1
|
Genome-wide identification and characterization of myosin genes in the silkworm, Bombyx mori. Gene 2019; 691:45-55. [PMID: 30611842 DOI: 10.1016/j.gene.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/18/2018] [Accepted: 12/01/2018] [Indexed: 11/21/2022]
Abstract
Myosins are a large family of actin filament-based motor proteins with a broad range of functions such as intracellular membrane trafficking, endocytosis, exocytosis, organellar transport, growth cone motility, cytokinesis, and cell locomotion. They are found in many organisms from fungi to humans. The myosin gene family in Bombyx mori is poorly studied, even though the molecular functions of these genes in vertebrates and insects, such as Drosophila, are well known. We identified 16 myosin genes from B. mori and identified the myosin genes in 12 vertebrates, eight insects, three nematodes, and seven protozoa. The number of myosin genes in vertebrates is double the number in invertebrates. The number of myosin isoforms in classes I and II is larger in vertebrates compared to invertebrates. B. mori myosin genes can be classified into 11 classes. Compared to B. mori, some myosin classes are not present in other insects. Classes I, II, XVIII, and XXI appear to be important for insect survival because they are conserved among nine insects. The relatively large sizes of B. mori myosin genes are due to their longer introns. Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) analysis demonstrated that many B. mori myosin genes have tissue-specific expression and exhibit temporal-specific activity during metamorphosis. These data provide insights into evolutionary and functional aspects of B. mori myosin genes that could be useful for the study of homologous myosins in other Lepidoptera species.
Collapse
|
2
|
Gliding motility in apicomplexan parasites. Semin Cell Dev Biol 2015; 46:135-42. [DOI: 10.1016/j.semcdb.2015.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
3
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Heintzelman MB, Mateer MJ. GpMyoF, a WD40 repeat-containing myosin associated with the myonemes of Gregarina polymorpha. J Parasitol 2008; 94:158-68. [PMID: 18372636 DOI: 10.1645/ge-1339.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents the first characterization of a WD40 repeat-containing myosin identified in the apicomplexan parasite Gregarina polymorpha. This 222.7 kDa myosin, GpMyoF, contains a canonical myosin motor domain, a neck domain with 6 IQ motifs, a tail domain containing short regions of predicted coiled-coil structure, and, most notably, multiple WD40 repeats at the C-terminus. In other proteins such repeats assemble into a beta-propeller structure implicated in mediating protein-protein interactions. Confocal microscopy suggests that GpMyoF is localized to the annular myonemes that gird the parasite cortex. Extraction studies indicate that this myosin shows an unusually tight association with the cytoskeletal fraction and can be solubilized only by treatment with high pH (11.5) or the anionic detergent sarkosyl. This novel myosin and its homologs, which have been identified in several related genera, appear to be unique to the Apicomplexa and represent the only myosins known to contain the WD40 domain. The function of this myosin in G. polymorpha or any of the other apicomplexan parasites remains uncertain.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | |
Collapse
|
5
|
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 2006; 103:3681-6. [PMID: 16505385 PMCID: PMC1533776 DOI: 10.1073/pnas.0506307103] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.
Collapse
Affiliation(s)
- Bernardo J Foth
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|
6
|
Baum J, Richard D, Healer J, Rug M, Krnajski Z, Gilberger TW, Green JL, Holder AA, Cowman AF. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem 2006; 281:5197-208. [PMID: 16321976 DOI: 10.1074/jbc.m509807200] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apicomplexan parasites constitute one of the most significant groups of pathogens infecting humans and animals. The liver stage sporozoites of Plasmodium spp. and tachyzoites of Toxoplasma gondii, the causative agents of malaria and toxoplasmosis, respectively, use a unique mode of locomotion termed gliding motility to invade host cells and cross cell substrates. This amoeboid-like movement uses a parasite adhesin from the thrombospondin-related anonymous protein (TRAP) family and a set of proteins linking the extracellular adhesin, via an actin-myosin motor, to the inner membrane complex. The Plasmodium blood stage merozoite, however, does not exhibit gliding motility. Here we show that homologues of the key proteins that make up the motor complex, including the recently identified glideosome-associated proteins 45 and 50 (GAP40 and GAP50), are present in P. falciparum merozoites and appear to function in erythrocyte invasion. Furthermore, we identify a merozoite TRAP homologue, termed MTRAP, a micronemal protein that shares key features with TRAP, including a thrombospondin repeat domain, a putative rhomboid-protease cleavage site, and a cytoplasmic tail that, in vitro, binds the actin-binding protein aldolase. Analysis of other parasite genomes shows that the components of this motor complex are conserved across diverse Apicomplexan genera. Conservation of the motor complex suggests that a common molecular mechanism underlies all Apicomplexan motility, which, given its unique properties, highlights a number of novel targets for drug intervention to treat major diseases of humans and livestock.
Collapse
Affiliation(s)
- Jake Baum
- Division of Infection and Immunity, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Herm-Götz A, Delbac F, Weiss S, Nyitrai M, Stratmann R, Tomavo S, Sibley LD, Geeves MA, Soldati D. Functional and biophysical analyses of the class XIV Toxoplasma gondii Myosin D. J Muscle Res Cell Motil 2006; 27:139-51. [PMID: 16470333 DOI: 10.1007/s10974-005-9046-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The obligate intracellular parasite Toxoplasma gondii uses gliding motility to migrate across the biological barriers of the host and to invade cells. This unique form of locomotion requires an intact actin cytoskeleton and involves at least one motor protein (TgMyoA) that belongs to the class XIV of the myosin superfamily. TgMyoA is anchored in the inner membrane complex and is essential for the gliding motion, host cell invasion and egress of T. gondii tachyzoites. TgMyoD is the smallest T. gondii myosin and is structurally very closely related to TgMyoA. We show here that TgMyoD exhibits similar transient kinetic properties as the fast single-headed TgMyoA. To determine if TgMyoD also contributes to parasite gliding motility, the TgMyoD gene was disrupted by double homologous recombination. In contrast to TgMyoA, TgMyoD gene is dispensable for tachyzoite propagation and motility. Parasites lacking TgMyoD glide normally and their virulence is not compromised in mice. The fact that TgMyoD is predominantly expressed in bradyzoites explains the absence of a phenotype observed with myodko in tachyzoites and does not exclude a role of this motor in gliding that would be restricted to the cyst forming but nevertheless motile stage of the parasite.
Collapse
Affiliation(s)
- Angelika Herm-Götz
- Hygieneinstitut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou J, Huang B, Suzuki H, Fujisaki K, Igarashi I, Xuan X. Isolation and Identification of an Actin Gene From Babesia gibsoni. J Parasitol 2006; 92:208-10. [PMID: 16629343 DOI: 10.1645/ge-577r2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Actin is a ubiquitous and highly conserved microfilament protein that is hypothesized to play a mechanical force-generating role in the unusual gliding motility of sporozoan zoites and their active penetration of host cells. We have identified and isolated an actin gene from a Babesia gibsoni cDNA library by random sequencing. The complete nucleotide sequence of the actin gene is 1,243 bp; a single open reading frame encodes a polypeptide of 377 amino acid residues. The deduced amino acid sequence showed a high homology with actins from other species, especially with reported apicomplexan protozoans. The antiserum against recombinant actin expressed in Escherichia coli recognizes a 42-kDa native protein, which is consistent with its expected size. Immunofluorescence and confocal microscopic observation revealed that the protein is diffusely distributed throughout the B. gibsoni parasites.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Heintzelman MB. Cellular and Molecular Mechanics of Gliding Locomotion in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:79-129. [PMID: 16939778 DOI: 10.1016/s0074-7696(06)51003-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliding is a form of substrate-dependent cell locomotion exploited by a variety of disparate cell types. Cells may glide at rates well in excess of 1 microm/sec and do so without the gross distortion of cellular form typical of amoeboid crawling. In the absence of a discrete locomotory organelle, gliding depends upon an assemblage of molecules that links cytoplasmic motor proteins to the cell membrane and thence to the appropriate substrate. Gliding has been most thoroughly studied in the apicomplexan parasites, including Plasmodium and Toxoplasma, which employ a unique assortment of proteins dubbed the glideosome, at the heart of which is a class XIV myosin motor. Actin and myosin also drive the gliding locomotion of raphid diatoms (Bacillariophyceae) as well as the intriguing form of gliding displayed by the spindle-shaped cells of the primitive colonial protist Labyrinthula. Chlamydomonas and other flagellated protists are also able to abandon their more familiar swimming locomotion for gliding, during which time they recruit a motility apparatus independent of that driving flagellar beating.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
10
|
Abstract
This report presents an initial comparison of motor, neck, and tail domains of myosin genes in Tetrahymena thermophila. An unrooted phylogenetic tree drawn from alignment of predicted amino acid translations determined the relationship among 13 myosins in Tetrahymena and their relationship to the myosin superfamily. The myosins in Tetrahymena did not align with any of the previously named myosin classes. Twelve of the Tetrahymena myosins form a new class designated as XX. The other Tetrahymena myosin is divergent from the twelve. Surprisingly, none of the myosins in Tetrahymena aligned with either class I, class II, or class V myosins. Apparent absence of a class II myosin is an indication that cytokinesis in Tetrahymena either utilizes an unconventional myosin or does not require a myosin motor.
Collapse
Affiliation(s)
- Selwyn A Williams
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | | |
Collapse
|
11
|
Chaparro-Olaya J, Margos G, Coles DJ, Dluzewski AR, Mitchell GH, Wasserman MM, Pinder JC. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. ACTA ACUST UNITED AC 2005; 60:200-13. [PMID: 15754360 DOI: 10.1002/cm.20055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Six myosins genes are now annotated in the Plasmodium falciparum Genome Project. Malaria myosins have been named alphabetically; accordingly, we refer to the two latest additions as Pfmyo-E and Pfmyo-F. Both new myosins contain regions characteristic of the functional motor domain of "true" myosins and, unusually for P. falciparum myosins, Pfmyo-F encodes two consensus IQ light chain-binding motifs. Phylogenetic analysis of the 17 currently known apicomplexan myosins together with one representative of each myosin class clusters all but one of the apicomplexan sequences together in Class XIV. This refines the earlier definition of the Class XIV Subclasses XIVa and XIVb. RT-PCR on blood stage parasite mRNA amplifies a specific product for all six myosins and each shows developmentally regulated transcription. Thus: Pfmyo-A and Pfmyo-B genes are transcribed throughout development; Pfmyo-C is predominant in trophozoites; Pfmyo-D occurs in trophozoites and schizonts; Pfmyo-E though barely present in earlier stages is abundant in schizonts; Pfmyo-F increases steadily throughout development and maturation. It is known that Pfmyo-A and Pfmyo-B are synthesised during late schizogony and we now show that Pfmyo-D expression is also temporally regulated to late trophozoites and schizonts where it distributes close to segregating nuclei. Thus, in asexual stages myosin synthesis does not always parallel transcript accumulation, showing that translation is also regulated. The implication is that the mRNAs are either subjected to turnover, synthesised and degraded, or that they are sequestered in an inactivate form until required for protein synthesis.
Collapse
|
12
|
Abstract
Actin and two class XIV unconventional myosins have been cloned from Gregarina polymorpha, a large protozoan parasite inhabiting the gut of the mealworm Tenebrio molitor. These proteins were most similar to their homologues expressed in the coccidian and haemosporidian Apicomplexa such as Toxoplasma and Plasmodium despite the significant morphological differences among these parasites. Both actin and G. polymorpha myosin A (GpMyoA), a 92.6-kDa protein characterized by a canonical myosin head domain and short, highly basic tail, localized to both the longitudinally-disposed surface membrane folds (epicytic folds) of the parasite as well as to the subjacent rib-like myonemes that gird the parasite cortex. G. polymorpha myosin B (GpMyoB), a 96.3-kDa myosin, localized exclusively to the epicytic folds of the parasite. Both myosins were tightly associated with the cortical cytoskeleton and were solubilized only with a combination of high salt and detergent. Both GpMyoA and GpMyoB could bind to actin in an ATP-sensitive fashion. The distribution of actin and the unconventional myosins in G. polymorpha was consistent with their proposed participation in both the rapid (1-10 microm/sec) gliding motility exhibited by the gregarines as well as the myoneme-mediated bending motions that have been observed in these parasites.
Collapse
|
13
|
Abstract
Motility is a characteristic of most living organisms and often requires specialized structures like cilia or flagella. An alternative is amoeboid movement, where the polymerization/depolymerization of actin leads to the formation of pseudopodia, filopodia and/or lamellipodia that enable the cell to crawl along a surface. Despite their lack of locomotive organelles and in absence of cell deformation, members of the apicomplexan parasites employ a unique form of locomotion called gliding motility to promote their migration across biological barriers and to power host-cell invasion and egress. Detailed studies in Toxoplasma gondii and Plasmodium species have revealed that this unique mode of movement is dependent on a myosin of class XIV and necessitates actin dynamics and the concerted discharge and processing of adhesive proteins. Gliding is essential for the survival and infectivity of these obligate intracellular parasites, which cause severe disease in humans and animals.
Collapse
Affiliation(s)
- Dominique Soldati
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London UK, SW7 2AZ.
| | | |
Collapse
|
14
|
Chaparro-Olaya J, Dluzewski AR, Margos G, Wasserman MM, Mitchell GH, Bannister LH, Pinder JC. The multiple myosins of malaria: The smallest malaria myosin, Plasmodium falciparum myosin-B (Pfmyo-B) is expressed in mature schizonts and merozoites. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|