues related to water solubility and long-term photostability. Thus, the water-soluble molecular fluorescent probes and the water-dispersible supramolecular self-assemblies have emerged as promising candidates to explore the trafficking of the organelles under diverse physiological conditions. In this review, we have delineated the recent progress of fluorescent probes and their supramolecular self-assemblies for the elucidation of the dynamics of diverse cellular organelles with a special emphasis on lysosomes, lipid droplets, and mitochondria. Recent advancement in fluorescence lifetime and super-resolution microscopy imaging has also been discussed to investigate the dynamics of organelles. In addition, the fabrication of the next-generation molecular to supramolecular self-assembled luminogens for probing the variation of microenvironments during the trafficking process has been outlined.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
17
|
Influence of molecular packing on the color-tunable emissive behavior of viologen derivatives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
19
|
Multiple yet switchable hydrogen-bonded organic frameworks with white-light emission. Nat Commun 2022; 13:1882. [PMID: 35388019 PMCID: PMC8987099 DOI: 10.1038/s41467-022-29565-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
The development of new strategies to construct on-demand porous lattice frameworks from simple motifs is desirable. However, mitigating complexity while combing multiplicity and reversibility in the porous architectures is a challenging task. Herein, based on the synergy of dynamic intermolecular interactions and flexible molecular conformation of a simple cyano-modified tetraphenylethylene tecton, eleven kinetic-stable hydrogen-bonded organic frameworks (HOFs) with various shapes and two thermo-stable non-porous structures with rare perpendicular conformation are obtained. Multimode reversible structural transformations along with visible fluorescence output between porous and non-porous or between different porous forms is realized under different external stimuli. Furthermore, the collaborative of flexible framework and soft long-chain guests facilitate the relaxation from intrinsic blue emission to yellow emission in the excited state, which represents a strategy for generating white-light emission. The dynamic intermolecular interactions, facilitated by flexible molecular conformation and soft guests, diversifies the strategies of construction of versatile smart molecular frameworks. Switchable hydrogen-bonded frameworks have potential applications in the development of smart materials. Herein, the authors report eleven hydrogen-bonded organic frameworks and two non-porous structures that can undergo reversible structural and fluorescence switching; white-light emission is enabled.
Collapse
|
20
|
Msalmi R, Elleuch S, Hamdi B, Abd El-Fattah W, Ben Hamadi N, Naïli H. Organically tuned white-light emission from two zero-dimensional Cd-based hybrids. RSC Adv 2022; 12:10431-10442. [PMID: 35425012 PMCID: PMC8982363 DOI: 10.1039/d1ra08953f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
In this work, we report two zero-dimensional Cd-based hybrid compounds, denoted CdACP and CdODA, where the Cd atoms adopt tetrahedral geometry. The optical analysis reveals that these materials are classified as wide-gap semi-conductors which makes them suitable for optoelectronic applications. The photoluminescence analysis proves the wavelength dependent white-light emission behavior of the investigated materials. The structural-optical property studies show that, thanks to the heavy halide effect, the CdACP exhibits both fluorescence and room temperature phosphorescence through harvesting triplet states. Meanwhile, in contrast to CdACP, the white light emission from CdODA is purely fluorescence in nature. In fact, within CdODA, both C-H⋯π and N-H⋯N interactions facilitate the intramolecular proton transfer (ESIPT) between the different cations which leads to ultra-fast fluorescence through excited state ESIPT. Under sub-gap excitations, the inorganic sub-lattice is responsible for the blue-green emission through the STE mechanism, while the organic cations contribute by an intense red emission.
Collapse
Affiliation(s)
- Rawia Msalmi
- Laboratory of Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University Sfax Tunisia
| | - Slim Elleuch
- Laboratory of Applied Physics, Department of Physics, Faculty of Sciences of Sfax, Sfax University Sfax Tunisia
| | - Besma Hamdi
- Laboratory of Materials Science and Environment, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University Sfax Tunisia
| | - Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University) Riyadh 11623 kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Port-Said University Port-Said Egypt
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University) Riyadh 11623 kingdom of Saudi Arabia
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir Avenue of Environment 5019 Monastir Tunisia
| | - Houcine Naïli
- Laboratory of Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University Sfax Tunisia
| |
Collapse
|
21
|
Tarai M, Singh A, Pati AK, Mishra AK. Resolving fluorescence signatures of a photoconvertible fluorophore by fluorescence spectroscopy and MCR-ALS-based combinatorial approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120683. [PMID: 34920288 DOI: 10.1016/j.saa.2021.120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Photoconvertible fluorophores are important for a myriad of applications in chemistry and biology. Here, we spectrally resolve and quantify individual photophysical information of a dual-emitting photoconvertible fluorophore by fluorescence spectroscopy and multivariate curve resolution-alternate least square techniques. We found that the reactant fluorophore, which shows a weak locally excited (LE) emission and a dominant intramolecular charge transfer (ICT) emission, also exhibits an intermolecular charge transfer emission. The ICT emission bands of both the reactant and product fluorophores are originated from their respective LE states. The reactant fluorophore is a mixture of its different ground state conformers. Higher yields of photoconversion of the yellow-emitting reactant fluorophore are achieved via a visible light photoreaction, leading to formation of pure white light at an intermediate photoreaction time. These findings together help us to glean new photophysical and photochemical insights into the photoreaction of a dual-emitting photoconvertible fluorophore.
Collapse
Affiliation(s)
- Madhumita Tarai
- MIT School of Bioengineering Sciences & Research, MIT ADT University, Loni Kalbhor, Maharashtra 412201, India; Indian Institute of Technology Madras, Chennai 600036, India.
| | - Anuja Singh
- Indian Institute of Technology Madras, Chennai 600036, India
| | - Avik Kumar Pati
- Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
22
|
Ihara M, Cui L, Konishi Y, Hisaeda Y, Ono T. Design of Dimeric Dinuclear Boron Complexes with Flexible Linkers: Aggregation-Induced White-Light Emission via Molecular Engineering. CHEM LETT 2022. [DOI: 10.1246/cl.210794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Megumi Ihara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Konishi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Kundu S, Das S, Dutta A, Patra A. Three in One: Stimuli-Responsive Fluorescence, Solid-State Emission, and Dual-Organelle Imaging Using a Pyrene-Benzophenone Derivative. J Phys Chem B 2022; 126:691-701. [PMID: 35030009 DOI: 10.1021/acs.jpcb.1c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small organic luminogens, owing to their contrasting stimuli-responsive fluorescence in solution along with strong emission in aggregated and solidstates, have been employed in optoelectronic devices, sensors, and bioimaging. Pyrene derivatives usually exhibit strong fluorescence and concentration-dependent excimer/aggregate emission in solution. However, the impacts of microenvironments on the monomer and aggregate emission bands and their relative intensities in solution, solid, and supramolecular aggregates are intriguing. The present study delineates a trade-off between the monomer and aggregate emissions of a pyrene-benzophenone derivative (ABzPy) in solution, in the solid-state, and in nanoaggregates through a combined spectroscopic and microscopic approach. The impact of external stimuli (viscosity, pH) on the aggregate emission was demonstrated using steady-state and time-resolved spectroscopy, including fluorescence correlation spectroscopy and fluorescence anisotropy decay analysis. The aggregate formation was noticed at a higher concentration (>10 μM) in solution, at 77 K (5 μM), and in the solid-state due to the π-π stacking interactions (3.6 Å) between two ABzPy molecules. In contrast, no aggregate formation was observed in the viscous medium as well as in a micellar environment even at a higher concentration of ABzPy (50 μM). The crystal structure analysis further shed light on the intermolecular hydrogen-bonding-assisted solid-state emission, which was found to be highly sensitive toward external stimuli like pH and mechanical forces. The broad emission band comprising both monomer and aggregate in the aqueous dispersion of nanoaggregates was used for the specific cellular imaging of lysosomes and lipid droplets, respectively.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abir Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
24
|
Hollister KK, Molino A, Breiner G, Walley JE, Wentz KE, Conley AM, Dickie DA, Wilson DJD, Gilliard RJ. Air-Stable Thermoluminescent Carbodicarbene-Borafluorenium Ions. J Am Chem Soc 2022; 144:590-598. [PMID: 35016509 DOI: 10.1021/jacs.1c11861] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Borenium ions, originally synthesized as fundamentally important laboratory curiosities, have attracted significant attention due to their applications in catalysis and frustrated Lewis pair chemistry. However, investigations of the materials properties of these types of compounds are exceptionally rare. Herein, we report the synthesis, molecular structures, and optical properties of a new class of air-stable borenium ions, stabilized by the strongly donating carbodicarbene (CDC) ligand (2, 3, 6). Notably, CDC-borafluorenium ions exhibit thermoluminescence in solution, a result of a twisted intramolecular charge transfer process. The temperature responsiveness, which is observable by the naked eye, is assessed over a 20 to -60 °C range. Significantly, compound 2 emits white light at lower temperatures. In the solid state, these borocations exhibit increased quantum yields due to aggregation-induced emission. CDC-borafluorenium ions with two different counteranions (Br-, BPh4-) were investigated to evaluate the effect of anion size on the solution and solid-state optical properties. In addition, CDCs containing both symmetrical and unsymmetrical N-heterocycles (bis(1-isopropyl-3-methylbenzimidazol-2-ylidene)methane and bis(1,3-dimethyl-1,3-dihydro-2H-benzo[d]imidazol-2-ylidene)methane) were tested to understand the implications of free rotation about the CDC ligand carbon-carbon bonds. The experimental work is complemented by a comprehensive theoretical analysis of the excited-state dynamics.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Grace Breiner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jacob E Walley
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ashley M Conley
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
25
|
Pauk K, Luňák S, Růžička A, Marková A, Teichmanová K, Mausová A, Kratochvíl M, Smolka R, Mikysek T, Weiter M, Imramovský A, Vala M. Colour-tuneable solid-state fluorescence of crystalline powders formed from push–pull substituted 2,5-diphenyl-stilbenes. RSC Adv 2022; 12:34797-34807. [DOI: 10.1039/d2ra05593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Polycrystalline powders of push–pull substituted stilbenes with various acceptors emit from blue to infrared. Exciton localization on a monomer (in J-like packing) or a stacked dimer (for H-aggregates) avoid exciton migration to the quenching sites.
Collapse
Affiliation(s)
- Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Stanislav Luňák
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic
| | - Aneta Marková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Kateřina Teichmanová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Anna Mausová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Matouš Kratochvíl
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Rastislav Smolka
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ-532 10, Czech Republic
| | - Martin Weiter
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 95, Pardubice CZ-530 09, Czech Republic
| | - Martin Vala
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno CZ-612 00, Czech Republic
| |
Collapse
|
26
|
Pyne A, Nandi S, Layek S, Ghosh M, Nandi PK, Bera N, Sarkar N. Influence of a Polyneurotransmitter on DNA-Mediated Förster-Based Resonance Energy Transfer: A Path Leading to White Light Generation. J Phys Chem B 2021; 125:12637-12653. [PMID: 34784202 DOI: 10.1021/acs.jpcb.1c06836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiologically important biomolecule, dopamine (DA), shows strong self-oxidation and aggregation behaviors, which have been controlled and modulated to result in fluorescent polydopamine (F-PDA) nanoparticles. On the other hand, the simultaneous binding of two diverse deoxyribonucleic acid (DNA) binding probes, 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr), has been elaborately established to follow the Förster-based resonance energy transfer (FRET) pathway. The comparative understanding of this DNA-mediated FRET in three media, phosphate buffer saline (PBS) of pH 7.4, DA, and F-PDA, has concluded that the FRET efficiency in the three media follows the order: PBS > DA > F-PDA. This controlled FRET in the fluorescent F-PDA matrix serves a pivotal role for efficient white light (WL) generation with excellent Commission Internationale de l'Eclairage (CIE) parameters that match well with that of pure WL emission. The obtained WL emission has been shown to be very specific with respect to concentrations of different participating components and the excitation wavelength of the illuminating source. Furthermore, the optical properties of the WL emitting solution have been observed to be retained excellently inside the well-known agarose gel matrix. Finally, the mechanistic pathway behind such a FRET-based WL generation has been established in detail, and to the best of our knowledge, the current study offers the first and only report that discloses the influence of a fluorescent polyneurotransmitter matrix for successful generation of WL emission.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
27
|
Ghosh T, Mondal M, Vijayaraghavan RK. Multifarious Impact of Rhodanine Acceptor Group on the Optical Properties of Some Semiconductor Probes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tapan Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Madalasa Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
28
|
Yang JF, Tao Z, Redshaw C, Zeng X, Luo H. Color tuning and white light emission based on tetraphenylethylene-functionalized cucurbit[7]uril and FRET triggered by host-guest self-assembly. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Yuan Y, Solin N. Mechanochemical Preparation and Self-Assembly of Protein:Dye Hybrids for White Luminescence. ACS APPLIED POLYMER MATERIALS 2021; 3:4825-4836. [PMID: 34661113 PMCID: PMC8506585 DOI: 10.1021/acsapm.1c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 05/17/2023]
Abstract
Protein nanofibrils (PNFs) functionalized with multiple dyes are prepared by a combination of mechanochemistry and liquid-phase self-assembly. The three employed dyes are Fluorescent Brightener 378 (F378), 2-butyl-6-(butylamino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (Fluorol 555), and Nile red (NR). F378 acts as the donor with Fluorol 555 as the acceptor. F555 in turn acts as the donor and NR as the acceptor. This enables a FRET cascade that enables conversion of UV light to white light. The efficiency of FRET can be influenced by the details of the self-assembly process. If proteins milled with different dyes are mixed prior to self-assembly, nanofibrils are formed containing all three dyes, thus favoring FRET processes. By tuning the ratio of the three luminescent dyes, PNF dispersions are obtained that display bright white light emission. Moreover, the PNF dispersions can be converted into white luminescent films and gels where the PNFs may help to organize dye molecules. Additionally, the PNF materials can be employed as coatings on commercial LEDs, enabling emission of white light.
Collapse
|
30
|
Tselekidou D, Papadopoulos K, Kyriazopoulos V, Andrikopoulos KC, Andreopoulou AK, Kallitsis JK, Laskarakis A, Logothetidis S, Gioti M. Photophysical and Electro-Optical Properties of Copolymers Bearing Blue and Red Chromophores for Single-Layer White OLEDs. NANOMATERIALS 2021; 11:nano11102629. [PMID: 34685063 PMCID: PMC8539096 DOI: 10.3390/nano11102629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/13/2023]
Abstract
In this study, novel copolymers consisting of blue and red chromophores are presented to induce emission tuning, enabling the definition of white light emission in a single polymeric layer. These aromatic polyether sulfones exhibit high molecular weights, excellent solubility and processability via solution deposition techniques. In addition, by carefully controlling the molar ratios of chromophores composition, the energy transfer mechanism, from blue to red chromophores, takes place enabling us to define properly the emission covering the entire range of the visible spectrum. The optical and photophysical properties of the monomers and copolymers were thoroughly investigated via NIR-Vis-far UV Spectroscopic Ellipsometry (SE), Absorbance and Photoluminescence (PL). These copolymers are used as an emissive layer and applied in solution-processed WOLED devices. The fabricated WOLED devices have been subsequently studied and characterized in terms of their electroluminescence properties. Finally, the WOLED devices possess high color stability and demonstrate CIE Coordinates (0.33, 0.38), which approach closely the pure white light CIE coordinates.
Collapse
Affiliation(s)
- Despoina Tselekidou
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
| | - Kyparisis Papadopoulos
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
| | - Vasileios Kyriazopoulos
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
- Organic Electronic Technologies P.C. (OET), Antoni Tritsi 21B, GR-57001 Thessaloniki, Greece
| | - Konstantinos C. Andrikopoulos
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Aikaterini K. Andreopoulou
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (K.C.A.); (A.K.A.); (J.K.K.)
| | - Argiris Laskarakis
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
| | - Stergios Logothetidis
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
| | - Maria Gioti
- Nanotechnology Lab LTFN, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.T.); (K.P.); (V.K.); (A.L.); (S.L.)
- Correspondence:
| |
Collapse
|
31
|
Kumar B, Mora AK, Ghosh R, Nath S. Natural DNA assisted white light generation and stimuli responsive colour tuning. Int J Biol Macromol 2021; 186:695-701. [PMID: 34271048 DOI: 10.1016/j.ijbiomac.2021.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The unique structure of a natural nucleic acid, calf thymus DNA, which can provide an appropriate scaffold for an efficient cascaded energy transfer among organic chromophores, has been used for the generation of bright and pure white light on UV light excitation. Two most commonly used DNA stains, 4',6-diamidino-2-phenylindole (DAPI) and ethidium bromide (EB) have been used as a part of the donor-acceptor pairs. We have judiciously selected 10-anthracene-10-yl-3-methylbenzothiazol-3-ium chloride (AnMBTZ), an ultrafast molecular rotor, to act as a bridge between DNA bound DAPI and EB for the cascaded flow of energy. The unique molecular rotor properties of AnMBTZ and its exceptional binding ability with natural DNA help to form a distinct tri-chromophoric system in DNA template which can produce bright and pure white light on UV excitation. Detailed flow of energy from photoexcited DAPI to EB via AnMBTZ has been explored using steady state and time-resolved emission spectroscopy. Further, unique binding nature of AnMBTZ with DNA molecules has been used to modulate the colour of the emission from the present tri-chromophoric system by external stimuli, like salt and temperature. Such unique stimuli responsive multi-chromophoric system in a bio-template has great potential for different lightening applications.
Collapse
Affiliation(s)
- Bhupesh Kumar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
32
|
Ajantha J, Yuvaraj P, Karuppusamy M, Easwaramoorthi S. Single-Molecule White-Light-Emitting Starburst Donor-Acceptor Triphenylamine Derivatives and Their Application as Ratiometric Luminescent Molecular Thermometers. Chemistry 2021; 27:11319-11325. [PMID: 34043253 DOI: 10.1002/chem.202100748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
White-light emission (WLE) from a single molecule is a highly desirable alternative to a complex mixture of complementary colour emitters, which suffers from poor stability and reproducibility for potential use in organic electronic devices and lighting applications. We report single-molecule WLE both in solution and thin films by judiciously controlled π-electron delocalisation between the triarylamine subchromophoric units. Triphenylamine (TPA) forms the central core, and the phenyl rings are substituted with the electron-deficient acceptor 3-ethylrhodanine (Rh) and electron-rich donors triphenylamine or carbazole. The enforced biphenyl configuration of the TPA core and the other donors renders the π-conjugation across the entire chromophore poor, thus the individual subchromophoric units retain their individual emission characteristics, which cover all three primary colour emissions, that is, red, green and blue (RGB). TPA-Rh units exhibit broad fluorescence in the green-red region originating from the local excited (LE) state and intramolecular charge transfer state (ICT), strongly influenced by the solvent, water, and temperature. Different fluorescence parameters, including spectral maxima, ratiometric changes in ICT emission at the expense of blue emission from terminal donor units, and changes in lifetime, have a linear relationship with temperature between 180-330 K, thus the molecules can function as a multiparameter luminescent molecular thermometer. A temperature coefficient of 0.19 K-1 in ratiometric fluorescence changes along with a spectral shift of 0.3 nm K-1 and their workability over the wide temperature makes these molecules promising materials for potential applications. At lower temperatures, individual subchromophoric properties subside because of the reduced dihedral angle of biphenyl, and fluorescence from the whole molecule becomes dominant.
Collapse
Affiliation(s)
- Joseph Ajantha
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- University of Madras, Chepauk, Chennai, 600005, India
| | - Palani Yuvaraj
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- University of Madras, Chepauk, Chennai, 600005, India
| | - Masiyappan Karuppusamy
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai, 600020, India
| | - Shanmugam Easwaramoorthi
- Inorganic & Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Adyar, Chennai, 600020, India
| |
Collapse
|
33
|
Behera SK, Park SY, Gierschner J. Duale Emission: Klassen, Mechanismen und Bedingungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM) Department of Materials Science and Engineering Seoul National University ENG 445 Seoul 08826 Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| |
Collapse
|
34
|
Li ZQ, Gong ZL, Shao JY, Yao J, Zhong YW. Full-Color and White Circularly Polarized Luminescence of Hydrogen-Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021; 60:14595-14600. [PMID: 33822449 DOI: 10.1002/anie.202103091] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Indexed: 01/08/2023]
Abstract
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Li Z, Gong Z, Shao J, Yao J, Zhong Y. Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong‐Qiu Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhong‐Liang Gong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Yang Shao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Huang Q, Guo Q, Lan J, Su R, Ran Y, Yang Y, Bin Z, You J. Mechanically induced single-molecule white-light emission of excited-state intramolecular proton transfer (ESIPT) materials. MATERIALS HORIZONS 2021; 8:1499-1508. [PMID: 34846458 DOI: 10.1039/d0mh02032j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Described herein is the first example of mechanically induced single-molecule white-light emission based on excited-state intramolecular proton transfer (ESIPT) materials. The mechanism of mechanochromism is clearly disclosed by powder and single crystal X-ray diffraction (XRD) data, infrared spectroscopy, and fluorescence up-conversion measurement, etc. 2-(2'-Hydroxyphenyl)oxazole (6b) with a herringbone packing motif exhibits a predominant keto-form emission, giving off yellowish-green fluorescence. Mechanical grinding transforms the herringbone packing motif into a brickwork packing motif, decreases the intermolecular distances, which results in an enhanced intermolecular charge-transfer interaction, and therefore changes the ESIPT dynamics, leading to an enhanced enol-form emission and white fluorescence. Herringbone-packing 6b is thermodynamically more stable than brickwork-packing 6b. Thus, the latter can convert to the former by solvent fuming or thermal annealing.
Collapse
Affiliation(s)
- Quan Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jejurkar VP, Sourabh KT, Yashwantrao G, Mone NS, Maliekal PJ, Badani P, Satpute S, Saha S. Troger's Base Derived Butterfly Shaped Contorted AIEgens for Dead Bacterial Cell‐Imaging. ChemistrySelect 2021. [DOI: 10.1002/slct.202004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valmik P. Jejurkar
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - K. T. Sourabh
- Department of Chemical Engineering Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Nishigandha S. Mone
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | | | - Purav Badani
- Department of Chemistry University of Mumbai Mumbai India
| | - Surekha Satpute
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| |
Collapse
|
38
|
Kanakubo M, Yamamoto Y, Kubo Y. Room-Temperature Phosphorescence of Thiophene Boronate Ester-Cross Linked Polyvinyl Alcohol; A Triplet-to-Singlet FRET-Induced Multi-Color Afterglow Luminescence with Sulforhodamine B. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Masashi Kanakubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
39
|
Ito S. Recent Advances in Mechanochromic Luminescence of Organic Crystalline Compounds. CHEM LETT 2021. [DOI: 10.1246/cl.200874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
40
|
Kundu S, Chowdhury A, Nandi S, Bhattacharyya K, Patra A. Deciphering the evolution of supramolecular nanofibers in solution and solid-state: a combined microscopic and spectroscopic approach. Chem Sci 2021; 12:5874-5882. [PMID: 34168812 PMCID: PMC8179674 DOI: 10.1039/d0sc07050e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Supramolecular self-assembly of small organic molecules has emerged as a powerful tool to construct well-defined micro- and nanoarchitecture through fine-tuning a range of intermolecular interactions. The size, shape, and optical properties of these nanostructures largely depend on the specific assembly of the molecular building units, temperature and polarity of the medium, and external stimuli. The engineering of supramolecular self-assembled nanostructures with morphology-dependent tunable emission is in high demand due to the promising scope in nanodevices and molecular machines. However, probing the evolution of molecular aggregates from the solution and directing the self-assembly process in a pre-defined fashion are challenging. In the present study, we have deciphered the sequential evolution of supramolecular nanofibers from solution to spherical and oblong-shaped nanoparticles through the variation of solvent polarity, tuning the hydrophobic-hydrophilic interactions. An intriguing case of molecular self-assembly has been elucidated employing a newly designed π-conjugated thiophene derivative (TPAn) through a combination of steady-state absorption, emission measurements, fluorescence correlation spectroscopy (FCS), and electron microscopy. The FCS analysis and microscopy results revealed that the small-sized nanofibers in the dispersion further agglomerated upon solvent evaporation, resulting in a network of nanofibers. Stimuli-responsive reversible interconversion between a network of nanofibers and spherical nanoaggregates was probed both in dispersion and solvent-evaporated state. The evolution of organic nanofibers and a subtle control over the self-assembly process demonstrated in the current investigation provide a general paradigm to correlate the size, shape, and emission properties of fluorescent molecular aggregates in complex heterogeneous media, including a human cell.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Somen Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Kankan Bhattacharyya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal By-Pass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
41
|
Gon M, Saotome S, Tanaka K, Chujo Y. Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12483-12490. [PMID: 33656311 DOI: 10.1021/acsami.0c22298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermally stable dual emission followed by white-light luminescence from hybrid materials is reported. Hybrid films were prepared with a spin-coating method with the mixture solution containing tetraphenylethene (TPE)-integrated polyhedral oligomeric silsesquioxane (POSS) and poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV). TPE-tethered POSS (TPE-POSS) showed high compatibility with MEH-PPV. Therefore, homogeneous films with variable concentrations of TPE-POSS were obtained. Owing to good dispersion of rigid silica cubes into matrices, POSS-containing films demonstrated high thermal stability toward molecular rearrangement by annealing as well as pyrolysis, similar to conventional polymer hybrids. Furthermore, it was found that TPE-POSS was able to enhance emission efficiencies, probably by suppressing chain aggregation. By modulating introduction ratios of TPE-POSS, dual-emission properties followed by white-light luminescence composed of cyan and orange emissions from TPE-POSS and MEH-PPV, respectively, were accomplished. It should be noted that these color balances can be preserved even in the high-temperature region (425 K). Finally, white-light luminescent materials with thermal durability were obtained.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoru Saotome
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
42
|
Shimizu M, Sakurai T. Metal-Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature. Chempluschem 2021; 86:446-459. [PMID: 33689234 DOI: 10.1002/cplu.202000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Indexed: 01/24/2023]
Abstract
Dual-fluorescent-phosphorescent compounds have attracted increasing attention in various fields, such as bio-imaging, data protection/encryption, ratiometric luminescence sensing, and white-light emission. Conventional dual-emissive compounds contain a phosphorescent organometallic complex of a precious metal, such as iridium or platinum. However, the use of precious metals in organic materials has several drawbacks. This Minireview focuses on precious-metal-free organic light-emitting materials that exhibit dual fluorescence and phosphorescence emission in the solid state at room temperature to produce bimodal steady-state emission spectra. The dual emitters presented herein are categorized into the following six compound classes: (1) difluoroboron diaroylmethanes, (2) diarylketones, (3) diarylsulfones, (4) triazines and pyrimidines, (5) fused phenazines, and (6) N-arylcarbazoles.
Collapse
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsuneaki Sakurai
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
43
|
Shimizu M. The Journey to Precious-Metal-Free Organic Phosphors from Single-Benzene-Cored Fluorophores. CHEM REC 2021; 21:1489-1505. [PMID: 33629792 DOI: 10.1002/tcr.202100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/09/2022]
Abstract
This article takes a look back over our research on the development of organic fluorophores that efficiently emit light in the solid state and precious-metal-free phosphors that emit light at room temperature. In particular, we place an emphasis on the prehistory of each project and the relationship between the established molecular designs. Our story starts from the serendipitous discovery of a luminophore with a single benzene core and follows the molecular design and characterization of 2,5-dipiperidyl-1,4-bis(acceptor-substituted ethenyl)benzenes that exhibit solid-state fluorescence with high-to-excellent quantum yields in the blue-to-red region. In addition, the design concepts, luminescence characteristics, and applications of eight novel classes of fluorophores are described, and the discovery, design, and luminescent properties of precious-metal-free compounds that show efficient room-temperature phosphorescence are presented.
Collapse
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
44
|
Li Y, Zhou Y, Yao Y, Gao T, Yan P, Li H. White-light emission from the quadruple-stranded dinuclear Eu( iii) helicate decorated with pendent tetraphenylethylene (TPE). NEW J CHEM 2021. [DOI: 10.1039/d1nj00700a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hybrid film doped with a quadruple-stranded Eu3+ helicate displayed tuneable emission and white light.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| |
Collapse
|
45
|
Nobuhara K, Inagaki Y, Setaka W. Steric effects on the intramolecular charge transfer fluorescence of benzo[ b]thiophene-1,1-dioxide bridged macrocages. Org Biomol Chem 2021; 19:6328-6333. [PMID: 34227632 DOI: 10.1039/d1ob01050f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular charge transfer (ICT) fluorescence has been widely investigated and exploited in sensor molecules. However, steric effects on the ICT fluorescence properties have rarely been reported so far, although research in this area would promote an understanding of the basics of solvation. Herein, we report the detailed fluorescence properties of bis(trimethylsilyl)benzo[b]thiophene-1,1-dioxide (TMSBTO2) and its caged cyclophanes and non-cage isomers, which demonstrate ICT fluorescence in various solutions. The fluorescence band maxima for these benzo[b]thiophene-1,1-dioxides (BTO2s) showed a red-shift with increasing solvent polarity, confirming ICT fluorescence characteristics. The linearity of the Lippert-Mataga plots was confirmed for all ICT fluorescence measured in hexane, toluene, AcOEt, CH2Cl2, and EtOH. The slopes of the plots decreased in the following order: TMSBTO2, non-cage isomers, and caged BTO2s. It is concluded that the Onsager radii for these BTO2s were increased in the abovementioned order, assuming that the difference in the dipole moments between the excited and ground states for these BTO2s was identical.
Collapse
Affiliation(s)
- Keita Nobuhara
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Yusuke Inagaki
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Wataru Setaka
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
46
|
Msalmi R, Elleuch S, Hamdi B, Radicchi E, Tozri A, Naïli H, Berber MR. Tunable broad-band white-light emission in two-dimensional (110)-oriented lead bromide perovskite (C 3H 8N 6)[PbBr 4]: optical, electronic and luminescence properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03838a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The 2D-perovskite (C3H8N6)[PbBr4] shows white-light emission with room-temperature phosphorescence based on the strategy of heavy-atom-participated anion–π+ interactions.
Collapse
Affiliation(s)
- Rawia Msalmi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Slim Elleuch
- Laboratory of Applied Physics, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Besma Hamdi
- Laboratory of Materials Science and Environment, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Eros Radicchi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anowar Tozri
- Physics Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Houcine Naïli
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University, Tunisia
| | - Mohamed R. Berber
- Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| |
Collapse
|
47
|
A luminescent metal–organic framework with mixed-linker strategy for white-light-emitting by iridium-complex encapsulation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Hori A, Kobayashi H, Sakamoto G, Yuge H. Crystal structures and charge distribution of partially-fluorinated β-diketonate copper(II) complexes based on Hirshfeld surface analysis and DFT calculations. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Fluorinated Tolane Dyads with Alkylene Linkage: Synthesis and Evaluation of Photophysical Characteristics. CRYSTALS 2020. [DOI: 10.3390/cryst10080711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-emitting materials have received considerable attention because of their broad applications as substrates in bio-imaging and sensing components, light-emitting displays, and lighting devices. Herein, we developed fluorinated tolane and bistolane derivatives containing fluorinated aromatic rings and demonstrated their intense photoluminescence (PL) characteristics in crystalline powder states. We focused on molecules showing varied PL behavior with a change in the molecular aggregated structures. We synthesized novel fluorinated tolane dyads consisting of fluorinated tolane-based π-conjugated scaffolds and flexible alkylene linkages to control both the electron-density distribution and molecular aggregated states. Fluorinated tolane dyads connected with an alkylene linkage showed blue PL in a dilute solution, but the PL efficiency achieved was low. In contrast, the crystalline powder of tolane dyad substrates exhibited dual emission—relatively intense blue to deep blue PL—originating from monomer and aggregate emission. The PL behavior changed significantly with the alkylene linkage and the application of a mechanical stimulus to the crystalline powder sample. The fluorinated tolane dyads developed in this study could serve as stimulus-responsive photoluminescent materials suitable for optical applications.
Collapse
|
50
|
Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020; 60:22624-22638. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Indexed: 12/28/2022]
Abstract
There has been much interest in dual-emission materials in the past few years for materials and life science applications; however, a systematic overview of the underlying processes is so-far missing. We resolve this issue herein by classifying dual-emission (DE) phenomena as relying on one emitter with two emitting states (DE1), two independent emitters (DE2), or two correlated emitters (DE3). Relevant DE mechanisms for materials science are then briefly described together with the electronic and/or geometrical conditions under which they occur. For further reading, references are given that offer detailed insight into the complex mechanistic aspects of the various DE processes or provide overviews on materials families or their applications. By avoiding ambiguities and misinterpretations, this systematic, insightful Review might inspire future targeted designs of DE materials.
Collapse
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| |
Collapse
|