1
|
Wang T, Zhu J, Gao L, Wei M, Zhang D, Chen L, Wu H, Ma J, Li L, Zhang N, Wang Y, Xing Q, He L, Hong F, Qin S. Identification of circular RNA biomarkers for Pien Tze Huang treatment of CCl4‑induced liver fibrosis using RNA‑sequencing. Mol Med Rep 2022; 26:309. [PMID: 36004475 PMCID: PMC9437966 DOI: 10.3892/mmr.2022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pien Tze Huang (PZH), a common hepatoprotective Traditional Chinese Medicine that has been found to be an effective treatment for carbon tetrachloride-induced hepatic damage, including liver fibrosis. Circular RNAs (circRNAs) serve a crucial role in regulating gene expression levels via circRNA/micro (mi)RNA/mRNA networks in several human diseases and biological processes. However, whether circRNAs are involved in the underlying mechanism of the therapeutic effects of PZH on liver fibrosis remains unclear. Therefore, the aim of the present study was to investigate these effects using circRNA expression profiles from PZH-treated fibrotic livers in model mice. A case-control study on >59,476 circRNAs from CCl4-induced (control group, n=6) and PZH-treated (case group, n=6) mice was performed using circRNA sequencing in liver tissues. PZH treatment resulted in the differential expression of 91 circRNAs, including 58 upregulated and 33 downregulated circRNAs. Furthermore, the construction of competing endogenous networks also indicated that differentially expressed circRNAs acted as miRNA sponges. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of miRNA targets demonstrated that PZH-affected circRNAs were mainly involved in biological processes such as ‘positive regulation of fibroblast proliferation’, ‘cellular response to interleukin-1’ and ‘regulation of DNA-templated transcription in response to stress’ and in a number of important pathways, such as ‘TNF signaling pathway’, ‘PI3K-Akt signaling pathway’, ‘IL-17 signaling pathway’ and ‘MAPK signaling pathway’. To further validate the bioinformatics data, reverse transcription–quantitative PCR was performed on seven miRNA targets in a human hepatic stellate LX-2 cell model. The results suggested that seven of the miRNAs exhibited regulatory patterns that were consistent with those of the transcriptome sequencing results. Kaplan-Meier survival analysis demonstrated that the expression levels of dihydrodiol dehydrogenase and solute carrier family 7, member 11 gene were significantly associated with patient survival, 269 patients with liver hepatocellular carcinoma from The Cancer Genome Atlas database. To the best of our knowledge, this was the first study to provide evidence that PZH affects circRNA expression levels, which may serve important roles in PZH-treated fibrotic liver through the regulation of functional gene expression. In conclusion, the present study provided new insights into the mechanism underlying the pathogenesis of liver fibrosis and identified potential novel, efficient, therapeutic targets against liver injury.
Collapse
Affiliation(s)
- Ting Wang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jinhang Zhu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Longhui Gao
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Muyun Wei
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Di Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Luan Chen
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Wu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jingsong Ma
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lixing Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Na Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 201102, P.R. China
| | - Lin He
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fei Hong
- Fujian Provincial Key Laboratory of Pien Tze Huang Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| | - Shengying Qin
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
2
|
Zhu J, Zhang D, Wang T, Chen Z, Chen L, Wu H, Huai C, Sun J, Zhang N, Wei M, Hong F, Qin S. Target identification of hepatic fibrosis using Pien Tze Huang based on mRNA and lncRNA. Sci Rep 2021; 11:16980. [PMID: 34417500 PMCID: PMC8379174 DOI: 10.1038/s41598-021-96459-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis is a spontaneous wound-healing response triggered by chronic liver injury. Pien Tze Huang (PZH), a traditional Chinese herbal medicine, has been widely used to treat various hepatic diseases in Asia. We used a CCl4-induced mouse model to establish a PZH group of hepatic fibrosis mice treated with PZH and a control group of hepatic fibrosis mice without any treatment. We performed RNA-seq and mass spectrometry sequencing to investigate the mechanism of the PZH response in hepatic fibrosis and identified multiple differentially expressed transcripts (DETs) and proteins (DEPs) that may be drug targets of PZH. Liver functional indices, including serum albumin (ALB), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were significantly decreased in the PZH treatment group (P < 0.05) in the eighth week. Hematoxylin-eosin (HE), Masson and Sirius red staining demonstrated that PZH significantly inhibited infiltration of inflammatory cells and collagen deposition. A total of 928 transcripts and 138 proteins were differentially expressed in PZH-treated mice compared to the control group. Gene Ontology (GO) enrichment analysis suggested that PZH may alleviate liver injury and fibrosis by enhancing the immune process. Taken together, our results revealed that multiple DETs and DEPs may serve as drug targets of PZH in hepatic fibrosis patient in future clinical practice.
Collapse
Affiliation(s)
- Jinhang Zhu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiliang Chen
- Fujian Provincial Key Laboratory of PTH Natural Medicine Research and Development, Zhangzhou PTH Pharmaceutical CO., LTD, Zhangzhou, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Muyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Hong
- Fujian Provincial Key Laboratory of PTH Natural Medicine Research and Development, Zhangzhou PTH Pharmaceutical CO., LTD, Zhangzhou, China.
| | - Shengying Qin
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Characteristics and Outcomes of Children With Cystic Fibrosis Hospitalized With Cirrhosis in the United States. Am J Gastroenterol 2021; 116:1734-1737. [PMID: 33927124 PMCID: PMC8484050 DOI: 10.14309/ajg.0000000000001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION To describe the characteristics and outcomes of children with cystic fibrosis (CF) hospitalized with cirrhosis in the United States. METHODS We conducted a population-based cohort study of hospitalizations among children with CF using the 2016 Kid's Inpatient Database. RESULTS In total, 9,615 admissions were analyzed. Diagnosis of cirrhosis was present in 509 (5.3%) and was significantly associated with increased mortality, length of stay, and hospital charges compared with those without cirrhosis. Hepatic encephalopathy was significantly associated with death in children with cirrhosis. DISCUSSION Future interventions should be designed to support children with CF who have cirrhosis to improve clinical outcomes.
Collapse
|