1
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
3
|
Harada M, Kutsuna M, Kitamura T, Usui Y, Ujiki M, Nakamura Y, Obata T, Tanioka M, Uchiyama M, Sawada D, Kamino S. Nucleophile-Triggered π-Topological Transformation: A New Synthetic Approach to Near-Infrared-Emissive Rhodamines. Chemistry 2023; 29:e202301969. [PMID: 37500585 DOI: 10.1002/chem.202301969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
We describe a π-topological transformation-based synthetic method for the preparation of a new type of near-infrared (NIR)-emissive rhodamine dye called Polymethine-embedded Rhodamine Fluorophore (PeR Fluor). In contrast to conventional NIR-emissive dyes that require tedious synthetic steps and/or a high cost, linear fully π-conjugated PeR Fluor can be regioselectively prepared in one step by mixing different nucleophiles with ABPXs, a family of rhodamines with a cross-conjugated structure. PeR Fluor exhibits bright NIR fluorescence emission and high photostability owing to the cooperative π-electron system of rhodamines and polymethine scaffolds. Large bathochromic shifts of the absorption and fluorescence emission maxima can be achieved by modifying the N-substituted group to obtain NIR-absorbing/emitting PeR Fluor. We also demonstrate the stimulus-responsive functionality of PeR Fluor through the addition of chemicals (acid/base), which shows switchable NIR and visible fluorescence response. Our π-topological transformation-based synthetic method is a promising approach to produce new functionalized rhodamine dyes.
Collapse
Affiliation(s)
- Mei Harada
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misa Kutsuna
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Taichi Kitamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yusuke Usui
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masayoshi Ujiki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yuka Nakamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tohru Obata
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masaru Tanioka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| |
Collapse
|
4
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
5
|
Kamino S, Uchiyama M. Xanthene-based functional dyes: towards new molecules operating in the near-infrared region. Org Biomol Chem 2023; 21:2458-2471. [PMID: 36661341 DOI: 10.1039/d2ob02208g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Xanthene-based functional dyes have diverse applications in life science and materials science. A current challenge is to develop new dyes with suitable physicochemical properties, including near-infrared (NIR) operation, for advanced biological applications such as medical diagnostics and molecular imaging. In this review, we first present an overview of xanthene-based functional dyes and then focus on synthetic strategies for modulating the absorption and fluorescence of dyes that operate in the NIR wavelength region with bright emission and good photostability. We also introduce our work on aminobenzopyranoxanthenes (ABPXs) and bridged tetra-aryl-p-quinodimethanes (BTAQs) as new xanthene-based far-red (FR)/NIR absorbing/emitting molecules whose absorption/fluorescence wavelengths change in response to external stimuli.
Collapse
Affiliation(s)
- Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokita, Ueda, Japan
| |
Collapse
|
6
|
Zhang Y, Liu X, Geng C, Shen H, Zhang Q, Miao Y, Wu J, Ouyang R, Zhou S. Two Hawks with One Arrow: A Review on Bifunctional Scaffolds for Photothermal Therapy and Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030551. [PMID: 36770512 PMCID: PMC9920372 DOI: 10.3390/nano13030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 05/21/2023]
Abstract
Despite the significant improvement in the survival rate of cancer patients, the total cure of bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells. For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy (PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors, and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone defects. This review summarizes the recent application progress of various bifunctional scaffolds and puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor therapy and bone regeneration: two hawks with one arrow.
Collapse
Affiliation(s)
- Yulong Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chongrui Geng
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyu Shen
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiupeng Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Jingxiang Wu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Y.M.); (J.W.); (R.O.)
| | - Shuang Zhou
- Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021; 606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
Collapse
Affiliation(s)
- Achalla Vaishnav Pavan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sunil K Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow 226002, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Affiliation(s)
- Abhinav Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | | |
Collapse
|
9
|
Yang YJ, Dai M, Reo YJ, Song CW, Sarkar S, Ahn KH. NAD(P)H Quinone Oxidoreductase-1 in Organ and Tumor Tissues: Distinct Activity Levels Observed with a Benzo-rosol-Based Dual-Excitation and Dual-Emission Probe. Anal Chem 2021; 93:7523-7531. [PMID: 33983712 DOI: 10.1021/acs.analchem.1c01178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NAD(P)H quinone oxidoreductase-1 (NQO1), a protective enzyme against cellular oxidative stress, is expressed abnormally high in solid tumors and thus recognized as a cancer biomarker. To develop a fluorescent NQO1 probe with practicality, we investigated benzo-rosol fluorophores linked with a known self-immolative quinone substrate. Four probe candidates exhibited ratiometric sensing behavior toward the enzyme, satisfying our orbital mismatch stratagem proposed before, under dual-excitation and dual-emission conditions that alleviate the spectral overlap issue commonly observed with the ratiometric probes based on intramolecular charge-transfer change. Among the candidates, two ester-linked compounds exhibited hydrolytic instability to water or an esterase, discouraging us to develop such ester-linked probes. One ether-linked, hydrolytically stable probe provided brighter cellular fluorescence than the other and thus was applied to ratiometric imaging of NQO1 in cells and tissues. We found that the enzyme activity levels are much different in organ tissues: stomach (56), kidney (22), colon (9.8), testis (7.8), bladder (5.6), lung (1.2), and muscle (1.0). Furthermore, a markedly high enzyme level (14.6-fold) was observed in a xenograft tumor tissue compared with that in a normal tissue, which suggests that such an NQO1 probe is promising for cancer diagnosis and for studying the enzyme-associated biology.
Collapse
Affiliation(s)
- Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Chang Wook Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
10
|
Cao L, Tang B, Yu X, Ye K, Zhang H. Intense red emissive organic crystals with elastic bending ability and optical waveguiding behaviour. CrystEngComm 2021. [DOI: 10.1039/d1ce00192b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orange (Cry-1O) and red (Cry-1R) emissive crystals were obtained based on a green emissive molecule 1. The light transducing capability of Cry-1R in both the straight and bent states can be applied as an active optical waveguiding medium.
Collapse
Affiliation(s)
- Lifu Cao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street, ChangChun 130012, China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street, ChangChun 130012, China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street, ChangChun 130012, China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street, ChangChun 130012, China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street, ChangChun 130012, China
| |
Collapse
|
11
|
Qu J, Ren F, Shi J, Tong B, Cai Z, Dong Y. The Aggregation Regularity Effect of Multiarylpyrroles on Their Near-Infrared Aggregation-Enhanced Emission Property. Chemistry 2020; 26:14947-14953. [PMID: 32602178 DOI: 10.1002/chem.202002525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Increasing the quantum yield of near-infrared (NIR) emissive dyes is critical for biological applications because these fluorescent dyes generally show decreased emission efficiency under aqueous conditions. In this work, we designed and synthesized several multiarylpyrrole (MAP) derivatives, in which a furanylidene (FE) group at the 3-position of the pyrrole forms donor-π-acceptor molecules, MAP-FE, with a NIR emissive wavelength and aggregation-enhanced emission (AEE) features. Different alkyl chains of MAP-FEs linked to phenyl groups at the 2,5-position of the pyrrole ring resulted in different emissive wavelengths and quantum yields in aggregated states, such as powders or single crystals. Powder XRD data and single crystal analysis elucidated that the different lengths of alkyl chains had a significant impact on the regularity of MAP-FEs when they were forced to aggregate or precipitate, which affected the intermolecular interaction and the restriction degree of the rotating parts, which are essential components. Therefore, an increasing number of NIR dyes could be developed by this design strategy to produce efficient NIR dyes with AEE. Moreover, this method can provide general guidance for other related fields, such as organic solar cells and organic light-emitting materials, because they are all applied in the aggregated state.
Collapse
Affiliation(s)
- Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Fei Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional, Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Str. Haidian District, Beijing, 100081, China
| |
Collapse
|
12
|
Reo YJ, Dai M, Yang YJ, Ahn KH. Cell-Membrane-Localizing, Two-Photon Probe for Ratiometric Imaging of γ-Glutamyl Transpeptidase in Cancerous Cells and Tissues. Anal Chem 2020; 92:12678-12685. [PMID: 32808765 DOI: 10.1021/acs.analchem.0c03013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γ-Glutamyl transpeptidase (GGT), a cell surface-bound protease, is associated with various diseases including cancer. The detection of the enzyme activity is an important subject, leading to about 40 activatable fluorescent probes so far. All of them, however, lack the membrane-localizing ability, raising a reliability issue in the quantitative analysis. Disclosed is the first fluorescent probe that senses the cell surface-bound enzyme, which, furthermore, is capable of ratiometric as well as two-photon imaging with desirable features. Ratiometric imaging of cancer cell lines reveals a 6.4-8.4-fold higher GGT levels than those in normal cell lines. A comparison of the enzyme activity in organ tissues of normal and tumor xenograft mice reveals notably different levels of enzyme activity depending on the kind of tissue. Normal tissues exhibited comparable levels of enzyme activity, except the kidney that has significantly higher GGT activity (2.7-4.0-fold) than the other organs. Compared with the normal tissues, considerably higher enzyme activity was observed in the tumor tissues of the thigh (4.0-fold), colon (2.5-fold), lung (3.6-fold), and liver (2.1-fold), but essentially no enhanced activity in the tumor tissues of the spleen, stomach, and pancreas and a comparable level in both the tumor and normal kidney tissues were observed. The probe offers practical means for studying GGT-associated biology in cells and tissues by one- as well as two-photon ratiometric imaging.
Collapse
Affiliation(s)
- Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
13
|
Dai M, Reo YJ, Song CW, Yang YJ, Ahn KH. Development of photo- and chemo-stable near-infrared-emitting dyes: linear-shape benzo-rosol and its derivatives as unique ratiometric bioimaging platforms. Chem Sci 2020; 11:8901-8911. [PMID: 34123144 PMCID: PMC8163444 DOI: 10.1039/d0sc03314f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Microscopic imaging aided with fluorescent probes has revolutionized our understanding of biological systems. Organic fluorophores and probes thus continue to evolve for bioimaging applications. Fluorophores such as cyanines and hemicyanines emit in the near-infrared (NIR) region and thus allow deeper imaging with minimal autofluorescence; however, they show limited photo- and chemo-stability, demanding new robust NIR fluorophores. Such photo- and chemo-stable NIR fluorophores, linear-shape π-extended rosol and rosamine analogues, are disclosed here which provide bright fluorescence images in cells as well as in tissues by confocal laser-scanning microscopy. Furthermore, they offer unique ratiometric imaging platforms for activatable probes with dual excitation and dual emission capability, as demonstrated with a 2,4-dinitrophenyl ether derivative of benzo-rosol.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Chang Wook Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyungbuk 37673 Republic of Korea
| |
Collapse
|
14
|
Reo YJ, Jun YW, Cho SW, Jeon J, Roh H, Singha S, Dai M, Sarkar S, Kim HR, Kim S, Jin Y, Jung YL, Yang YJ, Ban C, Joo J, Ahn KH. A systematic study on the discrepancy of fluorescence properties between in solutions and in cells: super-bright, environment-insensitive benzocoumarin dyes. Chem Commun (Camb) 2020; 56:10556-10559. [DOI: 10.1039/d0cc03586f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The benzocoumarins show distinctive emission behaviour from some commonly-used dyes in organic, aqueous buffer, and cellular media, which compels us to recognize the cellular environment as the third space for fluorophores.
Collapse
|