1
|
Chen XL. Effects of drag coefficients on substrate-based cell motility. Phys Rev E 2025; 111:024405. [PMID: 40103160 DOI: 10.1103/physreve.111.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025]
Abstract
Substrate-based cell motility is crucial for biological processes, and heterogeneity in the physical properties of the substrate can influence the outcomes of these processes. We demonstrate numerically the impact of different adhesion strengths on one substrate, achieved by adjusting the drag coefficients of different regions on the substrate, on cellular dynamics. We observed that, given the same initial cell location relative to the interface between two regions with different adhesion strengths, the behavior of a cell differs depending on whether it is initially a static cell or a stationary moving cell. Furthermore, we also introduced external stimulation to the cell. The cellular motility behavior around the interface can also be affected by adjusting the magnitude, range, and duration of the external stimulation.
Collapse
Affiliation(s)
- Xuan-Lin Chen
- Heilongjiang University, Department of Physics, Harbin, Heilongjiang 150000, China
| |
Collapse
|
2
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
3
|
Allen GM, Lee KC, Barnhart EL, Tsuchida MA, Wilson CA, Gutierrez E, Groisman A, Theriot JA, Mogilner A. Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration. Cell Syst 2020; 11:286-299.e4. [PMID: 32916096 PMCID: PMC7530145 DOI: 10.1016/j.cels.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023]
Abstract
Motile cells navigate complex environments by changing their direction of travel, generating left-right asymmetries in their mechanical subsystems to physically turn. Currently, little is known about how external directional cues are propagated along the length scale of the whole cell and integrated with its force-generating apparatus to steer migration mechanically. We examine the mechanics of spontaneous cell turning in fish epidermal keratocytes and find that the mechanical asymmetries responsible for turning behavior predominate at the rear of the cell, where there is asymmetric centripetal actin flow. Using experimental perturbations, we identify two linked feedback loops connecting myosin II contractility, adhesion strength and actin network flow in turning cells that are sufficient to explain the observed cell shapes and trajectories. Notably, asymmetries in actin polymerization at the cell leading edge play only a minor role in the mechanics of cell turning-that is, cells steer from the rear.
Collapse
Affiliation(s)
- Greg M Allen
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kun Chun Lee
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Erin L Barnhart
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark A Tsuchida
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cyrus A Wilson
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edgar Gutierrez
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, San Diego, CA 92023, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
4
|
Peruani F, Aranson IS. Cold Active Motion: How Time-Independent Disorder Affects the Motion of Self-Propelled Agents. PHYSICAL REVIEW LETTERS 2018; 120:238101. [PMID: 29932716 DOI: 10.1103/physrevlett.120.238101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Assemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to competition between neighbor alignment and noise-induced decoherence. However, very little is known of how the quenched (i.e., time-independent) disorder impacts active motion. Here we report on the effects of quenched disorder on the dynamics of self-propelled point particles. We identified three major types of quenched disorder relevant in the context of active matter: random torque, force, and stress. We demonstrate that even in the absence of external fluctuations ("cold active matter"), quenched disorder results in nontrivial dynamic phases not present in their "hot" counterpart. In particular, by analyzing when the equations of motion exhibit a Hamiltonian structure and when attractors may be present, we identify in which scenarios particle trapping, i.e., the asymptotic convergence of particle trajectories to bounded areas in space ("traps"), can and cannot occur. Our study provides new fundamental insights into active systems realized by self-propelled particles on natural and synthetic disordered substrates.
Collapse
Affiliation(s)
- Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
5
|
Mizuhara MS, Berlyand L, Aranson IS. Minimal model of directed cell motility on patterned substrates. Phys Rev E 2017; 96:052408. [PMID: 29347667 DOI: 10.1103/physreve.96.052408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Crawling cell motility is vital to many biological processes such as wound healing and the immune response. Using a minimal model we investigate the effects of patterned substrate adhesiveness and biophysical cell parameters on the direction of cell motion. We show that cells with low adhesion site formation rates may move perpendicular to adhesive stripes while those with high adhesion site formation rates results in motility only parallel to the substrate stripes. We explore the effects of varying the substrate pattern geometry and the strength of actin polymerization on the directionality of the crawling cell. These results reveal that high strength of actin polymerization results in motion perpendicular to substrate stripes only when the substrate is relatively nonadhesive; in particular, this suggests potential applications in motile cell sorting and guiding on engineered substrates.
Collapse
Affiliation(s)
- Matthew S Mizuhara
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, New Jersey 08628, USA
| | - Leonid Berlyand
- Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor S Aranson
- Departments of Biomedical Engineering, Chemistry and Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Liu AP, Chaudhuri O, Parekh SH. New advances in probing cell-extracellular matrix interactions. Integr Biol (Camb) 2017; 9:383-405. [PMID: 28352896 PMCID: PMC5708530 DOI: 10.1039/c6ib00251j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.
Collapse
Affiliation(s)
- Allen P. Liu
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA .
- Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI 48109 , USA
- Cellular and Molecular Biology Program , University of Michigan , Ann Arbor , MI 48109 , USA
- Biophysics Program , University of Michigan , Ann Arbor , MI 48109 , USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering , Stanford University , Stanford , CA 94305 , USA .
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy , Max Planck Institute for Polymer Research , Mainz 55128 , Germany .
| |
Collapse
|
7
|
Wang J, Schneider IC. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 2017; 120:81-93. [PMID: 28039755 PMCID: PMC5291342 DOI: 10.1016/j.biomaterials.2016.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA; Department of Genetics, Development and Cell Biology, Iowa State University, USA.
| |
Collapse
|
8
|
Tu C, Huang B, Zhou J, Liang Y, Tian J, Ji L, Liang X, Ye X. A Microfluidic Chip for Cell Patterning Utilizing Paired Microwells and Protein Patterns. MICROMACHINES 2016. [PMCID: PMC6190266 DOI: 10.3390/mi8010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell patterning has been widely used in research on fundamental cell biology and in applications such as tissue engineering, neuron network formation, cell based biosensor and drug screening. Although various methods have been developed, cell patterning in an enclosed microfluidic device at single cell level remains challenging. This paper describes a microfluidic device with microwells and protein patterns paired together in a single microchannel for an easy cell patterning. Cells captured in the microwells were positioned directly onto the protein patterns within 5 min and the patterning performance was successfully demonstrated using HeLa cells and human gallbladder carcinoma cells (SGC-996). Cells survived for 6 days in the microchannel. Cell attachment, migration, proliferation and cell colony formation were observed. Our device is free of topographic constraint for the patterned cells and no complex chemical modification to the substrate is needed, offering a simple, fast, and easy-to-operate way of patterning cells at single cell level in an enclosed microfluidic channel.
Collapse
Affiliation(s)
- Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Lin Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China; (L.J.); (X.L.)
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China; (L.J.); (X.L.)
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China; (C.T.); (B.H.); (J.Z.); (Y.L.); (J.T.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China
- Correspondence: ; Tel.: +86-571-8795-2756
| |
Collapse
|
9
|
Ziebert F, Löber J, Aranson IS. Macroscopic Model of Substrate-Based Cell Motility. PHYSICAL MODELS OF CELL MOTILITY 2016. [DOI: 10.1007/978-3-319-24448-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Löber J, Ziebert F, Aranson IS. Modeling crawling cell movement on soft engineered substrates. SOFT MATTER 2014; 10:1365-1373. [PMID: 24651116 DOI: 10.1039/c3sm51597d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-propelled motion, emerging spontaneously or in response to external cues, is a hallmark of living organisms. Systems of self-propelled synthetic particles are also relevant for multiple applications, from targeted drug delivery to the design of self-healing materials. Self-propulsion relies on the force transfer to the surrounding. While self-propelled swimming in the bulk of liquids is fairly well characterized, many open questions remain in our understanding of self-propelled motion along substrates, such as in the case of crawling cells or related biomimetic objects. How is the force transfer organized and how does it interplay with the deformability of the moving object and the substrate? How do the spatially dependent traction distribution and adhesion dynamics give rise to complex cell behavior? How can we engineer a specific cell response on synthetic compliant substrates? Here we generalize our recently developed model for a crawling cell by incorporating locally resolved traction forces and substrate deformations. The model captures the generic structure of the traction force distribution and faithfully reproduces experimental observations, like the response of a cell on a gradient in substrate elasticity (durotaxis). It also exhibits complex modes of cell movement such as "bipedal" motion. Our work may guide experiments on cell traction force microscopy and substrate-based cell sorting and can be helpful for the design of biomimetic "crawlers" and active and reconfigurable self-healing materials.
Collapse
Affiliation(s)
- Jakob Löber
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | | | | |
Collapse
|
11
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|
12
|
The Number of Lines a Cell Contacts and Cell Contractility Drive the Efficiency of Contact Guidance. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Recho P, Putelat T, Truskinovsky L. Contraction-driven cell motility. PHYSICAL REVIEW LETTERS 2013; 111:108102. [PMID: 25166712 DOI: 10.1103/physrevlett.111.108102] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Indexed: 06/03/2023]
Abstract
We propose a mechanism for the initiation of cell motility that is based on myosin-induced contraction and does not require actin polymerization. The translocation of a cell is induced by symmetry breaking of the motor-driven flow, and the ensuing asymmetry gives rise to a steady motion of the center of mass of a cell. The predictions of the model are consistent with observations on keratocytes.
Collapse
Affiliation(s)
- P Recho
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - T Putelat
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
14
|
Ziebert F, Aranson IS. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells. PLoS One 2013; 8:e64511. [PMID: 23741334 PMCID: PMC3669322 DOI: 10.1371/journal.pone.0064511] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate's elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes.
Collapse
Affiliation(s)
- Falko Ziebert
- Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany
- Institut Charles Sadron, Strasbourg, France
| | - Igor S. Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
15
|
Vignaud T, Blanchoin L, Théry M. Directed cytoskeleton self-organization. Trends Cell Biol 2012; 22:671-82. [PMID: 23026031 DOI: 10.1016/j.tcb.2012.08.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022]
Abstract
The cytoskeleton architecture supports many cellular functions. Cytoskeleton networks form complex intracellular structures that vary during the cell cycle and between different cell types according to their physiological role. These structures do not emerge spontaneously. They result from the interplay between intrinsic self-organization properties and the conditions imposed by spatial boundaries. Along these boundaries, cytoskeleton filaments are anchored, repulsed, aligned, or reoriented. Such local effects can propagate alterations throughout the network and guide cytoskeleton assembly over relatively large distances. The experimental manipulation of spatial boundaries using microfabrication methods has revealed the underlying physical processes directing cytoskeleton self-organization. Here we review, step-by-step, from molecules to tissues, how the rules that govern assembly have been identified. We describe how complementary approaches, all based on controlling geometric conditions, from in vitro reconstruction to in vivo observation, shed new light on these fundamental organizing principles.
Collapse
Affiliation(s)
- Timothée Vignaud
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologies et Sciences pour le Vivant, CNRS/UJF/INRA/CEA, 17 Rue des Martyrs, 38054, Grenoble, France
| | | | | |
Collapse
|
16
|
Effect of Actomyosin Contractility on Lamellipodial Protrusion Dynamics on a Micropatterned Substrate. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Portable microcontact printing device for cell culture. Biomaterials 2010; 31:8974-9. [DOI: 10.1016/j.biomaterials.2010.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/07/2010] [Indexed: 11/20/2022]
|
18
|
Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB. Force transmission in migrating cells. ACTA ACUST UNITED AC 2010; 188:287-97. [PMID: 20100912 PMCID: PMC2812525 DOI: 10.1083/jcb.200906139] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction-velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network's slipping over the substrate. Treatment with inhibitors of the actin-myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter.
Collapse
Affiliation(s)
- Maxime F Fournier
- Laboratoire de Biophysique Cellulaire, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Samarin SN, Koch S, Ivanov AI, Parkos CA, Nusrat A. Coronin 1C negatively regulates cell-matrix adhesion and motility of intestinal epithelial cells. Biochem Biophys Res Commun 2009; 391:394-400. [PMID: 19913511 DOI: 10.1016/j.bbrc.2009.11.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/07/2009] [Indexed: 11/24/2022]
Abstract
Coronins, WD-repeat actin-binding proteins, are known to regulate cell motility by coordinating actin filament turnover in lamellipodia of migrating cell. Here we report a novel mechanism of Coronin 1C-mediated cell motility that involves regulation of cell-matrix adhesion. RNAi silencing of Coronin 1C in intestinal epithelial cells enhanced cell migration and modulated lamellipodia dynamics by increasing the persistence of lamellipodial protrusion. Coronin 1C-depleted cells showed increased cell-matrix adhesions and enhanced cell spreading compared to control cells, while over-expression of Coronin 1C antagonized cell adhesion and spreading. Enhanced cell-matrix adhesion of coronin-deficient cells correlated with hyperphosphorylation of focal adhesion kinase (FAK) and paxillin, and an increase in number of focal adhesions and their redistribution at the cell periphery. siRNA depletion of FAK in coronin-deficient cells rescued the effects of Coronin 1C depletion on motility, cell-matrix adhesion, and spreading. Thus, our findings provide the first evidence that Coronin 1C negatively regulates epithelial cell migration via FAK-mediated inhibition of cell-matrix adhesion.
Collapse
Affiliation(s)
- Stanislav N Samarin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
20
|
Liu AP, Loerke D, Schmid SL, Danuser G. Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys J 2009; 97:1038-47. [PMID: 19686651 DOI: 10.1016/j.bpj.2009.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 02/02/2023] Open
Abstract
Live-cell imaging of individual clathrin-coated pit (CCP) dynamics has revealed a broad variation in their internalization kinetics, but the functional significance and mechanistic underpinnings of this heterogeneity remain unknown. One contributing factor may be the spatial variations in the underlying actin cortex. To test this, we cultured cells on fibronectin (Fn) micropatterned substrates to vary the cortical actin mechanics in a defined manner. Under these conditions, stress fibers became organized to bridge adhesive islands, creating spatial heterogeneity in the cortical actin architecture. CCP lifetimes within the Fn-coated islands were selectively prolonged. This differential effect was not due to adherence to Fn-coated surfaces, and was not observed in cells grown on patterned surfaces that did not induce organized stress fiber assembly. Pharmacological agents that lower cortical tension selectively lowered CCP lifetimes within Fn islands, thus abolishing the spatial heterogeneity in the CCP dynamics. Although we cannot rule out the possibility that other factors might locally affect CCP dynamics at Fn islands, our data suggest that localized modulation in cortical tension may spatially regulate clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Allen P Liu
- Department of Cell Biology, Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
21
|
Abstract
In spite of conspicuous differences in their polarized architecture, swimming unicellular eukaryotes and migrating cells from metazoa display a conserved hierarchical interlocking of the main cellular compartments, in which the microtubule network has a dominant role. A microtubule array can organize the distribution of endomembranes owing to a cell-wide and polarized extension around a unique nucleus-associated structure. The nucleus-associated structure in animal cells contains a highly conserved organelle, the centriole or basal body. This organelle has a defined polarity that can be transmitted to the cell. Its conservative mode of duplication seems to be a core mechanism for the transmission of polarities through cell division.
Collapse
Affiliation(s)
- Michel Bornens
- Compartimentation et Dynamique Cellulaires, UMR144 CNRS-Institut Curie, 26 rue d'Ulm, 75 248, Paris cedex 05, France.
| |
Collapse
|
22
|
Delanoë-Ayari H, Iwaya S, Maeda YT, Inose J, Rivière C, Sano M, Rieu JP. Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. ACTA ACUST UNITED AC 2008; 65:314-31. [PMID: 18205201 DOI: 10.1002/cm.20262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of forces exerted by migrating Dictyostelium amebae at different developmental stages was measured using traction force microscopy. By using very soft polyacrylamide substrates with a high fluorescent bead density, we could measure stresses as small as 30 Pa. Remarkable differences exist both in term of the magnitude and distribution of forces in the course of development. In the vegetative state, cells present cyclic changes in term of speed and shape between an elongated form and a more rounded one. The forces are larger in this first state, especially when they are symmetrically distributed at the front and rear edge of the cell. Elongated vegetative cells can also present a front-rear asymmetric force distribution with the largest forces in the crescent-shaped rear of the cell (uropod). Pre-aggregating cells, once polarized, only present this last kind of asymmetric distribution with the largest forces in the uropod. Except for speed, no cycle is observed. Neither the force distribution of pre-aggregating cells nor their overall magnitude are modified during chemotaxis, the later being similar to the one of vegetative cells (F(0) approximately 6 nN). On the contrary, both the force distribution and overall magnitude is modified for the fast moving aggregating cells. In particular, these highly elongated cells exert lower forces (F(0) approximately 3 nN). The location of the largest forces in the various stages of the development is consistent with the myosin II localization described in the literature for Dictyostelium (Yumura et al.,1984. J Cell Biol 99:894-899) and is confirmed by preliminary experiments using a GFP-myosin Dictyostelium strain.
Collapse
Affiliation(s)
- H Delanoë-Ayari
- Université de Lyon, F-6900, France, Université Lyon 1,CNRS UMR 5586, F-69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|