1
|
Mekeda IS, Balakhonov RY, Shirinian VZ. Switching the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1- b]furans via a [1,2]-aryl shift. Org Biomol Chem 2024; 22:7715-7724. [PMID: 39225492 DOI: 10.1039/d4ob01223b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The [1,2]-aryl shift reaction was used to synthesize naphtho[2,1-b]furans as promising fluorescent scaffolds for organic electronics. The target compounds are furan analogues of phenanthrene formally accessed by isosteric replacement of the CHCH moiety with an oxygen atom. The straightforward and robust approach involving a [1,2]-aryl shift as a key step provides easy access to a wide range of naphtho[2,1-b]furans with the possibility of late-stage functionalization. Efficient switching of the regioselectivity of acid-catalyzed reactions of arylnaphtho[2,1-b]furans via a [1,2]-aryl shift has been demonstrated. A one-pot protocol involving sequential intramolecular condensation/[1,2]-aryl shift/intermolecular oxidative aromatic coupling to provide access to binaphtho[2,1-b]furan analogues of BINOL was developed. The advantage of these compounds lies in the strong variation in chemical properties and spectral performance depending on the nature and position of the aryl substituent, which facilitates the synthesis of compounds with desired spectral characteristics and opens up prospects for their further use in electronics, biotechnologies and organic synthesis.
Collapse
Affiliation(s)
- I S Mekeda
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - R Yu Balakhonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninskyprosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Mustière R, Dassonville-Klimpt A, Sonnet P. Aminopyridines in the development of drug candidates against protozoan neglected tropical diseases. Future Med Chem 2024; 16:1357-1373. [PMID: 39109436 PMCID: PMC11318709 DOI: 10.1080/17568919.2024.2359361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 08/15/2024] Open
Abstract
Neglected tropical diseases (NTDs) pose a major threat in tropical zones for impoverished populations. Difficulty of access, adverse effects or low efficacy limit the use of current therapeutic options. Therefore, development of new drugs against NTDs is a necessity. Compounds containing an aminopyridine (AP) moiety are of great interest for the design of new anti-NTD drugs due to their intrinsic properties compared with their closest chemical structures. Currently, over 40 compounds with an AP moiety are on the market, but none is used against NTDs despite active research on APs. The aim of this review is to present the medicinal chemistry work carried out with these scaffolds, against protozoan NTDs: Trypanosoma cruzi, Trypanosoma brucei or Leishmania spp.
Collapse
Affiliation(s)
- Romain Mustière
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| | - Alexandra Dassonville-Klimpt
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| | - Pascal Sonnet
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| |
Collapse
|
3
|
Li Q, Wen C, Wu C, Luo R, Chen F. Highly Efficient Synthesis of 2-Substituted Benzo[b]furan Derivatives from the Cross-Coupling Reactions of 2-Halobenzo[b]furans with Organoalane Reagents. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1516-8745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA highly efficient and simple route for the synthesis of 2-substituted benzo[b]furans has been developed by palladium-catalyzed cross-coupling reaction of 2-halobenzo[b]furans with aryl, alkynyl, and alkylaluminum reagents. Various 2-aryl-, 2-alkynyl-, and 2-alkyl-substituted benzo[b]furan derivatives can be obtained in 23–97% isolated yields using 2–3 mol% PdCl2/4–6 mol% XantPhos as the catalyst under mild reaction conditions. The aryls bearing electron-donating or electron-withdrawing groups in 2-halobenzo[b]furans gave products in 40–97% isolated yields. In addition, aluminum reagents containing thienyl, furanyl, trimethylsilanyl, and benzyl groups worked efficiently with 2-halobenzo[b]furans as well, and three bioactive molecules with 2-substituted benzo[b]furan skeleton were synthesized. Furthermore, the broad substrates scope and the typical maintenance of vigorous efficiency on gram scale make this protocol a potentially practical method to synthesize 2-substituted benzo[b]furan derivatives. On the basis of the experimental results, a possible catalytic cycle has been proposed.
Collapse
Affiliation(s)
- Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
| | - Chang Wen
- College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
| | - Chuan Wu
- College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
| | - Ruiqiang Luo
- College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
| | - Feng Chen
- College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University
| |
Collapse
|
4
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
5
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
6
|
Al Mamari HH, Štefane B, Žugelj HB. Metal-catalyzed C–H bond functionalization of phenol derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Wen C, Jiang X, Wu K, Luo R, Li Q. Palladium-catalyzed cross-coupling reaction of alkenyl aluminums with 2-bromobenzo[b]furans. RSC Adv 2020; 10:19610-19614. [PMID: 35515440 PMCID: PMC9054126 DOI: 10.1039/d0ra02984j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Highly efficient and simple cross-coupling reactions of 2-bromobenzo[b]furans with alkenylaluminum reagents for the synthesis of 2-alkenylbenzo[b]furan derivatives using PdCl2 (3 mol%)/XantPhos (6 mol%) as catalyst are reported. Excellent yields (up to 97%) were obtained for a wide range of substrates at 80 °C for 4 h in DCE. PdCl2 (3 mol%)/XantPhos (6 mol%) complexes was found to be a highly efficient catalyst for the synthesis of 2-alkenylbenzo[b]furans from 2-bromobenzo[b]furans and alkenylaluminums. The reaction was also found to be effective in gram-scale synthesis.![]()
Collapse
Affiliation(s)
- Chang Wen
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Xin Jiang
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Kun Wu
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Ruiqiang Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| | - Qinghan Li
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- Chengdu
- China
| |
Collapse
|
8
|
de Heuvel E, Singh AK, Boronat P, Kooistra AJ, van der Meer T, Sadek P, Blaazer AR, Shaner NC, Bindels DS, Caljon G, Maes L, Sterk GJ, Siderius M, Oberholzer M, de Esch IJ, Brown DG, Leurs R. Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorg Med Chem 2019; 27:4013-4029. [DOI: 10.1016/j.bmc.2019.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023]
|
9
|
Landi G, Linciano P, Borsari C, Bertolacini CP, Moraes CB, Cordeiro-da-Silva A, Gul S, Witt G, Kuzikov M, Costi MP, Pozzi C, Mangani S. Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS Infect Dis 2019; 5:1105-1114. [PMID: 31012301 DOI: 10.1021/acsinfecdis.8b00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 (TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Borsari
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Claudia P. Bertolacini
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Carolina B. Moraes
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde and IBMC-Institute for Molecular and Cell Biology, Universidade do Porto and Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), 4150-180 Porto, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
10
|
Zhou L, Shi Y, Zhu X, Zhang P. Pd-catalyzed intramolecular Heck reaction for the synthesis of 2-methylbenzofurans. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
12
|
Junqueira LO, Costa MOLD, Rando DGG. N-Myristoyltransferases as antileishmanial targets: a piggyback approach with benzoheterocyclic analogues. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Harrison JR, Brand S, Smith V, Robinson DA, Thompson S, Smith A, Davies K, Mok N, Torrie LS, Collie I, Hallyburton I, Norval S, Simeons FRC, Stojanovski L, Frearson JA, Brenk R, Wyatt PG, Gilbert IH, Read KD. A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N-Myristoyltransferase Inhibitors. J Med Chem 2018; 61:8374-8389. [PMID: 30207721 PMCID: PMC6167002 DOI: 10.1021/acs.jmedchem.8b00884] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.
Collapse
Affiliation(s)
- Justin R Harrison
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Brand
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - David A Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Alasdair Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kenneth Davies
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ngai Mok
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Leah S Torrie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Iain Collie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Suzanne Norval
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Julie A Frearson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ruth Brenk
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| |
Collapse
|
14
|
Linciano P, Dawson A, Pöhner I, Costa DM, Sá MS, Cordeiro-da-Silva A, Luciani R, Gul S, Witt G, Ellinger B, Kuzikov M, Gribbon P, Reinshagen J, Wolf M, Behrens B, Hannaert V, Michels PAM, Nerini E, Pozzi C, di Pisa F, Landi G, Santarem N, Ferrari S, Saxena P, Lazzari S, Cannazza G, Freitas-Junior LH, Moraes CB, Pascoalino BS, Alcântara LM, Bertolacini CP, Fontana V, Wittig U, Müller W, Wade RC, Hunter WN, Mangani S, Costantino L, Costi MP. Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS OMEGA 2017; 2:5666-5683. [PMID: 28983525 PMCID: PMC5623949 DOI: 10.1021/acsomega.7b00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained.
Collapse
Affiliation(s)
- Pasquale Linciano
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alice Dawson
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Ina Pöhner
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - David M. Costa
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Monica S. Sá
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rosaria Luciani
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sheraz Gul
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Maria Kuzikov
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Markus Wolf
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Birte Behrens
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Véronique Hannaert
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Paul A. M. Michels
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Erika Nerini
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nuno Santarem
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Stefania Ferrari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Puneet Saxena
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sandra Lazzari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Cannazza
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Bruno S. Pascoalino
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Laura M. Alcântara
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Claudia P. Bertolacini
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Ulrike Wittig
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Wolfgang Müller
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ−ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - William N. Hunter
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | | | - Luca Costantino
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria P. Costi
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
15
|
New developments in probing and targeting protein acylation in malaria, leishmaniasis and African sleeping sickness. Parasitology 2017; 145:157-174. [PMID: 28270257 DOI: 10.1017/s0031182017000282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections by protozoan parasites, such as Plasmodium falciparum or Leishmania donovani, have a significant health, social and economic impact and threaten billions of people living in tropical and sub-tropical regions of developing countries worldwide. The increasing range of parasite strains resistant to frontline therapeutics makes the identification of novel drug targets and the development of corresponding inhibitors vital. Post-translational modifications (PTMs) are important modulators of biology and inhibition of protein lipidation has emerged as a promising therapeutic strategy for treatment of parasitic diseases. In this review we summarize the latest insights into protein lipidation in protozoan parasites. We discuss how recent chemical proteomic approaches have delivered the first global overviews of protein lipidation in these organisms, contributing to our understanding of the role of this PTM in critical metabolic and cellular functions. Additionally, we highlight the development of new small molecule inhibitors to target parasite acyl transferases.
Collapse
|
16
|
Azevedo RVDM, Rizzo J, Rodrigues ML. Virulence Factors as Targets for Anticryptococcal Therapy. J Fungi (Basel) 2016; 2:jof2040029. [PMID: 29376946 PMCID: PMC5715936 DOI: 10.3390/jof2040029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
The global mortality due to cryptococcosis caused by Cryptococcus neoformans or C. gattii is unacceptably high. Currently available therapies are decades old and may be impacted by drug resistance. Therefore, the need for more effective antifungal drugs for cryptococcosis is evident. A number of Cryptococcus virulence factors have been studied in detail, providing crucial information about the fungal biology and putative molecular targets for antifungals. This review focuses on the use of well-described virulence factors of Cryptococcus as potential anticryptococcal agents.
Collapse
Affiliation(s)
- Renata V D M Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
| | - Juliana Rizzo
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Marcio L Rodrigues
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), 21040-361 Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Liu L, Ji X, Dong J, Zhou Y, Yin SF. Metal-Free Oxidative Annulation of 2-Naphthols with Terminal Alkynes Affording 2-Arylnaphtho[2,1-b]furans. Org Lett 2016; 18:3138-41. [DOI: 10.1021/acs.orglett.6b01352] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Long Liu
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xuyu Ji
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key
Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Herrera LJ, Brand S, Santos A, Nohara LL, Harrison J, Norcross NR, Thompson S, Smith V, Lema C, Varela-Ramirez A, Gilbert IH, Almeida IC, Maldonado RA. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0004540. [PMID: 27128971 PMCID: PMC4851402 DOI: 10.1371/journal.pntd.0004540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. METHODOLOGY/PRINCIPAL FINDINGS Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. CONCLUSIONS/SIGNIFICANCE Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy.
Collapse
Affiliation(s)
- Linda J. Herrera
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Andres Santos
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Lilian L. Nohara
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Justin Harrison
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Carolina Lema
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, United Kingdom
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Rosa A. Maldonado
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
19
|
Spinks D, Smith V, Thompson S, Robinson DA, Luksch T, Smith A, Torrie LS, McElroy S, Stojanovski L, Norval S, Collie IT, Hallyburton I, Rao B, Brand S, Brenk R, Frearson JA, Read KD, Wyatt PG, Gilbert IH. Development of Small-Molecule Trypanosoma brucei N-Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. ChemMedChem 2015; 10:1821-36. [PMID: 26395087 PMCID: PMC4648043 DOI: 10.1002/cmdc.201500301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/10/2022]
Abstract
The enzyme N-myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high-throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen. An X-ray crystal structure of the thiazolidinone hit in Leishmania major NMT showed the compound bound in the previously reported active site, utilising a novel binding mode. This provides potential for further optimisation. The benzomorpholinone was also found to bind in a similar region. Using an X-ray crystallography/structure-based design approach, the benzomorpholinone series was further optimised, increasing activity against T. brucei NMT by >1000-fold. A series of trypanocidal compounds were identified with suitable in vitro DMPK properties, including CNS exposure for further development. Further work is required to increase selectivity over the human NMT isoform and activity against T. brucei.
Collapse
Affiliation(s)
- Daniel Spinks
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Victoria Smith
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Stephen Thompson
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - David A Robinson
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Torsten Luksch
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Alasdair Smith
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Leah S Torrie
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Stuart McElroy
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Suzanne Norval
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Iain T Collie
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Irene Hallyburton
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Bhavya Rao
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Stephen Brand
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Ruth Brenk
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Julie A Frearson
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, UK.
| |
Collapse
|
20
|
Kumar S, Sharma RK. N-terminal region of the catalytic domain of human N-myristoyltransferase 1 acts as an inhibitory module. PLoS One 2015; 10:e0127661. [PMID: 26000639 PMCID: PMC4441422 DOI: 10.1371/journal.pone.0127661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
N-myristoyltransferase (NMT) plays critical roles in the modulation of various signaling molecules, however, the regulation of this enzyme in diverse cellular states remains poorly understood. We provide experimental evidence to show for the first time that for the isoform 1 of human NMT (hNMT1), the regulatory roles extend into the catalytic core. In our present study, we expressed, purified, and characterized a truncation mutant devoid of 28 N-terminal amino acids from the catalytic module (Δ28-hNMT1s) and compared its properties to the full-length catalytic domain of hNMT1. The deletion of the N-terminal peptide had no effect on the enzyme stability. Our findings suggest that the N-terminal region in the catalytic module of hNMT1 functions serves as a regulatory control element. The observations of an ~3 fold increase in enzymatic efficiency following removal of the N-terminal peptide of hNMT1s indicates that N-terminal amino acids acts as an inhibitory segment and negatively regulate the enzyme activity. Our findings that the N-terminal region confers control over activity, taken together with the earlier observations that the N-terminal of hNMT1 is differentially processed in diverse cellular states, suggests that the proteolytic processing of the peptide segment containing the inhibitory region provides a molecular mechanism for physiological up-regulation of myristoyltransferase activity.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (RKS)
| |
Collapse
|
21
|
Robinson DA, Wyatt PG. Identification and structure solution of fragment hits against kinetoplastid N-myristoyltransferase. Acta Crystallogr F Struct Biol Commun 2015; 71:586-93. [PMID: 25945713 PMCID: PMC4427169 DOI: 10.1107/s2053230x15003040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma brucei N-myristoyltransferase (TbNMT) is an attractive therapeutic target for the treatment of human African trypanosomiasis. Pyrazole sulfonamide (DDD85646), a potent inhibitor of TbNMT, has been identified in previous studies; however, poor central nervous system exposure restricts its use to the haemolymphatic form (stage 1) of the disease. In order to identify new chemical matter, a fragment screen was carried out by ligand-observed NMR spectroscopy, identifying hits that occupy the DDD85646 binding site. Crystal structures of hits from this assay have been obtained in complex with the closely related NMT from Leishmania major, providing a structural starting point for the evolution of novel chemical matter.
Collapse
Affiliation(s)
- David A. Robinson
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Paul G. Wyatt
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|
22
|
Wang M, Liu X, Zhou L, Zhu J, Sun X. Fluorination of 2-substituted benzo[b]furans with Selectfluor™. Org Biomol Chem 2015; 13:3190-3. [DOI: 10.1039/c4ob02691h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol was developed to access 3-fluoro-2-hydroxy-2-substituted benzo[b]furans with Selectfluor™ as the fluorinating reagent in MeCN and water. By utilizing SOCl2/Py as the dehydrating agent, the compounds above were readily converted to 3-fluorinated, 2-substituted benzo[b]furans in high yields.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Natural Products Chemistry
- Fudan University
- Shanghai 201203
- China
| | - Xixi Liu
- Department of Natural Products Chemistry
- Fudan University
- Shanghai 201203
- China
| | - Lu Zhou
- Department of Medicinal Chemistry
- Fudan University
- Shanghai 201203
- China
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Xun Sun
- Department of Natural Products Chemistry
- Fudan University
- Shanghai 201203
- China
- Shanghai Key Laboratory of Clinical Geriatric Medicine
| |
Collapse
|
23
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
24
|
Brand S, Norcross NR, Thompson S, Harrison JR, Smith VC, Robinson DA, Torrie LS, McElroy SP, Hallyburton I, Norval S, Scullion P, Stojanovski L, Simeons FRC, van Aalten D, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Wyatt PG, Gilbert IH, Read KD. Lead optimization of a pyrazole sulfonamide series of Trypanosoma brucei N-myristoyltransferase inhibitors: identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human African trypanosomiasis. J Med Chem 2014; 57:9855-69. [PMID: 25412409 PMCID: PMC4269550 DOI: 10.1021/jm500809c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Trypanosoma bruceiN-myristoyltransferase
(TbNMT) is an attractive therapeutic
target for the treatment of human African trypanosomiasis (HAT). From
previous studies, we identified pyrazole sulfonamide, DDD85646 (1), a potent inhibitor of TbNMT. Although
this compound represents an excellent lead, poor central nervous system
(CNS) exposure restricts its use to the hemolymphatic form (stage
1) of the disease. With a clear clinical need for new drug treatments
for HAT that address both the hemolymphatic and CNS stages of the
disease, a chemistry campaign was initiated to address the shortfalls
of this series. This paper describes modifications to the pyrazole
sulfonamides which markedly improved blood–brain barrier permeability,
achieved by reducing polar surface area and capping the sulfonamide.
Moreover, replacing the core aromatic with a flexible linker significantly
improved selectivity. This led to the discovery of DDD100097 (40) which demonstrated partial efficacy in a stage 2 (CNS)
mouse model of HAT.
Collapse
Affiliation(s)
- Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Sir James Black Centre, Dundee DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hutton JA, Goncalves V, Brannigan JA, Paape D, Wright MH, Waugh TM, Roberts SM, Bell AS, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW. Structure-based design of potent and selective Leishmania N-myristoyltransferase inhibitors. J Med Chem 2014; 57:8664-70. [PMID: 25238611 PMCID: PMC4211304 DOI: 10.1021/jm5011397] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Inhibitors
of LeishmaniaN-myristoyltransferase
(NMT), a potential target for the
treatment of leishmaniasis, obtained from a high-throughput screen,
were resynthesized to validate activity. Crystal structures bound
to Leishmania major NMT were obtained,
and the active diastereoisomer of one of the inhibitors was identified.
On the basis of structural insights, enzyme inhibition was increased
40-fold through hybridization of two distinct binding modes, resulting
in novel, highly potent Leishmania donovani NMT inhibitors with good selectivity over the human enzyme.
Collapse
Affiliation(s)
- Jennie A Hutton
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes. PLoS Negl Trop Dis 2014; 8:e3145. [PMID: 25188325 PMCID: PMC4154664 DOI: 10.1371/journal.pntd.0003145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis. Lymphatic filariasis and onchocerciasis are neglected tropical diseases caused by filarial nematodes. The limitations of existing drugs to treat these infections highlight the need for new drugs. In the present study, we investigated myristoylation, a lipid modification of a subset of proteins that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in protozoan parasites. We performed kinetic analyses on Caenorhabditis elegans and Brugia malayi NMTs. NMT inhibitors were active against B. malayi microfilariae and adult worms, and C. elegans in culture. RNA interference and gene deletion in C. elegans further demonstrated that NMT is essential for nematode viability. Our genetic and chemical studies indicate the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of new therapies against nematode infection including filarial diseases.
Collapse
|
27
|
Recent Advances in The Discovery ofN-Myristoyltransferase Inhibitors. ChemMedChem 2014; 9:2425-37. [DOI: 10.1002/cmdc.201402174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Indexed: 01/08/2023]
|
28
|
Abstract
Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.
Collapse
|
29
|
Brannigan JA, Roberts SM, Bell AS, Hutton JA, Hodgkinson MR, Tate EW, Leatherbarrow RJ, Smith DF, Wilkinson AJ. Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors. IUCRJ 2014; 1:250-60. [PMID: 25075346 PMCID: PMC4107925 DOI: 10.1107/s2052252514013001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/04/2014] [Indexed: 05/08/2023]
Abstract
The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT) has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed.
Collapse
Affiliation(s)
- James A. Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Shirley M. Roberts
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| | - Andrew S. Bell
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Jennie A. Hutton
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Michael R. Hodgkinson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, England
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Robin J. Leatherbarrow
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, England
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
| |
Collapse
|
30
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Sharma U, Naveen T, Maji A, Manna S, Maiti D. Palladium-Catalyzed Synthesis of Benzofurans and Coumarins from Phenols and Olefins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Sharma U, Naveen T, Maji A, Manna S, Maiti D. Palladium-catalyzed synthesis of benzofurans and coumarins from phenols and olefins. Angew Chem Int Ed Engl 2013; 52:12669-73. [PMID: 24127393 DOI: 10.1002/anie.201305326] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Upendra Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076 (India)
| | | | | | | | | |
Collapse
|
33
|
Traverso JA, Giglione C, Meinnel T. High-throughput profiling of N-myristoylation substrate specificity across species including pathogens. Proteomics 2013; 13:25-36. [PMID: 23165749 DOI: 10.1002/pmic.201200375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 11/10/2022]
Abstract
One of the most critical modifications affecting the N-terminus of proteins is N-myristoylation. This irreversible modification affects the membrane-binding properties of crucial proteins involved in signal transduction cascades. This cotranslational modification, catalyzed by N-myristoyl transferase, occurs both in lower and higher eukaryotes and is a validated therapeutic target for several pathologies. However, this lipidation proves very difficult to be evidenced in vivo even with state-of-the-art proteomics approaches or bioinformatics tools. A large part of N-myristoylated proteins remains to be discovered and the rules of substrate specificity need to be established in each organism. Because the peptide substrate recognition occurs around the first eight residues, short peptides are used for modeling the reaction in vitro. Here, we provide a novel approach including a dedicated peptide array for high-throughput profiling protein N-myristoylation specificity. We show that myristoylation predictive tools need to be fine-tuned to organisms and that their poor accuracy should be significantly enhanced. This should lead to strongly improved knowledge of the number and function of myristoylated proteins occurring in any proteome.
Collapse
Affiliation(s)
- José A Traverso
- CNRS, Centre de Recherche de Gif, Institut des Sciences du Végétal, Gif-sur-Yvette, France
| | | | | |
Collapse
|
34
|
Rackham MD, Brannigan JA, Moss DK, Yu Z, Wilkinson AJ, Holder AA, Tate EW, Leatherbarrow RJ. Discovery of novel and ligand-efficient inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferase. J Med Chem 2012; 56:371-5. [PMID: 23170970 PMCID: PMC3601602 DOI: 10.1021/jm301474t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
N-Myristoyltransferase (NMT) is an attractive
antiprotozoan drug target. A lead-hopping approach was utilized in
the design and synthesis of novel benzo[b]thiophene-containing
inhibitors of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) NMT. These inhibitors are selective
against Homo sapiens NMT1 (HsNMT), have excellent
ligand efficiency (LE), and display antiparasitic activity in vitro. The binding mode of this series was determined by crystallography
and shows a novel binding mode for the benzothiophene ring.
Collapse
Affiliation(s)
- Mark D Rackham
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu Z, Brannigan JA, Moss DK, Brzozowski AM, Wilkinson AJ, Holder AA, Tate EW, Leatherbarrow RJ. Design and synthesis of inhibitors of Plasmodium falciparum N-myristoyltransferase, a promising target for antimalarial drug discovery. J Med Chem 2012; 55:8879-90. [PMID: 23035716 PMCID: PMC3863768 DOI: 10.1021/jm301160h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Design of inhibitors for N-myristoyltransferase (NMT), an enzyme responsible for protein trafficking in Plasmodium falciparum , the most lethal species of parasites that cause malaria, is described. Chemistry-driven optimization of compound 1 from a focused NMT inhibitor library led to the identification of two early lead compounds 4 and 25, which showed good enzyme and cellular potency and excellent selectivity over human NMT. These molecules provide a valuable starting point for further development.
Collapse
Affiliation(s)
- Zhiyong Yu
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | - James A. Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - David K. Moss
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, U.K
| | - A. Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Anthony J. Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, U.K
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, SW7 2AZ, U.K
| | | |
Collapse
|
36
|
Rampoldi F, Sandhoff R, Owen RW, Gröne HJ, Porubsky S. A new, robust, and nonradioactive approach for exploring N-myristoylation. J Lipid Res 2012; 53:2459-68. [PMID: 22829651 DOI: 10.1194/jlr.d026997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoyl-CoA (CoA):protein N-myristoyltransferase (NMT) catalyzes protein modification through covalent attachment of a C14 fatty acid (myristic acid) to the N-terminal glycine of proteins, thus promoting protein-protein and protein-membrane interactions. NMT is essential for the viability of numerous human pathogens and is also up-regulated in several tumors. Here we describe a new, nonradioactive, ELISA-based method for measuring NMT activity. After the NMT-catalyzed reaction between a FLAG-tagged peptide and azido-dodecanoyl-CoA (analog of myristoyl-CoA), the resulting azido-dodecanoyl-peptide-FLAG was coupled to phosphine-biotin by Staudinger ligation, captured by plate-bound anti-FLAG antibodies and detected by streptavidin-peroxidase. The assay was validated with negative controls (including inhibitors), corroborated by HPLC analysis, and demonstrated to function with fresh or frozen tissues. Recombinant murine NMT1 and NMT2 were characterized using this new method. This versatile assay is applicable for exploring recombinant NMTs with regard to their activity, substrate specificity, and possible inhibitors as well as for measuring NMT-activity in tissues.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
37
|
Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Negl Trop Dis 2012; 6:e1625. [PMID: 22545171 PMCID: PMC3335879 DOI: 10.1371/journal.pntd.0001625] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/07/2012] [Indexed: 01/11/2023] Open
Abstract
Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases. Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (HsNMT1 and HsNMT2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. We have identified eight series of protozoan NMT inhibitors, six having good selectivity for either Plasmodium or Leishmania NMTs over the other orthologues in this study. We believe that all of these series could form the basis of medicinal chemistry programs to deliver drug candidates against either malaria or leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as the UK Medical Research Council and Wellcome Trust can stimulate research for neglected diseases.
Collapse
|
38
|
Goncalves V, Brannigan JA, Whalley D, Ansell KH, Saxty B, Holder AA, Wilkinson AJ, Tate EW, Leatherbarrow RJ. Discovery of Plasmodium vivax N-myristoyltransferase inhibitors: screening, synthesis, and structural characterization of their binding mode. J Med Chem 2012; 55:3578-82. [PMID: 22439843 PMCID: PMC3863987 DOI: 10.1021/jm300040p] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Myristoyltransferase (NMT) is a prospective drug target against parasitic protozoa. Herein we report the successful discovery of a series of Plasmodium vivax NMT inhibitors by high-throughput screening. A high-resolution crystal structure of the hit compound in complex with NMT was obtained, allowing understanding of its novel binding mode. A set of analogues was designed and tested to define the chemical groups relevant for activity and selectivity.
Collapse
Affiliation(s)
- Victor Goncalves
- Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - James A. Brannigan
- ‡Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - David Whalley
- Centre for Therapeutics Discovery, MRC Technology, 1-3 Burtonhole Lane, Mill Hill, London, NW7 1AD, United Kingdom
| | - Keith H. Ansell
- Centre for Therapeutics Discovery, MRC Technology, 1-3 Burtonhole Lane, Mill Hill, London, NW7 1AD, United Kingdom
| | - Barbara Saxty
- Centre for Therapeutics Discovery, MRC Technology, 1-3 Burtonhole Lane, Mill Hill, London, NW7 1AD, United Kingdom
| | - Anthony A. Holder
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Anthony J. Wilkinson
- ‡Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
39
|
Brand S, Cleghorn LAT, McElroy SP, Robinson DA, Smith VC, Hallyburton I, Harrison JR, Norcross NR, Spinks D, Bayliss T, Norval S, Stojanovski L, Torrie LS, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Read KD, Wyatt PG, Gilbert IH. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 2011; 55:140-52. [PMID: 22148754 PMCID: PMC3256935 DOI: 10.1021/jm201091t] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC(50) = 2 nM) and T. brucei (EC(50) = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.
Collapse
Affiliation(s)
- Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goncalves V, Brannigan JA, Thinon E, Olaleye TO, Serwa R, Lanzarone S, Wilkinson AJ, Tate EW, Leatherbarrow RJ. A fluorescence-based assay for N-myristoyltransferase activity. Anal Biochem 2011; 421:342-4. [PMID: 22051857 DOI: 10.1016/j.ab.2011.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 11/26/2022]
Abstract
N-myristoylation is the irreversible attachment of a C(14) fatty acid, myristic acid, to the N-terminal glycine of a protein via formation of an amide bond. This modification is catalyzed by myristoyl-coenzyme A (CoA):protein N-myristoyltransferase (NMT), an enzyme ubiquitous in eukaryotes that is up-regulated in several cancers. Here we report a sensitive fluorescence-based assay to study the enzymatic activity of human NMT1 and NMT2 based on detection of CoA by 7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin. We also describe expression and characterization of NMT1 and NMT2 and assay validation with small molecule inhibitors. This assay should be broadly applicable to NMTs from a range of organisms.
Collapse
Affiliation(s)
- Victor Goncalves
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11:1255-74. [PMID: 21401507 PMCID: PMC3101707 DOI: 10.2174/156802611795429167] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/22/2022]
Abstract
African sleeping sickness is endemic in sub-Saharan Africa where the WHO estimates that 60 million people are at risk for the disease. Human African trypanosomiasis (HAT) is 100% fatal if untreated and the current drug therapies have significant limitations due to toxicity and difficult treatment regimes. No new chemical agents have been approved since eflornithine in 1990. The pentamidine analog DB289, which was in late stage clinical trials for the treatment of early stage HAT recently failed due to toxicity issues. A new protocol for the treatment of late-stage T. brucei gambiense that uses combination nifurtomox/eflornithine (NECT) was recently shown to have better safety and efficacy than eflornithine alone, while being easier to administer. This breakthrough represents the only new therapy for HAT since the approval of eflornithine. A number of research programs are on going to exploit the unusual biochemical pathways in the parasite to identify new targets for target based drug discovery programs. HTS efforts are also underway to discover new chemical entities through whole organism screening approaches. A number of inhibitors with anti-trypanosomal activity have been identified by both approaches, but none of the programs are yet at the stage of identifying a preclinical candidate. This dire situation underscores the need for continued effort to identify new chemical agents for the treatment of HAT.
Collapse
Affiliation(s)
- Robert T. Jacobs
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Bakela Nare
- SCYNEXIS, Inc., Research Triangle Park, North Carolina 27709-2878
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
42
|
Geary LM, Hultin PG. 2-Substituted Benzo[b]furans from (E)-1,2-Dichlorovinyl Ethers and Organoboron Reagents: Scope and Mechanistic Investigations into the One-Pot Suzuki Coupling/Direct Arylation. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000787] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
|
44
|
Frearson JA, Brand S, McElroy SP, Cleghorn LAT, Smid O, Stojanovski L, Price HP, Guther MLS, Torrie LS, Robinson DA, Hallyburton I, Mpamhanga CP, Brannigan JA, Wilkinson AJ, Hodgkinson M, Hui R, Qiu W, Raimi OG, van Aalten DMF, Brenk R, Gilbert IH, Read KD, Fairlamb AH, Ferguson MAJ, Smith DF, Wyatt PG. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010; 464:728-32. [PMID: 20360736 PMCID: PMC2917743 DOI: 10.1038/nature08893] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/10/2010] [Indexed: 01/28/2023]
Abstract
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Julie A Frearson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
46
|
Sheng C, Ji H, Miao Z, Che X, Yao J, Wang W, Dong G, Guo W, Lü J, Zhang W. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design. J Comput Aided Mol Des 2009; 23:375-89. [PMID: 19370313 DOI: 10.1007/s10822-009-9267-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/26/2009] [Indexed: 11/25/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins. Recent experimental data suggest NMT from parasites could be a promising new target for the design of novel antiparasitic agents with new mode of action. However, the active site topology and inhibitor specificity of these enzymes remain unclear. In this study, three-dimensional models of NMT from Plasmodium falciparum (PfNMT), Leishmania major (LmNMT) and Trypanosoma brucei (TbNMT) were constructed on the basis of the crystal structures of fungal NMTs using homology modeling method. The models were further refined by energy minimization and molecular dynamics simulations. The active sites of PfNMT, LmNMT and TbNMT were characterized by multiple copy simultaneous search (MCSS). MCSS functional maps reveal that PfNMT, LmNMT and TbNMT share a similar active site topology, which is defined by two hydrophobic pockets, a hydrogen-bonding (HB) pocket, a negatively-charged HB pocket and a positively-charged HB pocket. Flexible docking approaches were then employed to dock known inhibitors into the active site of PfNMT. The binding mode, structure-activity relationships and selectivity of inhibitors were investigated in detail. From the results of molecular modeling, the active site architecture and certain key residues responsible for inhibitor binding were identified, which provided insights for the design of novel inhibitors of parasitic NMTs.
Collapse
Affiliation(s)
- Chunquan Sheng
- School of Pharmacy, Military Key Laboratory of Medicinal Chemistry, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|