1
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Popp PF, Lozano-Cruz T, Dürr F, Londaitsbehere A, Hartig J, de la Mata FJ, Gómez R, Mascher T, Revilla-Guarinos A. The Novel Synthetic Antibiotic BDTL049 Based on a Dendritic System Induces Lipid Domain Formation while Escaping the Cell Envelope Stress Resistance Determinants. Pharmaceutics 2023; 15:297. [PMID: 36678925 PMCID: PMC9866484 DOI: 10.3390/pharmaceutics15010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use. The bow-tie type topology of BDTL049 was recently investigated against the Gram-positive model organism Bacillus subtilis, revealing strong bactericidal properties. In this study, we follow up on open questions concerning the usability of BDTL049. For this, we synthesized a fluorescent-labeled version of BDTL049 that maintained all antimicrobial features to unravel the interaction of the compound and bacterial membrane. Subsequently, we highlight the bacterial sensitivity against BDTL049 by performing a mutational study of known resistance determinants. Finally, we address the cytotoxicity of the compound in human cells, unexpectedly revealing a high sensitivity of the eukaryotic cells upon BDTL049 exposure. The insights presented here further elaborate on the unique features of BDTL049 as a promising candidate as an antimicrobial agent while not precluding that further rounds of rational designing are needed to decrease cytotoxicity to ultimately pave the way for synthetic antibiotics toward clinical applicability.
Collapse
Affiliation(s)
- Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Addis Londaitsbehere
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| |
Collapse
|
3
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
4
|
Revilla-Guarinos A, Popp PF, Dürr F, Lozano-Cruz T, Hartig J, de la Mata FJ, Gómez R, Mascher T. Synthesis and mechanism-of-action of a novel synthetic antibiotic based on a dendritic system with bow-tie topology. Front Microbiol 2022; 13:912536. [PMID: 36090105 PMCID: PMC9459136 DOI: 10.3389/fmicb.2022.912536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.
Collapse
Affiliation(s)
- Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Gómez-Casanova N, Torres-Cano A, Elias-Rodriguez AX, Lozano T, Ortega P, Gómez R, Pérez-Serrano J, Copa-Patiño JL, Heredero-Bermejo I. Inhibition of Candida glabrata Biofilm by Combined Effect of Dendritic Compounds and Amphotericin. Pharmaceutics 2022; 14:pharmaceutics14081604. [PMID: 36015230 PMCID: PMC9416558 DOI: 10.3390/pharmaceutics14081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, Candida glabrata has become an important emerging opportunistic pathogen not only because of the increase in nosocomial infections frequency but also because of its ability to form biofilms and its innate resistance to commercial antifungals. These characteristics make this pathogen a major problem in hospital settings, including problems regarding equipment, and in immunosuppressed patients, who are at high risk for candidemia. Therefore, there is an urgent need for the development of and search for new antifungal drugs. In this study, the efficacy of two dendritic wedges with 4-phenyl butyric acid (PBA) at the focal point and cationic charges on the surface ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) was studied against C. glabrata strain to inhibit the formation of biofilms and eliminate established biofilm. For this, MBIC (minimum biofilm inhibitory concentration), MBDC (minimum biofilm damaging concentrations), as well as MFCB (minimum fungicidal concentration in biofilm) and MBEC (minimum biofilm eradicating concentration) were determined. In addition, different combinations of dendrons and amphotericin B were tested to study possible synergistic effects. On the other hand, cytotoxicity studies were performed. C. glabrata cells and biofilm structure were visualized by confocal microscopy. ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) dendrons showed both an MBIC of 8 mg/L and a MBDC of 32 mg/L and 64 mg/L, respectively. These dendrons managed to eradicate the entirety of an established biofilm. In combination with the antifungal amphotericin, it was possible to prevent the generation of biofilms and eradicate established biofilms at lower concentrations than those required individually for each compound at these conditions.
Collapse
Affiliation(s)
- Natalia Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Torres-Cano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Alba Xiaohe Elias-Rodriguez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Tania Lozano
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; (T.L.); (P.O.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain and Institute “Ramón y Cajal” for Health Research (IRYCIS), 28029 Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
| | - Irene Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain; (N.G.-C.); (A.T.-C.); (A.X.E.-R.); (J.P.-S.); (J.L.C.-P.)
- Correspondence:
| |
Collapse
|
6
|
Białkowska K, Komorowski P, Gomez-Ramirez R, de la Mata FJ, Bryszewska M, Miłowska K. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells 2022; 11:cells11101697. [PMID: 35626734 PMCID: PMC9140188 DOI: 10.3390/cells11101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live–dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry). Uptake of dendriplexes was examined using flow cytometry and confocal microscopy. The live–dead test showed that for cells in 3D, CBD-2 is more toxic than CBD-1, contrasting with the data for 2D cultures. Attaching siRNA to a dendrimer molecule did not lead to increased cytotoxic effect in cells, either after 24 or 48 h. Measurements of apoptosis did not show a high increase in the level of the apoptosis marker after 24 h exposure of spheroids to CBD-2 and its dendriplexes. Measurements of the internalization of dendriplexes and microscopy images confirmed that the dendriplexes were transported into cells of the spheroids. Flow cytometry analysis of internalization indicated that CBD-2 transported siRNAs more effectively than CBD-1. Cytotoxic effects were visible after incubation with 3 doses of complexes for CBD-1 and both siRNAs.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Correspondence:
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| |
Collapse
|
7
|
Ferrer-Lorente R, Lozano-Cruz T, Fernández-Carasa I, Miłowska K, de la Mata FJ, Bryszewska M, Consiglio A, Ortega P, Gómez R, Raya A. Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules 2021; 22:4582-4591. [PMID: 34613701 PMCID: PMC8906628 DOI: 10.1021/acs.biomac.1c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Accumulation
of misfolded α-synuclein (α-syn) is a
hallmark of Parkinson’s disease (PD) thought to play important
roles in the pathophysiology of the disease. Dendritic systems, able
to modulate the folding of proteins, have emerged as promising new
therapeutic strategies for PD treatment. Dendrimers have been shown
to be effective at inhibiting α-syn aggregation in cell-free
systems and in cell lines. Here, we set out to investigate the effects
of dendrimers on endogenous α-syn accumulation in disease-relevant
cell types from PD patients. For this purpose, we chose cationic carbosilane
dendrimers of bow-tie topology based on their performance at inhibiting
α-syn aggregation in vitro. Dopamine neurons
were differentiated from induced pluripotent stem cell (iPSC) lines
generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display
abnormal accumulation of α-syn, and from healthy individuals
as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations
of dendrimers was effective at preventing abnormal accumulation and
aggregation of α-syn. Our results in a genuinely human experimental
model of PD highlight the therapeutic potential of dendritic systems
and open the way to developing safe and efficient therapies for delaying
or even halting PD progression.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Tania Lozano-Cruz
- University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Angel Raya
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08907, Spain
| |
Collapse
|
8
|
Eradication of Candida albicans Biofilm Viability: In Vitro Combination Therapy of Cationic Carbosilane Dendrons Derived from 4-Phenylbutyric Acid with AgNO 3 and EDTA. J Fungi (Basel) 2021; 7:jof7070574. [PMID: 34356953 PMCID: PMC8305162 DOI: 10.3390/jof7070574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Candida albicans is a human pathogen of significant clinical relevance. This pathogen is resistant to different drugs, and most clinical antifungals are not effective against the prevention and treatment of C. albicans infections. As with other microorganisms, it can produce biofilms that serve as a barrier against antifungal agents and other substances, contributing to infection in humans and environmental tolerance of this microorganism. Thus, resistances and biofilm formation make treatment difficult. In addition, the complete eradication of biofilms in implants, catheters and other medical devices, is challenging and necessary to prevent relapses of candidemia. Therefore, it is a priority to find new molecules or combinations of compounds with anti-Candida biofilm activity. Due to the difficulty of treating and removing biofilms, the aim of this study was to evaluate the in vitro ability of different generation of cationic carbosilane dendrons derived from 4-phenylbutyric acid, ArCO2Gn(SNMe3I)m, to eradicate C. albicans biofilms. Here, we assessed the antifungal activity of the second generation dendron ArCO2G2(SNMe3I)4 against C. albicans cells and established biofilms since it managed to seriously damage the membrane. In addition, the combinations of the second generation dendron with AgNO3 or EDTA eradicated the viability of biofilm cells. Alterations were observed by scanning electron microscopy and cytotoxicity was assessed on HeLa cells. Our data suggest that the dendritic compound ArCO2G2(SNMe3I)4 could represent an alternative to control the infections caused by this pathogen.
Collapse
|
9
|
Białkowska K, Miłowska K, Michlewska S, Sokołowska P, Komorowski P, Lozano-Cruz T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells. Int J Mol Sci 2021; 22:ijms22137097. [PMID: 34281151 PMCID: PMC8269323 DOI: 10.3390/ijms22137097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The application of siRNA in gene therapy is mainly limited because of the problems with its transport into cells. Utilization of cationic dendrimers as siRNA carriers seems to be a promising solution in overcoming these issues, due to their positive charge and ability to penetrate cell membranes. The following two types of carbosilane dendrimers were examined: CBD-1 and CBD-2. Dendrimers were complexed with pro-apoptotic siRNA (Mcl-1 and Bcl-2) and the complexes were characterized by measuring their zeta potential, circular dichroism and fluorescence of ethidium bromide associated with dendrimers. CBD-2/siRNA complexes were also examined by agarose gel electrophoresis. Both dendrimers form complexes with siRNA. Moreover, the cellular uptake and influence on the cell viability of the dendrimers and dendriplexes were evaluated using microscopic methods and XTT assay on MCF-7 cells. Microscopy showed that both dendrimers can transport siRNA into cells; however, a cytotoxicity assay showed differences in the toxicity of these dendrimers.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Correspondence:
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland;
| | - Paulina Sokołowska
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego St. 7/9, 90-752 Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland; (P.S.); (P.K.)
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (T.L.-C.); (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (K.M.); (M.B.)
| |
Collapse
|
10
|
Li SL, Yang QQ, Liu XY, Jiang FL, Xiong J, Jiang P, Liu Y. Zn-doped Cu 2S quantum dots as new high-efficiency inhibitors against human insulin fibrillation based on specific electrostatic interaction with oligomers. Int J Biol Macromol 2021; 179:161-169. [PMID: 33675825 DOI: 10.1016/j.ijbiomac.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
Inhibition of protein fibrillation process with nanomaterials is a promising strategy to combat neurodegenerative diseases. Copper-based nanomaterials have been seldom utilized in fibrillation inhibiting research due to Copper ions are generally considered as accelerators of fibrosis. Here, we proposed ultra-small Zn doped Cu2S (Zn:Cu2S) QDs as inhibitors of human insulin (HI) fibrosis. ThT, DLS, CD and TEM confirm that Zn:Cu2S QDs effectively inhibited insulin fibrosis in a dose-dependent manner with lag phase time extended (beyond 13-time by Zn:Cu2S QDs of 1 mg·mL-1), final fibril formation and the conversion from α-helix to β-sheet reduced. Additionally, thermodynamics analyzed results reveal that the HI fluorescence quenching process is static quenching dominated, and the Zn:Cu2S QDs inhibit HI fibrosis mainly through specific electrostatic interaction with oligomers. The positively charged amino acid residues of oligomers bind to the negatively charged Zn:Cu2S QDs, which prevents the self-assembly of the oligomers from growing into mature fibers to enhance the stability of the protein. Unlike free Copper ions, the as-prepared QDs show an excellent inhibition in HI fibrillation, breaking through the bottleneck of copper-based materials in inhibiting protein fibrosis and providing a potential strategy to inhibit protein fibrosis in-situ by biosynthesizing copper-based fibrosis inhibitors.
Collapse
Affiliation(s)
- Shu-Lan Li
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Qi Yang
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xing-Yu Liu
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China.
| | - Yi Liu
- Department of Chemistry, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China; State Key Laboratory of Membrane Separation and Membrane Process, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China; Institute of Advanced Materials and Nanotechnology, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|