1
|
Chang C, Jin X, Bai H, Zhang F, Chen L. Molecular Dynamics Simulation for the Acidic Compounds Retention Mechanism Study on Octyl-Quaternary Ammonium Mixed-Mode Stationary Phase. J Chromatogr Sci 2024; 62:962-971. [PMID: 38803160 DOI: 10.1093/chromsci/bmae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/17/2024] [Indexed: 05/29/2024]
Abstract
With the widespread application of mixed-mode chromatography in separation analysis, it is becoming increasingly important to study its retention mechanism. The retention behavior of acidic compounds on mixed-mode octyl-quaternary ammonium (Sil-C8-QA) columns was investigated by computer simulation. Firstly, the benzoic acid homologues were used as the analytes, and the simulation model was constructed by the Materials Studio. Geometric optimization, annealing and molecular dynamics (MD) simulation of these complexes resulted in optimized conformations. The binding energy, mean square displacement (MSD) and torsion angle distribution generated by MD simulation were then analyzed. The results showed that the more negative binding energy, the greater the MSD and the narrower the torsion angle distribution, indicating that the stationary phase behaves with stronger interaction and retention. The retention behavior of five acidic drugs on the Sil-C8-QA column was then successfully explained by simulation. Acidic drugs are more retentive on the mixed-mode column due to the more substantial interaction brought by the reversed-phase/ion-exchange mixed-mode mechanism compared to other single-mode columns. This simulation method is expected to provide ideas for studying the separation mechanism and predicting the retention behavior of more complex samples.
Collapse
Affiliation(s)
- Chaoqun Chang
- Pharmaceutical Analysis Department, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xinghua Jin
- Pharmaceutical Analysis Department, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hui Bai
- Pharmaceutical Analysis Department, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fan Zhang
- Pharmaceutical Analysis Department, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lei Chen
- Pharmaceutical Analysis Department, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
2
|
Scriba GKE. Update on chiral recognition mechanisms in separation science. J Sep Sci 2024; 47:e2400148. [PMID: 38772711 DOI: 10.1002/jssc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The stereospecific analysis of chiral molecules is an important issue in many scientific fields. In separation sciences, this is achieved via the formation of transient diastereomeric complexes between a chiral selector and the selectand enantiomers driven by molecular interactions including electrostatic, ion-dipole, dipole-dipole, van der Waals or π-π interactions as well as hydrogen or halogen bonds depending on the nature of selector and selectand. Nuclear magnetic resonance spectroscopy and molecular modeling methods are currently the most frequently applied techniques to understand the selector-selectand interactions at a molecular level and to draw conclusions on the chiral separation mechanism. The present short review summarizes some of the recent achievements for the understanding of the chiral recognition of the most important chiral selectors combining separation techniques with molecular modeling and/or spectroscopic techniques dating between 2020 and early 2024. The selectors include polysaccharide derivatives, cyclodextrins, macrocyclic glycopeptides, proteins, donor-acceptor type selectors, ion-exchangers, crown ethers, and molecular micelles. The application of chiral ionic liquids and chiral deep eutectic solvents, as well as further selectors, are also briefly addressed. A compilation of all published literature on chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Zhou J, Wei Y, Wu J, Li S, Xu Z, Peng Y. Novel ethylenediamine-β-cyclodextrin grafted membranes for the chiral separation of mandelic acid and its derivatives. Chirality 2024; 36:e23662. [PMID: 38572642 DOI: 10.1002/chir.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
In the present study, flat cellulose acetate ultrafiltration membranes were prepared first by nonsolvent induced phase separation method. Then chiral membranes for separating the enantiomers were prepared by grafting the ultrafiltration membranes using ethylenediamine-β-cyclodextrin as the chiral selector and epichlorohydrin as the spacer arm. The pure water permeability of the ultrafiltration membrane was around 115 L·m-2·h-1·bar-1. The properties of the chiral membranes were characterized using infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The chiral membrane performance in enantiomer separation was evaluated with racemates, such as mandelic acid (MA), 2-chloromandelic acid (2-ClMA), 4-chloromandelic acid (4-ClMA), and methyl mandelate (MM). The influence of feed concentration on the separation efficiency was also investigated. The results indicated that the enantiomeric excess percentages (e.e%) of the racemic mixtures for these four chiral compounds were up to 31.8%, 25.4%, 17.8%, and 32.6%, respectively. The binding free energy of the chiral selector with the (S)-enantiomer calculated by molecular dynamics simulations was stronger than that with the (R)-enantiomer, which was consistent with the experimental results (higher concentration of (R)-enantiomer in the permeate). This supports the affinity absorption-separation mechanism.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongming Wei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiaojie Wu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuqin Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhenliang Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Li M, Zhang L, Wu B, Hong M. High-Enantioselectivity Adsorption Separation of Racemic Mandelic Acid and Methyl Mandelate by Robust Chiral UiO-68-Type Zr-MOFs. Inorg Chem 2024; 63:381-389. [PMID: 38150656 DOI: 10.1021/acs.inorgchem.3c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Mandelic acid and its analogues are highly valuable medical intermediates and play an important role in the pharmaceutical industry, biochemistry, and life sciences. Therefore, effective enantioselective recognition and separation of mandelic acid are of great significance. In this study, two of our recently reported chiral amine-alcohol-functionalized UiO-68-type Zr-HMOFs 1 and 3 with high chemical stability, abundant binding sites, and large chiral pores were selected as chiral selectors for the enantioselective separation of mandelic acid (MA), methyl mandelate (MM), and other chiral molecules containing only one phenyl. Materials 1 and 3 exhibited excellent enantioselective separation performance for MA and MM. Especially for the separation of racemate MA, the enantiomeric excess values reached 97.3 and 98.9%, which are the highest reported values so far. Experimental and density functional theory (DFT) computational results demonstrated that the introduction of additional phenyls on the chiral amine alcohol pendants in 3 had somewhat impact on the enantioselective adsorption and separation of MA or MM compared with 1, but it was not significant. Further research on the enantioselective separation of those chiral adsorbates containing only one phenyl by material 1 indicated the crucial role of the groups directly bonded to the chiral carbons of the adsorbates in the selective separation of enantiomers, especially showing higher enantioselectivity for the adsorbates with two hydrogen-bonding groups directly bonded to its chiral carbon.
Collapse
Affiliation(s)
- Mengna Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China
| |
Collapse
|
5
|
Saleh OA, Badawey AM, Aboul-Enein HY, Fouad MA. Enantioseparation, quantification, molecular docking and molecular dynamics study of five β-adrenergic blockers on Lux-Cellulose-2 column. BMC Chem 2023; 17:22. [PMID: 36927568 PMCID: PMC10018884 DOI: 10.1186/s13065-023-00925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Enantioseparation of five β-adrenergic blockers was studied using two mobile phases on a cellulose tris(3-chloro-4-methylphenylcarbamate) (Lux-Cellulose-2) chiral column in normal phase mode. The first mobile phase composed of n-hexane: ethanol: diethylamine 60: 40: 0.1 by volume has successfully resolved the chromatographic peaks of three pairs of β-adrenergic blockers namely, bisoprolol, carvedilol and atenolol. A mixture of n-hexane: ethanol: diethyl amine 75: 25: 0.1 by volume was used as the second mobile phase to separate the four pairs of enantiomers, metoprolol, carvedilol, nebivolol and atenolol with high resolution values. The mobile phases were pumped at a flow rate 1 mL/min with column temperature 25 °C using a UV detector at 230 nm. Molecular docking simulations of the five pairs of enantiomers was carried out in the cavities of the chiral stationary phase to gain a better understanding of the interaction between analyte enantiomers and chiral stationary phase and to better understand the mechanism of chiral recognition. According to the results, hydrogen bond interactions and π-π- interactions were the main types of interaction involved in the chiral recognition. Molecular dynamics simulation was performed to investigate the solvent effect on the interaction of the five pair of enantiomers in the chiral stationary phase cavity under dynamic conditions.
Collapse
Affiliation(s)
- Ola Ahmed Saleh
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), P.O. Box 12622, Giza, Egypt.
| | - Amr Mohamed Badawey
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Hassan Y Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), P.O. Box 12622, Giza, Egypt.
| | - Marwa Ahmed Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.,Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, NewGiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| |
Collapse
|
6
|
Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Ao Q, Zhao H, Tong T, Peng Y, He Z. Enantioseparation of basic drugs by reverse phase high-performance liquid chromatography system using carboxymethyl-β-cyclodextrin as chiral mobile phase additive. Chirality 2022; 34:1128-1139. [PMID: 35574700 DOI: 10.1002/chir.23470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
Abstract
A rapid and efficient method was developed for enantioseparation of basic drugs, using carboxymethyl-β-cyclodextrin (CM-β-CD) as chiral mobile phase additive, rather than involving costly chiral column in high-performance liquid chromatography (HPLC) system. Four of the six basic drug enantiomers investigated were successfully separated. The highest resolution reaches 2.15 for threo-(1S,2S)-2-amino-l-p-nitrophenyl-1,3-propanediol. The effects of the organic modifier, pH value, concentration of chiral additive, column temperature, and flow rate of mobile phase on the enantioseparation of analytes were researched. The apparent formation constants of inclusion and the thermodynamic parameters were evaluated to explain the mechanism of chiral recognition.
Collapse
Affiliation(s)
- Qiong Ao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongliang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Tianzhong Tong
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyang He
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Yu RB, Quirino JP. Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating. J Sep Sci 2022; 45:1195-1201. [PMID: 35014193 PMCID: PMC9304321 DOI: 10.1002/jssc.202100835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/22/2022]
Abstract
The chiral separation of various analytes (dichlorprop, mecoprop, ibuprofen, and ketoprofen) was demonstrated with different cyclodextrins as mobile phase additives in open-tubular liquid chromatography using a stationary pseudophase semipermanent coating. The stable coating was prepared by a successive multiple ionic layer approach using poly(diallyldimethylammonium chloride), polystyrene sulfonate, and didodecyldimethyl ammonium bromide. Increasing concentrations (0-0.2 mM) of various native and derivatized cyclodextrins in 25 mM sodium tetraborate (pH 9.2) were investigated. Chiral separation was achieved for the four test analytes using 0.05-0.1 mM β-cyclodextrin (resolution between 1.11 and 1.34), γ-cyclodextrin (resolution between 0.78 and 1.27), carboxymethyl-β-cyclodextrin (resolution between 1.64 and 2.59), and 2-hydroxypropyl-β-cyclodextrin (resolution between 0.71 and 1.76) with the highest resolutions obtained with 0.1 mM carboxymethyl-β-cyclodextrin. %RSD values were <10%. This is the first demonstration of chiral open-tubular liquid chromatography using achiral chromatographic coatings and cyclodextrins as mobile phase additives.
Collapse
Affiliation(s)
- Raymond B. Yu
- Australian Centre for Research on Separation ScienceSchool of Natural Sciences‐ChemistryUniversity of TasmaniaHobartTasmaniaAustralia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation ScienceSchool of Natural Sciences‐ChemistryUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
10
|
Han X, Yu F, Lei J, Zhu J, Fu H, Hu J, Yang XL. Pb 2+ Responsive Cu-In-Zn-S Quantum Dots With Low Cytotoxicity. Front Chem 2022; 10:821392. [PMID: 35237558 PMCID: PMC8883431 DOI: 10.3389/fchem.2022.821392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Water-soluble Cu-In-Zn-S quantum dots (CIZS QDs) with orange fluorescence have been synthesized with a glutathione (GSH) as stabilizer via facile a one-step hydrothermal method. The optimal reaction conditions of CIZS QDs including temperature, time, pH, and the molar ratios of precursors were studied. TEM results indicate that the aqueous-dispersible CIZS QDs are quasi-spherical, and the average diameters are 3.76 nm with excellent fluorescent stability. Furthermore, the cytotoxicity of CIZS QDs was investigated by the microcalorimetry combining with TEM and the IC 50 was 10.2 μM . CIZS QDs showed a promising perspective in applications such as a fluorescent probe for bioimaging and biolabeling due to the low cytotoxicity and good biocompatibility. Moreover, the CIZS QDs can distinguish Pb2+ ion from other ions, offering great potentials in lead ion determination in drinking water. According to the results of UV, XRD, FL, PL, and ITC methods, the mechanism of CIZS QDs-Pb2+ assay is due to hydrogen bonding or van der Waals forces in the formation of Pb2+ and CIZS QDs.
Collapse
Affiliation(s)
- XiaoLe Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Fan Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - JiaWen Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Jiahua Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - HaiYan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - JunCheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Long Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Gao L, Zhao X, Qin S, Dong Q, Hu X, Chu H. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Chirality 2022; 34:537-549. [PMID: 34997664 DOI: 10.1002/chir.23405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023]
Abstract
Covalent organic frameworks (COFs) have been recognized as promising solid phases in capillary electrochromatography (CEC). Imine-based COF-coated open-tubular CEC column (COF TpBD-coated OT column) was prepared and characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), nitrogen adsorption/desorption (Brunauer-Emmett-Teller [BET]), and scanning electron microscopy (SEM). The results showed that the column efficiency was up to 26,776 plate/m, and the thickness of stationary phase was about 6.00 μm for the column prepared under the optimal conditions. Enantioseparation of 15 kinds of the single chiral compounds (histidine, arginine, lysine, leucine, threonine, methionine, valine, aspartic acid and glutamic acid, fipronil, diclofop, imazamox, quizalofop-p, imazethapyr, and acephate) and 3 kinds of mixed amino acids racemaces (valine, methionine, and glutamic acid) were performed with three methods: capillary electrochromatography with COF TpBD-coated OT column (Method 1), CEC with COF TpBD-coated OT column as the separation channels, and capillary electrophoresis (CE) with HP-β-CD as the chiral mobile phase additive (Method 2) and CE with HP-β-CD as the chiral mobile phase additive (Method 3). Separation efficiency and chiral selectivity of Method 2 was best among the three methods. Under the optimal separation conditions of Method 2, all the enantiomers reached the baseline separation regardless of the single chiral compounds or the mixed amino acids. Relative standard deviation (RSDs) of the mean column efficiency for reproducibility and stability was in the range of 0.46-1.49%. This combination of CEC and CE has great potential for use in chiral separation.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xuan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Qing Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xingfang Hu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|