1
|
Jiang Y, Danowski W, Feringa BL, Heinke L. Nanoporous Films with Oriented Arrays of Molecular Motors for Photoswitching the Guest Adsorption and Diffusion. Angew Chem Int Ed Engl 2023; 62:e202214202. [PMID: 36367076 PMCID: PMC10107543 DOI: 10.1002/anie.202214202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Molecular motors are fascinating nanomachines. However, constructing smart materials from such functional molecules presents a severe challenge in material science. Here, we present a bottom-up layer-by-layer assembly of oriented overcrowded-alkene molecular motors forming a crystalline metal-organic framework thin film. While all stator parts of the overcrowded-alkene motors are oriented perpendicular to the substrate, the rotors point into the pores, which are large enough allowing for the light-induced molecular rotation. Taking advantage of the thin film's transparency, the motor rotation and its activation energy are determined by UV/Vis spectroscopy. As shown by gravimetric uptake experiments, molecular motors in crystalline porous materials are used, for the first time, to control the adsorption and diffusion properties of guest molecules in the pores, here, by switching with light between the (meta-)stable states. The work demonstrates the potential of designed materials with molecular motors and indicates a path for the future development of smart materials.
Collapse
Affiliation(s)
- Yunzhe Jiang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Wojciech Danowski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, Nijenborgh 4, Groningen, AG, The Netherlands.,University of Strasbourg CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, Nijenborgh 4, Groningen, AG, The Netherlands
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Taddei M, Garavelli M, Amirjalayer S, Conti I, Nenov A. Modus Operandi of a Pedalo-Type Molecular Switch: Insight from Dynamics and Theoretical Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020816. [PMID: 36677872 PMCID: PMC9863296 DOI: 10.3390/molecules28020816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Molecular switches which can be triggered by light to interconvert between two or more well-defined conformation differing in their chemical or physical properties are fundamental for the development of materials with on-demand functionalities. Recently, a novel molecular switch based on a the azodicarboxamide core has been reported. It exhibits a volume-conserving conformational change upon excitation, making it a promising candidate for embedding in confined environments. In order to rationally implement and efficiently utilize the azodicarboxamide molecular switch, detailed insight into the coordinates governing the excited-state dynamics is needed. Here, we report a detailed comparative picture of the molecular motion at the atomic level in the presence and absence of explicit solvent. Our hybrid quantum mechanics/molecular mechanics (QM/MM) excited state simulations reveal that, although the energy landscape is slightly modulated by the solvation, the light-induced motion is dominated by a bending-assisted pedalo-type motion independent of the solvation. To support the predicted mechanism, we simulate time-resolved IR spectroscopy from first principles, thereby resolving fingerprints of the light-induced switching process. Our calculated time-resolved data are in good agreement with previously reported measured spectra.
Collapse
Affiliation(s)
- Mario Taddei
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| | - Saeed Amirjalayer
- Center for Nanotechnology, Center for Multiscale Theory and Computation, Physikalisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, 40136 Bologna, Italy
- Correspondence: (M.G.); (I.C.); (A.N.)
| |
Collapse
|
3
|
Kolodzeiski E, Amirjalayer S. Dynamic network of intermolecular interactions in metal-organic frameworks functionalized by molecular machines. SCIENCE ADVANCES 2022; 8:eabn4426. [PMID: 35776789 PMCID: PMC10883363 DOI: 10.1126/sciadv.abn4426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular machines enable external control of structural and dynamic phenomena at the atomic level. To efficiently transfer their tunable properties into designated functionalities, a detailed understanding of the impact of molecular embedding is needed. In particular, a comprehensive insight is fundamental to design hierarchical multifunctional systems that are inspired by biological cells. Here, we applied an on-the-fly trained force field to perform atomistic simulations of a systematically modified rotaxane functionalized metal-organic framework. Our atomistic studies reveal a symmetric and asymmetric interplay of the mechanically bonded rings (MBRs) within the framework depending on the local environment. As a result, their translational motion is modulated ranging from fast oscillatory behavior to cooperative and potentially directed shuttling. The derived picture of competitive interactions, which influence the operation mechanism of the MBRs embedded in these soft porous materials, promotes the development of responsive functional materials, which is a key step toward intelligent matter.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
4
|
Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
|
6
|
Kolodzeiski E, Amirjalayer S. On-the-Fly Training of Atomistic Potentials for Flexible and Mechanically Interlocked Molecules. J Chem Theory Comput 2021; 17:7010-7020. [PMID: 34613742 DOI: 10.1021/acs.jctc.1c00497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically interlocked molecules have gained significant attention because of their unique ability to perform well-defined motions originating from their entanglement, which is important for the design of artificial molecular machines. Atomistic simulations based on force fields (FFs) provide detailed insights into such architectures at the molecular level enabling one to predict the resulting functionalities. However, the development of reliable FFs is still challenging and time-consuming, in particular for highly dynamic and interlocked structures such as rotaxanes, which exhibit a large number of different conformers. In the present work, we present an on-the-fly training (OTFT) algorithm. By a guided and nonguided phase space sampling, relevant reference data are automatically and continuously generated and included for the on-the-fly parametrization of the FF based on a population swapping genetic algorithm (psGA). The OTFT approach provides a fast and automated FF parametrization scheme and tackles problems caused by missing phase space information or the need for big data. We demonstrate the high accuracy of the developed FF for flexible molecules with respect to equilibrium and out-of-equilibrium properties. Finally, by applying the ab initio parametrized FF, molecular dynamic simulations were performed up to experimentally relevant time scales (ca. 1 μs) enabling capture in detail of the structural evaluation and mapping out of the free-energy topology. The on-the-fly training approach thus provides a strong foundation toward automated FF developments and large-scale investigations of phenomena in and out of thermal equilibrium.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.,Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
7
|
Amirjalayer S. Understanding the Molecular Origin of the Collective Movement in a Diarylethene-based Photo-Responsive Actuator. Chemphyschem 2021; 22:1658-1661. [PMID: 34213042 PMCID: PMC8456835 DOI: 10.1002/cphc.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Remotely controlling macroscopic movement is one of the key elements to realize intelligent materials for applications ranging from sensing to robotics. Over the last few years, a number of photomechanical materials based on diarylethene derivatives have been developed. However, a detailed picture of the structural evolution within these soft actuators is often missing. In this work, an atomistic investigation uncovers how the photo-induced molecular dynamics propagates to large-scale motion and results in macroscopic deformation of the crystal. By correlating the intramolecular rearrangement within the photo-responsive switching unit with the intermolecular packing, the molecular mechanism for the photomechanical phenomena is deciphered, which is fundamental for a rational development of photo-responsive actuators.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Westfälische Wilhelms-Universität MünsterPhysikalisches InstituteCenter for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstr. 1148149MünsterGermany
| |
Collapse
|
8
|
Geng JS, Liu K, Liang YY, Yu JP, Hu KQ, Yuan LH, Feng W, Chai ZF, Mei L, Shi WQ. An Azobenzene-Modified Photoresponsive Thorium-Organic Framework: Monitoring and Quantitative Analysis of Reversible trans-cis Photoisomerization. Inorg Chem 2021; 60:8519-8529. [PMID: 34096273 DOI: 10.1021/acs.inorgchem.1c00217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monitoring and quantification of the photoresponsive behavior of metal-organic frameworks that respond to a light stimulus are crucial to establish a clear structure-activity relationship related to light regulation. Herein, we report the first azobenzene-modified photoresponsive thorium-organic framework (Th-Azo-MOF) with the formula [Th6O4(OH)4(H2O)6L6] (H2L = (E)-2'-p-tolyldiazenyl-1,1':4',4'-terphenyl-4,4″-dicarboxylic acid), in which the utilization of a thorium cluster as a metal node leads to one of the largest pore sizes among all the azobenzene-containing metal-organic frameworks (MOFs). The phototriggered transformation of the trans isomer to the cis isomer is monitored and characterized quantitatively by comprehensive analyses of NMR and UV spectroscopy, which reveals that the maximum isomerization ratio of cisTh-Azo-MOF in the solid state is 19.7% after irradiation for 120 min, and this isomerization is reversible and can be repeated several times without apparent performance changes. Moreover, the isomerization-related difference in the adsorption of the Rhodamine B guest is also illustrated and a possible photoregulated mechanism is proposed. This work will shed light on new explorations for constructing functionalized actinide porous materials by the elegant combination of actinide nodes with tailored organic ligands and furthermore will provide a comprehensive understanding of photoisomerization processes in MOF solids and insight into the mechanism on photoregulated cargo adsorption and release by photoactive MOFs.
Collapse
Affiliation(s)
- Jun-Shan Geng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Hua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, People's Republic of China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Kanj AB, Bürck J, Vankova N, Li C, Mutruc D, Chandresh A, Hecht S, Heine T, Heinke L. Chirality Remote Control in Nanoporous Materials by Circularly Polarized Light. J Am Chem Soc 2021; 143:7059-7068. [PMID: 33915047 DOI: 10.1021/jacs.1c01693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to dynamically control chirality remains a grand challenge in chemistry. Although many molecules possess chiral isomers, lacking their isolation, for instance during photoisomerization, results in racemic mixtures with suppressed enantiospecific chiral properties. Here, we present a nanoporous solid in which chirality and enantioselective enrichment is induced by circularly polarized light (CPL). The material is based on photoswitchable fluorinated azobenzenes attached to the scaffold of a crystalline metal-organic framework (MOF). The azobenzene undergoes trans-to-cis-photoisomerization upon irradiation with green light and reverts back to trans upon violet light. While each moiety in cis conformation is chiral, we show the trans isomer also possesses a nonplanar, chiral conformation. During photoisomerization with unpolarized light, no enantiomeric enrichment is observed and both isomers, R- and S-cis as well as R- and S-trans, respectively, are formed in identical quantities. In contrast, CPL causes chiral photoresolution, resulting in an optically active material. Right-CPL selectively excites R-cis and R-trans enantiomers, producing a MOF with enriched S-enantiomers, and vice versa. The induction of optical activity is reversible and only depends on the light-handedness. As shown by first-principle DFT calculations, while both, trans and cis, are stabilized in nonplanar, chiral conformations in the MOF, the trans isomer adopts a planar, achiral form in solution, as verified experimentally. This shows that the chiral photoresolution is enabled by the linker reticulation in the MOF. Our study demonstrates the induction of chirality and optical activity in solid materials by CPL and opens new opportunities for chiral resolution and information storage with CPL.
Collapse
Affiliation(s)
- Anemar Bruno Kanj
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nina Vankova
- Fakultät für Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany
| | - Chun Li
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dragos Mutruc
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Thomas Heine
- Fakultät für Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany.,Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Amirjalayer S. On the Molecular Mechanism of a Photo‐Responsive Phase Change Memory. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Saeed Amirjalayer
- Westfälische Wilhelms‐Universität Münster Physikalisches Institute Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC) Heisenbergstr. 11 Münster 48149 Germany
| |
Collapse
|
11
|
Kolodzeiski E, Amirjalayer S. Collective structural properties of embedded molecular motors in functionalized metal-organic frameworks. Phys Chem Chem Phys 2021; 23:4728-4735. [PMID: 33598666 DOI: 10.1039/d0cp06263d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-responsive molecular motors incorporated in soft porous materials enable the amplification of the motion of individual motor units by employing their collective and cooperative behavior. Metal-organic frameworks (MOFs) provide in this regard, due to their structural diversity and modular assembly, a unique matrix to construct well-defined and systematically tunable molecular environments for the embedding of molecular motors. However, despite advances in the development of such photo-responsive functional materials, a thorough understanding of the governing interactions at the atomic scale has been missing so far, limiting the possibility of predicting and fully exploring the potential of these assembled machineries. Here, we present a conformational study to unravel the collective structural behavior and elucidate the impact of motor-motor interactions on the local and global properties of the scaffold. In particular, our work highlights the impact of full conversion of the embedded molecular motors on the overall network topology of the MotorMOF and thus acts as a benchmark for future studies to further explore the correlation of responsive building units with the resulting functionality of these hierarchical systems.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149 Münster, Germany. and Center for Nanotechnology (CeNTech), Center for Multiscale Theory and Computation (CMTC), Heisenbergstrasse 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149 Münster, Germany. and Center for Nanotechnology (CeNTech), Center for Multiscale Theory and Computation (CMTC), Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|
12
|
Kolodzeiski E, Amirjalayer S. Elucidating the Impact of Molecular Motors on Their Solvation Environment. J Phys Chem B 2020; 124:10879-10888. [DOI: 10.1021/acs.jpcb.0c06343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Nanotechnology, Heisenbergstraße 11, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
- Center for Nanotechnology, Heisenbergstraße 11, Münster 48149, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| |
Collapse
|
13
|
Conti I, Buma WJ, Garavelli M, Amirjalayer S. Photoinduced Forward and Backward Pedalo-Type Motion of a Molecular Switch. J Phys Chem Lett 2020; 11:4741-4746. [PMID: 32412764 DOI: 10.1021/acs.jpclett.0c01094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoresponsive molecular switches enable spatial and temporal control of molecular processes and are therefore crucial for the development of smart functional materials. Because the light-induced dynamics of these switching units are at the core of the resulting functionality, a detailed insight into their structural time evolution is fundamental for molecular embedding. Here, we performed a hybrid quantum mechanics (CASPT2 and TDDFT)/molecular mechanics (QM/MM) study to elucidate the photodynamics of an azodicarboxamide-based molecular switch, which is a promising candidate for implementation in highly dense environments such as polymers. In particular, we report a detailed picture of the molecular motion at the atomic level based on a relevant number of excited-state trajectories. We show that the azodicarboxamide-based molecular switch undergoes both a forward and backward pedalo-type motion upon excitation. Trans-cis photoisomerization on the other hand, which is well-known to occur for other azo-based chromophores, is shown to be a negligible pathway. By validating the volume-conserving pedalo-type motion, we provide a rational basis for the design of novel types of photoresponsive functional materials in which the active component must operate in a confined space.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Wybren Jan Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str.10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Wilhelm-Klemm-Str.10, 48149 Münster, Germany
| |
Collapse
|
14
|
Kolodzeiski E, Amirjalayer S. Atomistic Insight Into the Host-Guest Interaction of a Photoresponsive Metal-Organic Framework. Chemistry 2020; 26:1263-1268. [PMID: 31802550 PMCID: PMC7027908 DOI: 10.1002/chem.201905139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Photoresponsive functional materials have gained increasing attention due to their externally tunable properties. Molecular switches embedded in these materials enable the control of phenomena at the atomic level by light. Metal-organic frameworks (MOFs) provide a versatile platform to immobilize these photoresponsive units within defined molecular environments to optimize the intended functionality. For the application of these photoresponsive MOFs (pho-MOFs), it is crucial to understand the influence of the switching state on the host-guest interaction. Therefore, we present a detailed insight into the impact of molecular switching on the intermolecular interactions. By performing atomistic simulations, we revealed that due to different interactions of the guest molecules with the two isomeric states of an azobenzene-functionalized MOF, both the adsorption sites and the orientation of the molecules within the pores are modulated. By shedding light on the host-guest interaction, our study highlights the unique potential of pho-MOFs to tailor molecular interaction by light.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| | - Saeed Amirjalayer
- Physikalisches InstitutWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech) and Center for Multiscale Theory and Computation (CMTC)Heisenbergstrasse 1148149MünsterGermany
| |
Collapse
|