1
|
Jiang H, Čavlović D, Jiang Q, Ng F, Bao ST, Telford EJ, Steigerwald ML, Roy X, Nuckolls C, McNeill JM. Spin Filtering with Surface-Active Helicene- and Twistacene-Based Perylene Diimides. J Am Chem Soc 2025; 147:12982-12988. [PMID: 40177945 DOI: 10.1021/jacs.5c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Creating new chiral molecular and macromolecular systems that can polarize the spin of electrons has the dual promise of both applications in spintronics and a fundamental understanding of their origins. Here, we put forward two optically active helical ladder dimers from perylene diimide-based twistacenes and helicenes. We detail a scalable method to separate the helices for each of these systems and methods to functionalize them with thiol groups that allow for self-assembled monolayer formation on metal surfaces. We probed these monolayers with conductive atomic force microscopy, revealing that they are highly conductive. If the substrate is magnetized, then the current we measure with conductive atomic force microscopy is controlled by the handedness of the helices used to form the monolayers. Furthermore, helices of the same handedness for either the twistacene or helicene (right-handed helices vs left-handed helices) produce high (or low) currents in devices with the same magnetization. Importantly, we find a correlation between the magnetic field dependence of the conductivity and the helicity of the molecules, suggesting a link between these two properties, independent of the sign of their electronic circular dichroism.
Collapse
Affiliation(s)
- Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Daniel Čavlović
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Qifeng Jiang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fay Ng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Evan J Telford
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jeffrey M McNeill
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Pancotti G, Killalea CE, Rees TW, Liirò-Peluso L, Riera-Galindo S, Beton PH, Campoy-Quiles M, Siligardi G, Amabilino DB. Film thickness dependence of nanoscale arrangement of a chiral electron donor in its blends with an achiral electron acceptor. NANOSCALE 2025; 17:3133-3144. [PMID: 39692272 DOI: 10.1039/d4nr04269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule. Mueller matrix polarimetric imaging shows the authenticity of this effect and the homogeneity of short range chiral orientations between the molecules, as well as more heterogeneous short and longer range arrangements in the films observed in linear dichroic and birefringent effects. The two-dimensional circular dichroism (CD) maps and spectra show the uniformity of the short range supramolecular interactions both in spun-cast films on quartz and blade-coated films on photovoltaic device substrates, where evidence for the chiral arrangement is uniquely provided by the synchrotron CD measurements. The external quantum efficiency of the devices depends upon the handedness of the light used to excite them and the film thickness, that influences the supramolecular arrangement and organization in the film, and determines the selectivity for left or right circularly polarised light. The difference in external quantum efficiency of the photovoltaic devices between the two handedness' of light correlates with the apparent differential absorbance (g-factor) of the films.
Collapse
Affiliation(s)
- Giulia Pancotti
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - C Elizabeth Killalea
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Thomas W Rees
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Letizia Liirò-Peluso
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Sergi Riera-Galindo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Peter H Beton
- School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| | - Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Carrer dels Til·lers, Bellaterra, 08193, Spain.
| |
Collapse
|
3
|
Kataria M, Seki S. Responsive Chirality: Tailoring Supramolecular Assemblies with External Stimuli as Future Platforms for Electronic/Spintronic Materials. Chemistry 2025; 31:e202403460. [PMID: 39462198 DOI: 10.1002/chem.202403460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Supramolecular chirality is the major branch of supramolecular chemistry, which not only plays important roles in biological processes but also in synthetically designed aggregated systems. To understand the complex processing of biological systems, the only way is to design supramolecular chiral ensembles that mimic natural biomolecules such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), amino acids, etc. In addition, chiral systems and self-assemblies as molecular motifs with breaking spatial inversion symmetry have been regarded as key substances in electronics and spintronics as well as in fundamental chemistry and physics. Here, in this review, our major concern is understanding modulation in spatial arrangements and packing modes under the impact of any external stimuli, which results in tailoring the handedness of resulted supramolecular chiral superstructures. We, in this review, highlighted the role of external stimuli such as solvent, chemical additives, photo exposure, etc. in altering the supramolecular chirality for their future utility as "active switches" in optoelectronic and spintronic devices and applications.
Collapse
Affiliation(s)
- Meenal Kataria
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Gupta R, Balo A, Garg R, Mondal AK, Ghosh KB, Chandra Mondal P. The chirality-induced spin selectivity effect in asymmetric spin transport: from solution to device applications. Chem Sci 2024; 15:18751-18771. [PMID: 39568626 PMCID: PMC11575547 DOI: 10.1039/d4sc05736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The chirality-induced spin selectivity (CISS) effect has garnered significant interest in the field of molecular spintronics due to its potential to create spin-polarized electrons without the need for a magnet. Recent studies devoted to CISS effects in various chiral materials demonstrate exciting prospects for spintronics, chiral recognition, and quantum information applications. Several experimental studies have confirmed the applicability of chiral molecules in spin-filtering properties, influencing spin-polarized electron transport and photoemission. Researchers aim to predict CISS phenomena and apply this concept to practical applications by compiling experimental results. To expand the possibilities of spin manipulation and create new opportunities for spin-based technologies, researchers are diligently exploring different chiral organic and inorganic materials for probing the CISS effect. This ongoing research holds promise for developing novel spin-based technologies and advancing the understanding of the intricate relationship between chirality and electron spin. The review highlights the remarkable experimental and theoretical frameworks related to the CISS effect, its impact on spintronics, and its relevance in other scientific areas.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh-208016 India
| | - Anujit Balo
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana-502285 India
| | - Rabia Garg
- Institute of Nano Science and Technology, Knowledge City Mohali Punjab-140306 India
| | - Amit Kumar Mondal
- Institute of Nano Science and Technology, Knowledge City Mohali Punjab-140306 India
| | - Koyel Banerjee Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana-502285 India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh-208016 India
| |
Collapse
|
5
|
Ko CH, Zhu Q, Bullard G, Tassinari F, Morisue M, Naaman R, Therien MJ. Electron Spin Polarization and Rectification Driven by Chiral Perylene Diimide-Based Nanodonuts. J Phys Chem Lett 2023; 14:10271-10277. [PMID: 37939254 DOI: 10.1021/acs.jpclett.3c02722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The chirality-induced spin selectivity (CISS) effect allows thin-film layers of chiral conjugated molecules to function as spin filters at ambient temperature. Through solvent-modulated dropcasting of chiral l- and d-perylene diimide (PDI) monomeric building blocks, two types of aggregate morphologies, nanofibers and nanodonuts, may be realized. Spin-diode behavior is evidenced in the nanodonut structures. Stacked PDI units, which form the conjugated core of these nanostructures, dominate the nanodonut-Au electrode contact; in contrast, the AFM tip contacts largely the high-resistance solubilizing alkyl chains of the chiral monomers that form these nanodonuts. Current-voltage responses of the nanodonuts, measured by magnetic conductive AFM (mC-AFM), demonstrate substantial spin polarizations as well as spin current rectification ratios (>10) that exceed the magnitudes of those determined to date for other chiral nanoscale systems. These results underscore the potential for chiral nanostructures, featuring asymmetric molecular junctions, to enable CISS-based nanoscale spin current rectifiers.
Collapse
Affiliation(s)
- Chih-Hung Ko
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Bullard
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Francesco Tassinari
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mitsuhiko Morisue
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Hong KI, Kumar A, Garcia AM, Majumder S, Ruiz-Carretero A. Electron spin polarization in supramolecular polymers with complex pathways. J Chem Phys 2023; 159:114903. [PMID: 37712794 DOI: 10.1063/5.0164825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Mastering the manipulation of the electron spin plays a crucial role in comprehending the behavior of organic materials in several applications, such as asymmetric catalysis, chiroptical switches, and electronic devices. A promising avenue for achieving such precise control lies in the Chiral Induced Spin Selectivity (CISS) effect, where electrons with a favored spin exhibit preferential transport through chiral assemblies of specific handedness. Chiral supramolecular polymers emerge as excellent candidates for exploring the CISS effect due to their ability to modulate their helical structure through noncovalent interactions. In this context, systems capable of responding to external stimuli are particularly intriguing, sometimes even displaying chirality inversion. This study unveils spin selectivity in chiral supramolecular polymers, derived from single enantiomers, through scanning tunneling microscopy conducted in scanning tunneling spectroscopy mode. Following two distinct sample preparation protocols for each enantiomer, we generate supramolecular polymers with opposite handedness and specific spin transport characteristics. Our primary focus centers on chiral π-conjugated building blocks, with the aim of advancing novel systems that can inspire the organic spintronics community from a supramolecular chemistry level.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Abhinandan Kumar
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Ana M Garcia
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Subrata Majumder
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Amparo Ruiz-Carretero
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
7
|
Aubele A, Kraus T, Schmid S, Mena-Osteritz E, Bäuerle P. Molecular Donor-Acceptor Dyads for Single-Material Organic Solar Cells. Chemistry 2023; 29:e202301593. [PMID: 37306325 DOI: 10.1002/chem.202301593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
A series of ambipolar covalently linked oligothiophene-fullerene dyads have been synthesized by systematical structural variations. In this respect, the length of linker between donor and acceptor unit was altered and in a second series the terminal acceptor units in the donor unit of the dyads were varied. Characterization of the optical and redox properties gave valuable structure-property relationships and were correlated to the photovoltaic performance in single-material organic solar cells, in which power conversion efficiencies of up to 4.3 % were reached.
Collapse
Affiliation(s)
- Anna Aubele
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Teresa Kraus
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
8
|
Killalea CE, Samperi M, Siligardi G, Amabilino DB. Imaging deposition-dependent supramolecular chiral organisation. Chem Commun (Camb) 2022; 58:4468-4471. [PMID: 35297921 DOI: 10.1039/d1cc06790g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin films of a chiral diketopyrrolopyrrole derivative were imaged with spatially-defined Mueller Matrix Polarimetry, focussing on the Circular Dichroism signal, giving unique insight into the impact that deposition techniques and thermal annealing can have on chiral supramolecular structures in the solid state, where homogeneity was observed for spun-coated films while drop-coating afforded chiroptical diversity in the material, a feature invisible to absorption spectroscopy or optical microscopy.
Collapse
Affiliation(s)
- C Elizabeth Killalea
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK.,School of Physics and Astronomy, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mario Samperi
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK
| | - Giuliano Siligardi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - David B Amabilino
- School of Chemistry and GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK.,Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Cerdanyola, 08193 Spain
| |
Collapse
|
9
|
Squaraine-Based Optical Sensors: Designer Toolbox for Exploring Ionic and Molecular Recognitions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small molecule-based chromogenic and fluorogenic probes play an indispensable role in many sensing applications. Ideal optical chemosensors should provide selectivity and sensitivity towards a variety of analytes. Synthetic accessibility and attractive photophysical properties have made squaraine dyes an enticing platform for the development of chemosensors. This review highlights the versatility of modular assemblies of squaraine-based chemosensors and chemodosimeters that take advantage of the availability of various structurally and functionally diverse recognition motifs, as well as utilizing additional recognition capabilities due to the unique structural features of the squaraine ring.
Collapse
|
10
|
Rösch AT, Söntjens SHM, Robben J, Palmans ARA, Schnitzer T. Rotational Isomerism of an Amide Substituted Squaraine Dye: A Combined Spectroscopic and Computational Study. J Org Chem 2021; 86:13100-13103. [PMID: 34469161 PMCID: PMC8453623 DOI: 10.1021/acs.joc.1c00922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The conformational
analysis of a 2,4-bis(4-dialkylamino-2-amido)phenyl
squaraine dye revealed the presence of two rotational isomers at room
temperature. Combination of spectroscopic and computational techniques
showed that the rotational barrier is influenced by hydrogen bonds
between the amido substituents and the oxygen atoms at the quadratic
core. Even small amounts of trifluoroacetic acid interfered with the
intramolecular hydrogen bond formation and accelerated the interconversion
of the conformers.
Collapse
Affiliation(s)
- Andreas T Rösch
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Serge H M Söntjens
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jorn Robben
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Garcia AM, Martínez G, Ruiz-Carretero A. The Importance of Spin State in Chiral Supramolecular Electronics. Front Chem 2021; 9:722727. [PMID: 34422770 PMCID: PMC8371180 DOI: 10.3389/fchem.2021.722727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
The field of spintronics explores how magnetic fields can influence the properties of organic and inorganic materials by controlling their electron’s spins. In this sense, organic materials are very attractive since they have small spin-orbit coupling, allowing long-range spin-coherence over times and distances longer than in conventional metals or semiconductors. Usually, the small spin-orbit coupling means that organic materials cannot be used for spin injection, requiring ferromagnetic electrodes. However, chiral molecules have been demonstrated to behave as spin filters upon light illumination in the phenomenon described as chirality-induced spin selectivity (CISS) effect. This means that electrons of certain spin can go through chiral assemblies of molecules preferentially in one direction depending on their handedness. This is possible because the lack of inversion symmetry in chiral molecules couples with the electron’s spin and its linear momentum so the molecules transmit the one preferred spin. In this respect, chiral semiconductors have great potential in the field of organic electronics since when charge carriers are created, a preferred spin could be transmitted through a determined handedness structure. The exploration of the CISS effect in chiral supramolecular semiconductors could add greatly to the efforts made by the organic electronics community since charge recombination could be diminished and charge transport improved when the spins are preferentially guided in one specific direction. This review outlines the advances in supramolecular chiral semiconductors regarding their spin state and its influence on the final electronic properties.
Collapse
Affiliation(s)
- Ana M Garcia
- Institute Charles Sadron, University of Strasbourg, CNRS, Strasbourg, France
| | - Gabriel Martínez
- Institute Charles Sadron, University of Strasbourg, CNRS, Strasbourg, France
| | | |
Collapse
|
12
|
Rösch AT, Zhu Q, Robben J, Tassinari F, Meskers SCJ, Naaman R, Palmans ARA, Meijer EW. Helicity Control in the Aggregation of Achiral Squaraine Dyes in Solution and Thin Films. Chemistry 2021; 27:298-306. [PMID: 32705726 PMCID: PMC7839690 DOI: 10.1002/chem.202002695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Squaraine dyes are well known for their strong absorption in the visible regime. Reports on chiral squaraine dyes are, however, scarce. To address this gap, we here report two novel chiral squaraine dyes and their achiral counterparts. The presented dyes are aggregated in solution and in thin films. A detailed chiroptical study shows that thin films formed by co-assembling the chiral dye with its achiral counterpart exhibit exceptional photophysical properties. The circular dichroism (CD) of the co-assembled structures reaches a maximum when just 25 % of the chiral dye are present in the mixture. The solid structures with the highest relative CD effect are achieved when the chiral dye is used solely as a director, rather than the structural component. The chiroptical data are further supported by selected spin-filtering measurements using mc-AFM. These findings provide a promising platform for investigating the relationship between the dissymmetry of a supramolecular structure and emerging material properties rather than a comparison between a chiral molecular structure and an achiral counterpart.
Collapse
Affiliation(s)
- Andreas T. Rösch
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Qirong Zhu
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| | - Jorn Robben
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Francesco Tassinari
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| | - Stefan C. J. Meskers
- Department of Applied PhysicsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Ron Naaman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry, and Institute for Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|