1
|
Li C, Mi K, Xu K, Jia Z, Jiang X, Peng H, Zheng X, Nie H. LDH-derived Co 0.5Ni 0.5Te 2 dispersed in 3D carbon sheets as a separator modifier to enable kinetics-accelerated lithium-sulfur batteries. Dalton Trans 2025; 54:595-604. [PMID: 39560008 DOI: 10.1039/d4dt02619e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Lithium-sulfur batteries are considered powerful candidates for the next generation of advanced energy-storage systems owing to their high energy density and theoretical specific capacity. However, their practical commercial feasibility has been hampered by their sluggish kinetics and severe shuttle effect. Hence, a novel hybrid comprising NiCo-LDH-derived Co0.5Ni0.5Te2 nanoparticles grafted on 3D carbon sheets was rationally constructed through facile steps and served as a functional separator modifier for a lithium-sulfur battery. It was found that the 3D cross-linked conductive network structure of the hybrid is conductive to continuous electron transfer. In addition, well-dispersed Co0.5Ni0.5Te2 nanoparticles with hexahedral morphology offer an ample sulfophilic surface to chemically anchor and catalyze the redox dynamics of sulfur species. It was proven that the dynamic conversion of sulfur-involved reactions was effectively promoted and the utilization of polysulfides was boosted. The related cells demonstrated attractive long-cycling durability (784.8 mA h g-1 at 2 C after 500 cycles) and an excellent rate performance (699.5 mA h g-1 even at 7 C). Furthermore, when sulfur loading reached 6.89 mg cm-2, areal capacity could still be maintained at 6.40 mA h cm-2 after 50 cycles at 0.2 C. This work provides a promising strategy to design a multifunctional separator modifier and promotes the exploration of metal tellurides to engineer advanced kinetics-accelerated lithium-sulfur batteries.
Collapse
Affiliation(s)
- Chunmei Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
| | - Kan Mi
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
| | - Zhuo Jia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
| | - Huili Peng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
| | - Xiuwen Zheng
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
- Qilu Normal University, Jinan, 250013, P. R. China
| | - Hongjiao Nie
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R.China.
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P.R.China.
| |
Collapse
|
2
|
Xu F, Li S, Jing S, Peng X, Yuan L, Lu S, Zhang Y, Fan H. Cobalt-vanadium sulfide yolk-shell nanocages from surface etching and ion-exchange of ZIF-67 for ultra-high rate-capability sodium ion battery. J Colloid Interface Sci 2024; 660:907-915. [PMID: 38280283 DOI: 10.1016/j.jcis.2024.01.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Development of high-performance metal sulfides anode materials is a great challenge for sodium-ion batteries (SIBs). In this work, a cobalt-based imidazolate framework (ZIF-67) were firstly synthesized and applied as precursor. After the successive surface etching, ion exchange and sulfidation processes, the final cobalt-vanadium sulfide yolk-shell nanocages were obtained (CoS2/VS4@NC) with VS4 shell and CoS2 yolk encapsulated into nitrogen doped carbon frameworks. This yolk-shell nanocage structure effectively increases the specific surface area and provides enough space for inhibiting the volume change during charge/discharge processes. Besides, the nitrogen doped carbon skeleton greatly improves the ionic conductivity and facilitates ion transport. When used as the anode materials for SIBs, the yolk-shell nanocages of CoS2/VS4@NC electrode exhibits excellent rate capability and stable cycle performance. Notably, it displays a long-term cycling stability with excellent capacity of 417.28 mA h g-1 after 700 cycles at a high current density of 5 A/g. This developed approach here provides a new route for the design and synthesis of various yolk-shell nanocages nanomaterials from enormous MOFs with multitudinous compositions and morphologies and can be extended to the application into other secondary batteries and energy storage fields.
Collapse
Affiliation(s)
- Feng Xu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shilan Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shengdong Jing
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xiaoli Peng
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Long Yuan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Zhou JE, Reddy RCK, Zhong A, Li Y, Huang Q, Lin X, Qian J, Yang C, Manke I, Chen R. Metal-Organic Framework-Based Materials for Advanced Sodium Storage: Development and Anticipation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312471. [PMID: 38193792 DOI: 10.1002/adma.202312471] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Indexed: 01/10/2024]
Abstract
As a pioneering battery technology, even though sodium-ion batteries (SIBs) are safe, non-flammable, and capable of exhibiting better temperature endurance performance than lithium-ion batteries (LIBs), because of lower energy density and larger ionic size, they are not amicable for large-scale applications. Generally, the electrochemical storage performance of a secondary battery can be improved by monitoring the composition and morphology of electrode materials. Because more is the intricacy of a nanostructured composite electrode material, more electrochemical storage applications would be expected. Despite the conventional methods suitable for practical production, the synthesis of metal-organic frameworks (MOFs) would offer enormous opportunities for next-generation battery applications by delicately systematizing the structure and composition at the molecular level to store sodium ions with larger sizes compared with lithium ions. Here, the review comprehensively discusses the progress of nanostructured MOFs and their derivatives applied as negative and positive electrode materials for effective sodium storage in SIBs. The commercialization goal has prompted the development of MOFs and their derivatives as electrode materials, before which the synthesis and mechanism for MOF-based SIB electrodes with improved sodium storage performance are systematically discussed. Finally, the existing challenges, possible perspectives, and future opportunities will be anticipated.
Collapse
Affiliation(s)
- Jian-En Zhou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - R Chenna Krishna Reddy
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ao Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yilin Li
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qianhong Huang
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiaoming Lin
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chao Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Facile synthesis of hierarchical (NiCo)Se/(NiCo)Se2@C nanostructure via the synergistic effect of carbonization and selenization. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Wang H, Ren JH, Hou JA, Sun CZ, Liu YY, Zhang CY. Morphology-controlled Co0.5Ni0.5S2-C double-shell porous microspheres for the construction of high-performance asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
7
|
Femtosecond laser induced one-step nanopatterning and preparation of rGO/RuO2 electrodes for high-performance micro-supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214544] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Zhou P, Zhang M, Wang L, Huang Q, Su Z, Xu P, Zou R, Wang X, Zeng C, Ba K. MOFs-Derived Flower-Like Hierarchically Porous Zn-Mn-Se/C Composite for Extraordinary Rate Performance and Durable Anode of Sodium-Ion and Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203964. [PMID: 35908801 DOI: 10.1002/smll.202203964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The slow kinetics and poor structural stability prevent transition metal selenides from being widely used in sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). Herein, the "flower-like" porous carbon anchored by Zn-Mn binary selenides (ZMS@FC) composites are fabricated by selenizing the modified hierarchically metal-organic frameworks. The 2D conductive hierarchically flakes' abundant pore structure and multiple active sites shorten the ion diffusion length and promote conductivity, while the synergistic effect of the binary metals and intrinsic large pseudocapacitive contribution effectively improve capacity and rate performance. ZMS@FC composites exhibit impressive rate capability of 294.4 mA h g-1 at 10 A g-1 and excellent cyclic stability with 369.6 mA h g-1 specific capacity retention at 2 A g-1 after 1000 cycling in SIBs. It is noted that 156.9 mA h g-1 can be retained at 5 A g-1 and 227.0 mA h g-1 is remained after 500 cycles at 2 A g-1 in PIBs. The ex situ X-ray diffraction patterns and transmission electron microscopy pictures are used to confirm the conversion reaction processes of the Zn-Mn-Se. Designing high-performance energy storage materials may benefit greatly from the universal synthesis technology of bimetallic sulfide anodes for enhanced SIBs and PIBs.
Collapse
Affiliation(s)
- Peng Zhou
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Mingyu Zhang
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Liping Wang
- Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, P. R. China
| | - Qizhong Huang
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Zhean Su
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Ping Xu
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Renhao Zou
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Xiaodong Wang
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Cen Zeng
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| | - Kaixun Ba
- National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
10
|
Li H, Yu G, Luo J, Li G, Wang W, He B, Hou Z, Yin H. Soft-template-assisted synthesis of Petals-like MoS2 nanosheets covered with N-doped carbon for long cycle-life sodium-ion battery anode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Obeid MM, Ni D, Du PH, Sun Q. Design of Three-Dimensional Metallic Biphenylene Networks for Na-Ion Battery Anodes with a Record High Capacity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32043-32055. [PMID: 35816506 DOI: 10.1021/acsami.2c07436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Na-ion batteries (NIBs) capture intensive research interest in large-scale energy storage applications because of sodium's abundant resources and low cost. However, the low capacity, poor conductivity, and short cycle life of the commonly used anodes are the main challenges in developing advanced NIBs. Here, stimulated by the recent successful synthesis of biphenylene [Science 2021, 372, 852], we show that these problems can be curbed by assembling armchair biphenylene nanoribbons of different widths into three-dimensional architectures, which lead to homogeneously distributed nanopores with robust structural and mechanical stability. Through density functional theory and molecular dynamics calculations combined with the tight-binding model, we find that the assembled 3D biphenylene structures are metallic and thermally stable up to 2500 K, where the metallicity is further identified to originate from the pz-orbitals (π-bonds) of the sp2 carbon atoms. Especially, the optimal assembled structures HexC28 (HexC46) deliver a gravimetric capacity of 956 (1165) mA h g-1 and a volumetric capacity of 1109 (874) mA h mL-1, which are much higher than those of graphite and hard carbon anodes. Moreover, they also show a suitable average potential, negligible volume change, and low diffusion energy barrier. These findings demonstrate that assembling biphenylene nanoribbons is a promising strategy for designing next-generation NIB anodes.
Collapse
Affiliation(s)
- Mohammed M Obeid
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Dongyuan Ni
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peng-Hu Du
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qiang Sun
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Deng Q, Wang M, Liu X, Fan H, Zhang Y, Yang HY. Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries. J Colloid Interface Sci 2022; 626:700-709. [DOI: 10.1016/j.jcis.2022.06.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
|
13
|
Liu Y, Su MY, Gu ZY, Zhang KY, Wang XT, Du M, Guo JZ, Wu XL. Advanced Lithium Primary Batteries: Key Materials, Research Progresses and Challenges. CHEM REC 2022; 22:e202200081. [PMID: 35585030 DOI: 10.1002/tcr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Indexed: 11/06/2022]
Abstract
In recent years, with the vigorous development and gradual deployment of new energy vehicles, more attention has been paid to the research on lithium-ion batteries (LIBs). Compared with the booming LIBs, lithium primary batteries (LPBs) own superiority in specific energy and self-discharge rate and are usually applied in special fields such as medical implantation, aerospace, and military. Widespread application in special fields also means more stringent requirements for LPBs in terms of energy density, working temperature range and shelf life. Therefore, how to obtain LPBs with high energy density, wide operational temperature range and long storage life is of great importance in future development. In view of the above, this paper reviews the latest research on LPBs in cathode, anode and electrolyte over the years, and puts forward relevant insights for LPBs, along with the intention to explore avenues for the design of LPBs components in the coming decades and promote further development in this field.
Collapse
Affiliation(s)
- Yan Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Meng-Yuan Su
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Kai-Yang Zhang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Miao Du
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.,MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
14
|
Sun R, Dong S, Xu F, Li Z, Wang C, Lu S, Fan H. Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate {(NH 4) 2V 6O 16} for stable zinc ion storage. Dalton Trans 2022; 51:7607-7612. [PMID: 35510508 DOI: 10.1039/d2dt00665k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, aqueous zinc-ion batteries have become a hot research topic in the field of grid-scale application, which can be attributed to their low-cost, aqueous electrolyte and dominant theoretical reversible capacity. Nevertheless, the lack of suitable cathode materials greatly hinders the development of aqueous zinc-ion batteries. In this work, we adopt a simple one-step synthesis strategy to prepare (NH4)2V6O16 with an intercalation of Na+ and H2O, which exhibits a novel crystal structure in which the ammonium ion, crystal water, and sodium ion co-locate in the V3O8 layers. The co-intercalation not only effectively enhances the binding energy between V-O layers to suppress vanadium dissolution but also successfully improves the structural stability to alleviate the structural collapse during the cyclic process. As result, (NH4)2V6O16 with the intercalation of crystal water and Na+ presents a remarkable reversible discharge capacity of 423.9 mA h g-1 after 90 cycles at 0.1 A g-1 with an excellent energy density of 350.3 W h kg-1 and demonstrates an outstanding specific capacity of 182.5 mA h g-1 at the high current density of 5 A g-1 upon 1400 cycles during the ultra-wide voltage window of 0.1-2.0 V.
Collapse
Affiliation(s)
- Rui Sun
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China. .,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Siyang Dong
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Feng Xu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Zhiyong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China. .,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Caihong Wang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Li X, Liang H, Qin B, Wang M, Zhang Y, Fan H. Rational design of heterostructured bimetallic sulfides (CoS2/NC@VS4) with VS4 nanodots decorated on CoS2 dodecahedron for high-performance sodium and potassium ion batteries. J Colloid Interface Sci 2022; 625:41-49. [DOI: 10.1016/j.jcis.2022.05.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 10/31/2022]
|
16
|
Xie X, Sun P, Liu W, Gong T, Lv X, Fang L, Wei Y, Sun X. Novel Fe 2.55Sb 2 alloy nanoparticles incorporated in N-doped carbon as a bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Fe2.55Sb2 alloy nanoparticles are incorporated in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery.
Collapse
Affiliation(s)
- Xing Xie
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Panpan Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Weitao Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Tao Gong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaowei Lv
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Liang Fang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yongan Wei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaohua Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
17
|
Su Z, Huang J, Wang R, Zhang Y, Liu Z, Fan H. Co-substitution in a Prussian blue analog with a hollow heterostructure for ultrahigh capacity and rate capability aqueous Zn 2+ batteries. Chem Commun (Camb) 2022; 58:8065-8068. [DOI: 10.1039/d2cc02974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel and manganese co-substitution in a hollow Prussian blue nanocubes has been successfully carried out via utilizing a high-concentration polymer template, with an ultrahigh capacity of 138.4 mA h g−1 at 0.05 A g−1 in an aqueous zinc-ion battery.
Collapse
Affiliation(s)
- Zhihao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jionghao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Runhao Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhu H, Li Z, Xu F, Qin Z, Sun R, Wang C, Lu S, Zhang Y, Fan H. Ni 3Se 4@CoSe 2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J Colloid Interface Sci 2021; 611:718-725. [PMID: 34876265 DOI: 10.1016/j.jcis.2021.11.175] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Core-shell structured Ni-ZIF-67@ZIF-8 derived bimetal selenides encapsulating into a 3D interpenetrating dual-carbon framework (Ni3Se4@CoSe2@C/CNTs) have been designed and prepared via carbonization and subsequent selenization processes. In this hierarchical structure, Ni3Se4@CoSe2 nanocrystals were uniformly dispersed into the 3D carbon frameworkstructure/carbon nanotubes networks, which greatly enhanced the electronic conductivity and further enabled ultrafast Na-ion diffusion kinetics. When used as anode materials of sodium ion battery (SIB), The Ni3Se4@CoSe2@C/CNTs electrode delivered the excellent rate capability of 206 mA h g-1 at 3 A g-1 and marvelous cyclic stability with capacity retention of 243 mA h g-1 after 600 cycles at 1 A g-1. This research provides a new way to prepare bimetallic selenide derived from MOF precursor with amazing heterostructure as the advanced anode materials for SIBs.
Collapse
Affiliation(s)
- Hangyi Zhu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zhiyong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Feng Xu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaoxia Qin
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Rui Sun
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Caihong Wang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shengjun Lu
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Haosen Fan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|