1
|
Mansour AM, Khaled RM, Shehab OR. A comprehensive survey of Mn(I) carbonyls as CO-releasing molecules reported over the last two decades. Dalton Trans 2024; 53:19022-19057. [PMID: 39543968 DOI: 10.1039/d4dt02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the last two decades, manganese(I) carbonyl complexes have been widely investigated as carbon monoxide releasing molecules (CORMs) to transfer small quantities of CO to biological targets to have beneficial impacts such as preventing ischemia reperfusion injury and reducing organ transplant rejection. Furthermore, these complexes exhibit beneficial anti-coagulative, anti-apoptotic, anti-inflammatory, and anti-proliferative properties. Owing to their highly controlled substitution chemistry and oxidative durability, Mn(I) carbonyl moieties were combined with a wide range of auxiliary ligands, including biomolecules. This review focused on tri- and tetracarbonyl Mn(I) complexes that were exposed to light, changed the redox status, or underwent thermal activation to release carbon monoxide. Kinetic parameters, stability in the dark, number of CO release equivalents, CO detection tools, and the nature of solvents used in the studies are reported and tabulated. An overview of all the previously published Mn(I) CORMs is specifically provided to define the method of action of these promising biologically active compounds and discuss their possible therapeutic applications in relation to their CO-releasing and biocompatibility characteristics.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
2
|
Turner JJ, George MW, Poliakoff M, Perutz RN. Photochemistry of transition metal carbonyls. Chem Soc Rev 2022; 51:5300-5329. [PMID: 35708003 DOI: 10.1039/d1cs00826a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this Tutorial Review is to outline the fundamental photochemistry of metal carbonyls, and to show how the advances in technology have increased our understanding of the detailed mechanisms, particularly how relatively simple experiments can provide deep understanding of complex problems. We recall some important early experiments that demonstrate the key principles underlying current research, concentrating on the binary carbonyls and selected substituted metal carbonyls. At each stage, we illustrate with examples from recent applications. This review first considers the detection of photochemical intermediates in three environments: glasses and matrices; gas phase; solution. It is followed by an examination of the theory underpinning these observations. In the final two sections, we briefly address applications to the characterization and behaviour of complexes with very labile ligands such as N2, H2 and alkanes, concentrating on key mechanistic points, and also describe some principles and examples of photocatalysis.
Collapse
Affiliation(s)
- James J Turner
- School of Chemistry University of Nottingham, NG7 2RD, UK.
| | | | | | - Robin N Perutz
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Cercola R, Wong NGK, Rhodes C, Olijnyk L, Mistry NS, Hall LM, Berenbeim JA, Lynam JM, Dessent CEH. A "one pot" mass spectrometry technique for characterizing solution- and gas-phase photochemical reactions by electrospray mass spectrometry. RSC Adv 2021; 11:19500-19507. [PMID: 35479237 PMCID: PMC9033567 DOI: 10.1039/d1ra02581c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The characterization of new photochemical pathways is important to progress the understanding of emerging areas of light-triggered inorganic and organic chemistry. In this context, the development of platforms to perform routine characterization of photochemical reactions remains an important goal for photochemists. Here, we demonstrate a new instrument that can be used to characterise both solution-phase and gas-phase photochemical reactions through electrospray ionisation mass spectrometry (ESI-MS). The gas-phase photochemistry is studied by novel laser-interfaced mass spectrometry (LIMS), where the molecular species of interest is introduced to the gas-phase by ESI, mass-selected and then subjected to laser photodissociation in the ion-trap. On-line solution-phase photochemistry is initiated by LEDs prior to ESI-MS in the same instrument with ESI-MS again being used to monitor photoproducts. Two ruthenium metal carbonyls, [Ru(η5-C5H5)(PPh3)2CO][PF6] and [Ru(η5-C5H5)(dppe)CO][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) are studied using this methodology. We show that the gas-phase photofragmentation pathways observed for the ruthenium complexes via LIMS (i.e. loss of CO + PPh3 ligands from [Ru(η5-C5H5)(PPh3)2CO]+ and loss of just CO from [Ru(η5-C5H5)(dppe)CO]+) mirror the solution-phase photochemistry at 3.4 eV. The advantages of performing the gas-phase and solution-phase photochemical characterisations in a single instrument are discussed.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natalie G K Wong
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Chris Rhodes
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lorna Olijnyk
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Neetisha S Mistry
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lewis M Hall
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jacob A Berenbeim
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | |
Collapse
|
4
|
Wong NK, Rankine CD, Dessent CEH. Linking Electronic Relaxation Dynamics and Ionic Photofragmentation Patterns for the Deprotonated UV Filter Benzophenone-4. J Phys Chem Lett 2021; 12:2831-2836. [PMID: 33719458 PMCID: PMC8041369 DOI: 10.1021/acs.jpclett.1c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Understanding how deprotonation impacts the photophysics of UV filters is critical to better characterize how they behave in key alkaline environments including surface waters and coral reefs. Using anion photodissociation spectroscopy, we have measured the intrinsic absorption electronic spectroscopy (400-214 nm) and numerous accompanying ionic photofragmentation pathways of the benzophenone-4 anion ([BP4-H]-). Relative ion yield plots reveal the locations of the bright S1 and S3 excited states. For the first time for an ionic UV filter, ab initio potential energy surfaces are presented to provide new insight into how the photofragment identity maps the relaxation pathways. These calculations reveal that [BP4-H]- undergoes excited-state decay consistent with a statistical fragmentation process where the anion breaks down on the ground state after nonradiative relaxation. The broader relevance of the results in providing a basis for interpreting the relaxation dynamics of a wide range of gas-phase ionic systems is discussed.
Collapse
Affiliation(s)
- Natalie
G. K. Wong
- Department
of Chemistry, University of York, Heslington, York, YO10 5DD, U.K.
| | - Conor D. Rankine
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle-upon-Tyne, NE1 7RU, U.K.
| | | |
Collapse
|
5
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Furlan C, Berenbeim JA, Dessent CEH. Photoproducts of the Photodynamic Therapy Agent Verteporfin Identified via Laser Interfaced Mass Spectrometry. Molecules 2020; 25:molecules25225280. [PMID: 33198255 PMCID: PMC7696214 DOI: 10.3390/molecules25225280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Verteporfin, a free base benzoporphyrin derivative monoacid ring A, is a photosensitizing drug for photodynamic therapy (PDT) used in the treatment of the wet form of macular degeneration and activated by red light of 689 nm. Here, we present the first direct study of its photofragmentation channels in the gas phase, conducted using a laser interfaced mass spectrometer across a broad photoexcitation range from 250 to 790 nm. The photofragmentation channels are compared with the collision-induced dissociation (CID) products revealing similar dissociation pathways characterized by the loss of the carboxyl and ester groups. Complementary solution-phase photolysis experiments indicate that photobleaching occurs in verteporfin in acetonitrile; a notable conclusion, as photoinduced activity in Verteporfin was not thought to occur in homogenous solvent conditions. These results provide unique new information on the thermal break-down products and photoproducts of this light-triggered drug.
Collapse
|
7
|
Cercola R, Fischer KC, Sherman SL, Garand E, Wong NGK, Hammerback LA, Lynam JM, Fairlamb IJS, Dessent CEH. Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM. Chemistry 2020; 26:10297-10306. [PMID: 32275091 PMCID: PMC7496620 DOI: 10.1002/chem.202001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/08/2020] [Indexed: 11/22/2022]
Abstract
PhotoCORMs are light-triggered compounds that release CO for medical applications. Here, we apply laser spectroscopy in the gas phase to TryptoCORM, a known photoCORM that has been shown to destroy Escherichia coli upon visible-light activation. Our experiments allow us to map TryptoCORM's photochemistry across a wide wavelength range by using novel laser-interfaced mass spectrometry (LIMS). LIMS provides the intrinsic absorption spectrum of the photoCORM along with the production spectra of all of its ionic photoproducts for the first time. Importantly, the photoproduct spectra directly reveal the optimum wavelengths for maximizing CO ejection, and the extent to which CO ejection is compromised at redder wavelengths. A series of comparative studies were performed on TryptoCORM-CH3 CN which exists in dynamic equilibrium with TryptoCORM in solution. Our measurements allow us to conclude that the presence of the labile CH3 CN facilitates CO release over a wider wavelength range. This work demonstrates the potential of LIMS as a new methodology for assessing active agent release (e.g. CO, NO, H2 S) from light-activated prodrugs.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Summer L. Sherman
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | - Etienne Garand
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | | | | | - Jason M. Lynam
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | | |
Collapse
|
8
|
Berenbeim JA, Wong NGK, Cockett MCR, Berden G, Oomens J, Rijs AM, Dessent CEH. Unravelling the Keto-Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone. J Phys Chem A 2020; 124:2919-2930. [PMID: 32208697 PMCID: PMC7168606 DOI: 10.1021/acs.jpca.0c01295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Avobenzone (AB) is
a widely used UVA filter known to undergo irreversible
photodegradation. Here, we investigate the detailed pathways by which
AB photodegrades by applying UV laser-interfaced mass spectrometry
to protonated AB ions. Gas-phase infrared multiple-photon dissociation
(IRMPD) spectra obtained with the free electron laser for infrared
experiments, FELIX, (600–1800 cm–1) are also
presented to confirm the geometric structures. The UV gas-phase absorption
spectrum (2.5–5 eV) of protonated AB contains bands that correspond
to selective excitation of either the enol or diketo forms, allowing
us to probe the resulting, tautomer-dependent photochemistry. Numerous
photofragments (i.e., photodegradants) are directly identified for
the first time, with m/z 135 and
161 dominating, and m/z 146 and
177 also appearing prominently. Analysis of the production spectra
of these photofragments reveals that that strong enol to keto photoisomerism
is occurring, and that protonation significantly disrupts the stability
of the enol (UVA active) tautomer. Close comparison of fragment ion
yields with the TD-DFT-calculated absorption spectra give detailed
information on the location and identity of the dissociative excited
state surfaces, and thus provide new insight into the photodegradation
pathways of avobenzone, and photoisomerization of the wider class
of β-diketone containing molecules.
Collapse
Affiliation(s)
- Jacob A Berenbeim
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Natalie G K Wong
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Martin C R Cockett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Anouk M Rijs
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | | |
Collapse
|