1
|
Gaur KK, Asuru TR, Srivastava M, Singh N, Purushotham N, Poojary B, Das B, Bhattacharyya S, Asthana S, Guchhait P. 7D, a small molecule inhibits dengue infection by increasing interferons and neutralizing-antibodies via CXCL4:CXCR3:p38:IRF3 and Sirt1:STAT3 axes respectively. EMBO Mol Med 2024; 16:2376-2401. [PMID: 39284947 PMCID: PMC11473809 DOI: 10.1038/s44321-024-00137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/16/2024] Open
Abstract
There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication. In a concurrent search, we identified CXCR3-antagonist from our compound library, namely 7D, which inhibited all serotypes of DENV in vitro. With a half-life of ~2.85 h in plasma and no significant toxicity, 7D supplementation (8 mg/kg-body-weight) to DENV2-infected IFNα/β/γR-/-AG129 or wild-type C57BL6 mice increased synthesis of IFN-α/β and IFN-λ, and rescued disease symptoms like thrombocytopenia, leukopenia and vascular-leakage, with improved survival. 7D, having the property to inhibit Sirt-1 deacetylase, promoted acetylation and phosphorylation of STAT3, which in-turn increased plasmablast proliferation, germinal-center maturation and synthesis of neutralizing-antibodies against DENV2 in mice. A STAT3-inhibitor successfully inhibited these effects of 7D. Together, these observations identify compound 7D as a stimulator of IFN-α/β/λ synthesis via CXCL4:CXCR3:p38:IRF3 signaling, and a booster for neutralizing-antibody generation by promoting STAT3-acetylation in plasmablasts, capable of protecting dengue infection.
Collapse
Affiliation(s)
- Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Mitul Srivastava
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nitu Singh
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Karnataka, India
| | - Bhabatosh Das
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Kang M, Li Z, Chang I, Xu C, Chiang M, Kim L, Wu Y, Fan J, Aghaloo TL, Lee M. Phosphatidylserine-incorporated exosome mimetics encapsulating CXCR3 antagonist alleviate osteoporosis. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2402521. [PMID: 39539387 PMCID: PMC11556507 DOI: 10.1002/adfm.202402521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Indexed: 11/16/2024]
Abstract
Exosomes derived from mesenchymal stem cells are an active area of research due to their therapeutic potential in treating osteoporosis. To further harness their therapeutic performance in modulating bone resorption, we have equipped exosomes with osteoclast-targeting moieties on their surface as well as chemokine receptor antagonists blocking osteoclast recruitment. Phosphatidylserine (PS), a membrane lipid exerting immunosuppressive and phagocytic signals, was incorporated in the membrane of exosome mimetics (EMs) to achieve a marked affinity for osteoclast precursors and potential anti-resorptive effects. We also aimed to tackle a CXCL9-CXCR3 ligand-receptor axis, a critical signaling axis in regulating osteoclast precursor recruitment and differentiation at bone resorption sites, by encapsulating a chemical antagonist of CXCR3, AMG487, in the PS-incorporated EMs (PS-EMs). The osteoclast-targeting PS-EMs loaded with AMG487 effectively protected against bone loss in an ovariectomized mouse model. Our findings demonstrate the great promise of PS-EMs as anti-resorptive nanotherapies for alleviating osteoporosis.
Collapse
Affiliation(s)
- Minjee Kang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Insoon Chang
- Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Michelle Chiang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Lauren Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Yutong Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiabing Fan
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | - Tara L. Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Min Lee
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
3
|
Li WJ, Li RY, Wang DY, Shen M, Liu HL. CXCR3 participates in asymmetric division of mouse oocytes by modulating actin dynamics. Theriogenology 2024; 225:43-54. [PMID: 38788628 DOI: 10.1016/j.theriogenology.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes. We found CXCR3 was expressed consistently throughout the entire maturation process of mouse oocyte. Inhibition of CXCR3 impaired the asymmetric division of oocyte, while the injection of Cxcr3 mRNA was capable of restoring these defects. Further study showed that inhibition of CXCR3 perturbed spindle migration by affecting LIMK/cofilin pathway-mediated actin remodeling. Knockout of CXCR3 led to an upregulation of actin-binding protein and an increased ATP level in GV-stage oocytes, while maintaining normal actin dynamics during the process of meiosis. Additionally, we noticed the expression level of DYNLT1 is markedly elevated in CXCR3-null oocytes. DYNLT1 bound with the Arp2/3 complex, and knockdown of DYNLT1 in CXCR3-null oocytes impaired the organization of cytoplasmic actin, suggesting the regulatory role of DYNLT1 in actin organization, and the compensatory expression of DYNLT1 may contribute to maintain normal actin dynamics in CXCR3-knockout oocytes. In summary, our findings provide insights into the intricate network of actin dynamics associated with CXCR3 during oocyte meiosis.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Rong-Yang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Da-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Sasaki Y, Arimochi H, Otsuka K, Kondo H, Tsukumo SI, Yasutomo K. Blockade of the CXCR3/CXCL10 axis ameliorates inflammation caused by immunoproteasome dysfunction. JCI Insight 2022; 7:152681. [PMID: 35393946 PMCID: PMC9057626 DOI: 10.1172/jci.insight.152681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoproteasomes regulate the degradation of ubiquitin-coupled proteins and generate peptides that are preferentially presented by MHC class I. Mutations in immunoproteasome subunits lead to immunoproteasome dysfunction, which causes proteasome-associated autoinflammatory syndromes (PRAAS) characterized by nodular erythema and partial lipodystrophy. It remains unclear, however, how immunoproteasome dysfunction leads to inflammatory symptoms. Here, we established mice harboring a mutation in Psmb8 (Psmb8-KI mice) and addressed this question. Psmb8-KI mice showed higher susceptibility to imiquimod-induced skin inflammation (IMS). Blockade of IL-6 or TNF-α partially suppressed IMS in both control and Psmb8-KI mice, but there was still more residual inflammation in the Psmb8-KI mice than in the control mice. DNA microarray analysis showed that treatment of J774 cells with proteasome inhibitors increased the expression of the Cxcl9 and Cxcl10 genes. Deficiency in Cxcr3, the gene encoding the receptor of CXCL9 and CXCL10, in control mice did not change IMS susceptibility, while deficiency in Cxcr3 in Psmb8-KI mice ameliorated IMS. Taken together, these findings demonstrate that this mutation in Psmb8 leads to hyperactivation of the CXCR3 pathway, which is responsible for the increased susceptibility of Psmb8-KI mice to IMS. These data suggest the CXCR3/CXCL10 axis as a new molecular target for treating PRAAS.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine.,Department of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, and.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Alluri SR, Higashi Y, Kil KE. PET Imaging Radiotracers of Chemokine Receptors. Molecules 2021; 26:molecules26175174. [PMID: 34500609 PMCID: PMC8434599 DOI: 10.3390/molecules26175174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Chemokines and chemokine receptors have been recognized as critical signal components that maintain the physiological functions of various cells, particularly the immune cells. The signals of chemokines/chemokine receptors guide various leukocytes to respond to inflammatory reactions and infectious agents. Many chemokine receptors play supportive roles in the differentiation, proliferation, angiogenesis, and metastasis of diverse tumor cells. In addition, the signaling functions of a few chemokine receptors are associated with cardiac, pulmonary, and brain disorders. Over the years, numerous promising molecules ranging from small molecules to short peptides and antibodies have been developed to study the role of chemokine receptors in healthy states and diseased states. These drug-like candidates are in turn exploited as radiolabeled probes for the imaging of chemokine receptors using noninvasive in vivo imaging, such as positron emission tomography (PET). Recent advances in the development of radiotracers for various chemokine receptors, particularly of CXCR4, CCR2, and CCR5, shed new light on chemokine-related cancer and cardiovascular research and the subsequent drug development. Here, we present the recent progress in PET radiotracer development for imaging of various chemokine receptors.
Collapse
Affiliation(s)
- Santosh R. Alluri
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
| | - Yusuke Higashi
- Department of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Kun-Eek Kil
- University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-884-7885
| |
Collapse
|
7
|
Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model. Proc Natl Acad Sci U S A 2020; 117:19276-19286. [PMID: 32719141 PMCID: PMC7431079 DOI: 10.1073/pnas.2006093117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone remodeling requires a balanced interplay of osteoblasts and osteoclasts. While the intercellular signaling that triggers bone cell differentiation is well understood, it remains unclear how bone progenitor cells are recruited to remodeling sites. Various chemokines are upregulated under osteoporotic conditions. However, whether they are involved in progenitor recruitment or instead have inflammatory roles is unknown. Here we used a medaka fish osteoporosis model to identify the chemokine ligand Cxcl9l and receptor Cxcr3.2 as essential to control osteoclast progenitor recruitment and differentiation at bone resorption sites. Cxcr3.2 activity can be blocked by small-molecule inhibitors that protect bone from osteoporotic insult. Our study demonstrates the potential of fish for osteoporosis drug discovery and opens avenues for future osteoporosis therapy. Bone homeostasis requires continuous remodeling of bone matrix to maintain structural integrity. This involves extensive communication between bone-forming osteoblasts and bone-resorbing osteoclasts to orchestrate balanced progenitor cell recruitment and activation. Only a few mediators controlling progenitor activation are known to date and have been targeted for intervention of bone disorders such as osteoporosis. To identify druggable pathways, we generated a medaka (Oryzias latipes) osteoporosis model, where inducible expression of receptor-activator of nuclear factor kappa-Β ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, which can be assessed by live imaging. Here we show that upon Rankl induction, osteoblast progenitors up-regulate expression of the chemokine ligand Cxcl9l. Ectopic expression of Cxcl9l recruits mpeg1-positive macrophages to bone matrix and triggers their differentiation into osteoclasts. We also demonstrate that the chemokine receptor Cxcr3.2 is expressed in a distinct subset of macrophages in the aorta-gonad-mesonephros (AGM). Live imaging revealed that upon Rankl induction, Cxcr3.2-positive macrophages get activated, migrate to bone matrix, and differentiate into osteoclasts. Importantly, mutations in cxcr3.2 prevent macrophage recruitment and osteoclast differentiation. Furthermore, Cxcr3.2 inhibition by the chemical antagonists AMG487 and NBI-74330 also reduced osteoclast recruitment and protected bone integrity against osteoporotic insult. Our data identify a mechanism for progenitor recruitment to bone resorption sites and Cxcl9l and Cxcr3.2 as potential druggable regulators of bone homeostasis and osteoporosis.
Collapse
|
8
|
Xu J, Neal LM, Ganguly A, Kolbe JL, Hargarten JC, Elsegeiny W, Hollingsworth C, He X, Ivey M, Lopez R, Zhao J, Segal B, Williamson PR, Olszewski MA. Chemokine receptor CXCR3 is required for lethal brain pathology but not pathogen clearance during cryptococcal meningoencephalitis. SCIENCE ADVANCES 2020; 6:eaba2502. [PMID: 32596454 PMCID: PMC7299622 DOI: 10.1126/sciadv.aba2502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/04/2020] [Indexed: 05/22/2023]
Abstract
Cryptococcal meningoencephalitis (CM) is the major cause of infection-related neurological death, typically seen in immunocompromised patients. However, T cell-driven inflammatory response has been increasingly implicated in lethal central nervous system (CNS) immunopathology in human patients and murine models. Here, we report marked up-regulation of the chemokine receptor CXCR3 axis in human patients and mice with CM. CXCR3 deletion in mice improves survival, diminishes neurological deficits, and limits neuronal damage without suppressing fungal clearance. CD4+ T cell accumulation and TH1 skewing are reduced in the CNS but not spleens of infected CXCR3-/- mice. Adoptive transfer of WT, but not CXCR3-/- CD4+ T cells, into CXCR3-/- mice phenocopies the pathology of infected WT mice. Collectively, we found that CXCR3+CD4+ T cells drive lethal CNS pathology but are not required for fungal clearance during CM. The CXCR3 pathway shows potential as a therapeutic target or for biomarker discovery to limit CNS inflammatory damages.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Lori M. Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica L. Kolbe
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christopher Hollingsworth
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiumiao He
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, China
| | - Mike Ivey
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Rafael Lopez
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Jessica Zhao
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Benjamin Segal
- Department of Neurology and Neurological Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Qin C, Liu H, Tang B, Cao M, Yu Z, Liu B, Liu W, Dong Y, Ren H. In Vitro Immunological Effects of CXCR3 Inhibitor AMG487 on Dendritic Cells. Arch Immunol Ther Exp (Warsz) 2020; 68:11. [PMID: 32239302 DOI: 10.1007/s00005-020-00577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/17/2020] [Indexed: 11/28/2022]
Abstract
AMG 487 is the targeted blocker of chemokine receptor CXCR3 and improves inflammatory symptoms by blocking the inflammatory cycle. Here we investigated whether AMG 487 affects dendritic cell (DC) biology and function. The expression of co-stimulatory markers on DCs was reduced, indicating the semi-mature state of DC when AMG 487 was added throughout the in vitro differentiation period. Additionally, when added solely during the final lipopolysaccharide-induced activation step, AMG 487 inhibited DC activation, as demonstrated by a decreased expression of activation markers. AMG487 also promoted the expression of PD-L2 and impaired the ability to induce antigen-specific T cell responses. Our results demonstrated that AMG 487 significantly affects DC maturity in vitro and function leading to impaired T cell activation, inducing DCs to have characteristics similar to tolerogenic DCs. AMG 487 may directly play an immunomodulatory role during DC development and functional shaping.
Collapse
Affiliation(s)
- Chenchen Qin
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Min Cao
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhengyu Yu
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Beichen Liu
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
10
|
Insight into structural requirements for selective and/or dual CXCR3 and CXCR4 allosteric modulators. Eur J Med Chem 2018; 154:68-90. [PMID: 29777988 DOI: 10.1016/j.ejmech.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022]
Abstract
Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors.
Collapse
|
11
|
Abron JD, Singh NP, Murphy AE, Mishra MK, Price RL, Nagarkatti M, Nagarkatti PS, Singh UP. Differential role of CXCR3 in inflammation and colorectal cancer. Oncotarget 2018; 9:17928-17936. [PMID: 29707158 PMCID: PMC5915166 DOI: 10.18632/oncotarget.24730] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/02/2018] [Indexed: 02/04/2023] Open
Abstract
Chemokines (CXCR3) and their ligands (CXCL9, CXCL10, and CXCL11) exert exquisite control over T-cell trafficking and are critical for activation, differentiation and effector T cell function. CXCR3 is important for CD4 Th1 cells, CD8 effectors, memory cells, and for the function of natural killer and natural killer T cells. The presence of high cytotoxic CXCR3 ligand expression on CD8 T cells in colorectal cancerous tissue has been well documented in the past. CXCR3 and its ligands are differentially expressed at sites of inflammation and within the tumors. Further, the expression of CXCR3 and its ligands has been correlated with both the presence of effector T cells within tumor tissue and disease-free survival of patients. However, effector T cell infiltration into primary and metastatic tumors is highly variable and, in fact, often absent. Thus, understanding why T cells fail to infiltrate into tumors and determining the way to improve effector T cell entry into tumors would be important advances in efforts to harness the power of the immune system to fight cancer. To this end, the recent exciting discovery that CXCR3 is functionally expressed on regulatory T cells and also induces the differentiation of peripheral CD4 T cells into regulatory T cells, might address the novel clinically relevant question of the therapeutic potential of the CXCR3 system. This is also coupled with the fact that increases in CXCR3 expression also improves effector T cell function. This review describes the differential role of CXCR3 induction on peripheral and tumor microenvironment inflammation. Further, this review, tied with important findings from our laboratory, demonstrates that polyphenols induce CXCR3 expression on regulatory T cells and increases CXCR3 ligands in the tumor microenvironment, which act together to suppress colorectal cancer through a differential mechanism discussed herewith.
Collapse
Affiliation(s)
- Jessicca D Abron
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Narendra P Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Angela E Murphy
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Robert L Price
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Prakash S Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Udai P Singh
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Brox R, Milanos L, Saleh N, Baumeister P, Buschauer A, Hofmann D, Heinrich MR, Clark T, Tschammer N. Molecular Mechanisms of Biased and Probe-Dependent Signaling at CXC-Motif Chemokine Receptor CXCR3 Induced by Negative Allosteric Modulators. Mol Pharmacol 2018; 93:309-322. [PMID: 29343553 DOI: 10.1124/mol.117.110296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Our recent explorations of allosteric modulators with improved properties resulted in the identification of two biased negative allosteric modulators, BD103 (N-1-{[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimi-din2yl]ethyl}-4-(4-fluorobutoxy)-N-[(1-methylpiperidin-4-yl)methyl}]butanamide) and BD064 (5-[(N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl-2-[4-fluoro-3-(trifluoromethyl)phenyl]acetamido)methyl]-2-fluorophenyl}boronic acid), that exhibited probe-dependent inhibition of CXC-motif chemokine receptor CXCR3 signaling. With the intention to elucidate the structural mechanisms underlying their selectivity and probe dependence, we used site-directed mutagenesis combined with homology modeling and docking to identify amino acids of CXCR3 that contribute to modulator binding, signaling, and transmission of cooperativity. With the use of allosteric radioligand RAMX3 ([3H]N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-2-[4-fluoro-3-(trifluoromethyl)phenyl]-N-[(1-methylpiperidin-4-yl)methyl]acetamide), we identified that F1313.32 and Y3087.43 contribute specifically to the binding pocket of BD064, whereas D1864.60 solely participates in the stabilization of binding conformation of BD103. The influence of mutations on the ability of negative allosteric modulators to inhibit chemokine-mediated activation (CXCL11 and CXCL10) was assessed with the bioluminescence resonance energy transfer-based cAMP and β-arrestin recruitment assay. Obtained data revealed complex molecular mechanisms governing biased and probe-dependent signaling at CXCR3. In particular, F1313.32, S3047.39, and Y3087.43 emerged as key residues for the compounds to modulate the chemokine response. Notably, D1864.60, W2686.48, and S3047.39 turned out to play a role in signal pathway selectivity of CXCL10, as mutations of these residues led to a G protein-active but β-arrestin-inactive conformation. These diverse effects of mutations suggest the existence of ligand- and pathway-specific receptor conformations and give new insights in the sophisticated signaling machinery between allosteric ligands, chemokines, and their receptors, which can provide a powerful platform for the development of new allosteric drugs with improved pharmacological properties.
Collapse
Affiliation(s)
- Regine Brox
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Lampros Milanos
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Noureldin Saleh
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Paul Baumeister
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Armin Buschauer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Dagmar Hofmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| |
Collapse
|
13
|
Ha Y, Liu H, Zhu S, Yi P, Liu W, Nathanson J, Kayed R, Loucas B, Sun J, Frishman LJ, Motamedi M, Zhang W. Critical Role of the CXCL10/C-X-C Chemokine Receptor 3 Axis in Promoting Leukocyte Recruitment and Neuronal Injury during Traumatic Optic Neuropathy Induced by Optic Nerve Crush. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:352-365. [PMID: 27960090 DOI: 10.1016/j.ajpath.2016.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022]
Abstract
Traumatic optic neuropathy (TON) is an acute injury of the optic nerve secondary to trauma. Loss of retinal ganglion cells (RGCs) is a key pathological process in TON, yet mechanisms responsible for RGC death remain unclear. In a mouse model of TON, real-time noninvasive imaging revealed a dramatic increase in leukocyte rolling and adhesion in veins near the optic nerve (ON) head at 9 hours after ON injury. Although RGC dysfunction and loss were not detected at 24 hours after injury, massive leukocyte infiltration was observed in the superficial retina. These cells were identified as T cells, microglia/monocytes, and neutrophils but not B cells. CXCL10 is a chemokine that recruits leukocytes after binding to its receptor C-X-C chemokine receptor (CXCR) 3. The levels of CXCL10 and CXCR3 were markedly elevated in TON, and up-regulation of CXCL10 was mediated by STAT1/3. Deleting CXCR3 in leukocytes significantly reduced leukocyte recruitment, and prevented RGC death at 7 days after ON injury. Treatment with CXCR3 antagonist attenuated TON-induced RGC dysfunction and cell loss. In vitro co-culture of primary RGCs with leukocytes resulted in increased RGC apoptosis, which was exaggerated in the presence of CXCL10. These results indicate that leukocyte recruitment in retinal vessels near the ON head is an early event in TON and the CXCL10/CXCR3 axis has a critical role in recruiting leukocytes and inducing RGC death.
Collapse
Affiliation(s)
- Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Hua Liu
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Panpan Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Jared Nathanson
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas
| | - Bradford Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | | | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
14
|
Milanos L, Saleh N, Kling RC, Kaindl J, Tschammer N, Clark T. Identification of Two Distinct Sites for Antagonist and Biased Agonist Binding to the Human Chemokine Receptor CXCR3. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lampros Milanos
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Department of Chemistry and Pharmacy; Medicinal Chemistry; Emil Fischer Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; Schuhstraße 19 91052 Erlangen Germany
| | - Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Ralf C. Kling
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Institute of Physiology; Paracelsus Medical University Nürnberg; Prof.-Ernst-Nathan-Str. 1 90419 Nürnberg Germany
| | - Jonas Kaindl
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy; Medicinal Chemistry; Emil Fischer Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; Schuhstraße 19 91052 Erlangen Germany
- Research and Development; NanoTemper Technologies GmbH; Floessergasse 4 81369 München Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| |
Collapse
|
15
|
Milanos L, Saleh N, Kling RC, Kaindl J, Tschammer N, Clark T. Identification of Two Distinct Sites for Antagonist and Biased Agonist Binding to the Human Chemokine Receptor CXCR3. Angew Chem Int Ed Engl 2016; 55:15277-15281. [DOI: 10.1002/anie.201607831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Lampros Milanos
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Department of Chemistry and Pharmacy; Medicinal Chemistry; Emil Fischer Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; Schuhstraße 19 91052 Erlangen Germany
| | - Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Ralf C. Kling
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
- Institute of Physiology; Paracelsus Medical University Nürnberg; Prof.-Ernst-Nathan-Str. 1 90419 Nürnberg Germany
| | - Jonas Kaindl
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy; Medicinal Chemistry; Emil Fischer Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; Schuhstraße 19 91052 Erlangen Germany
- Research and Development; NanoTemper Technologies GmbH; Floessergasse 4 81369 München Germany
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstr. 25 91052 Erlangen Germany
| |
Collapse
|
16
|
Bata I, Tömösközi Z, Buzder-Lantos P, Vasas A, Szeleczky G, Balázs L, Barta-Bodor V, Ferenczy GG. II. Discovery of a novel series of CXCR3 antagonists with a beta amino acid core. Bioorg Med Chem Lett 2016; 26:5429-5437. [DOI: 10.1016/j.bmcl.2016.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023]
|
17
|
Bata I, Tömösközi Z, Buzder-Lantos P, Vasas A, Szeleczky G, Bátori S, Barta-Bodor V, Balázs L, Ferenczy GG. I. Discovery of a novel series of CXCR3 antagonists. Multiparametric optimization of N , N -disubstituted benzylamines. Bioorg Med Chem Lett 2016; 26:5418-5428. [DOI: 10.1016/j.bmcl.2016.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
|
18
|
Johnson RM, Bergmann KR, Manaloor JJ, Yu X, Slaven JE, Kharbanda AB. Pediatric Kawasaki Disease and Adult Human Immunodeficiency Virus Kawasaki-Like Syndrome Are Likely the Same Malady. Open Forum Infect Dis 2016; 3:ofw160. [PMID: 27704015 PMCID: PMC5047405 DOI: 10.1093/ofid/ofw160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 11/14/2022] Open
Abstract
Background. Pediatric Kawasaki disease (KD) and human immunodeficiency virus (HIV)+ adult Kawasaki-like syndrome (KLS) are dramatic vasculitides with similar physical findings. Both syndromes include unusual arterial histopathology with immunoglobulin (Ig)A+ plasma cells, and both impressively respond to pooled Ig therapy. Their distinctive presentations, histopathology, and therapeutic response suggest a common etiology. Because blood is in immediate contact with inflamed arteries, we investigated whether KD and KLS share an inflammatory signature in serum. Methods. A custom multiplex enzyme-linked immunosorbent assay (ELISA) defined the serum cytokine milieu in 2 adults with KLS during acute and convalescent phases, with asymptomatic HIV+ subjects not taking antiretroviral therapy serving as controls. We then prospectively collected serum and plasma samples from children hospitalized with KD, unrelated febrile illnesses, and noninfectious conditions, analyzing them with a custom multiplex ELISA based on the KLS data. Results. Patients with KLS and KD subjects shared an inflammatory signature including acute-phase reactants reflecting tumor necrosis factor (TNF)-α biologic activity (soluble TNF receptor I/II) and endothelial/smooth muscle chemokines Ccl1 (Th2), Ccl2 (vascular inflammation), and Cxcl11 (plasma cell recruitment). Ccl1 was specifically elevated in KD versus febrile controls, suggesting a unique relationship between Ccl1 and KD/KLS pathogenesis. Conclusions. This study defines a KD/KLS inflammatory signature mirroring a dysfunctional response likely to a common etiologic agent. The KD/KLS inflammatory signature based on elevated acute-phase reactants and specific endothelial/smooth muscle chemokines was able to identify KD subjects versus febrile controls, and it may serve as a practicable diagnostic test for KD.
Collapse
Affiliation(s)
| | - Kelly R Bergmann
- Department of Pediatric Emergency Medicine , Children's Hospitals and Clinics of Minnesota , Minneapolis
| | - John J Manaloor
- Ryan White Center for Pediatric Infectious Diseases and Global Health
| | - Xiaoqing Yu
- Biostatistics , Yale University School of Medicine , New Haven, Connecticut
| | - James E Slaven
- Biostatistics , Indiana University School of Medicine , Indianapolis
| | - Anupam B Kharbanda
- Department of Pediatric Emergency Medicine , Children's Hospitals and Clinics of Minnesota , Minneapolis
| |
Collapse
|
19
|
Milanos L, Brox R, Frank T, Poklukar G, Palmisano R, Waibel R, Einsiedel J, Dürr M, Ivanović-Burmazović I, Larsen O, Hjortø GM, Rosenkilde MM, Tschammer N. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3. J Med Chem 2016; 59:2222-43. [DOI: 10.1021/acs.jmedchem.5b01965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lampros Milanos
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Theresa Frank
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Gašper Poklukar
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ralf Palmisano
- Optical
Imaging Center Erlangen, Friedrich Alexander University, Hartmannstraße
14, 91052 Erlangen, Germany
| | - Reiner Waibel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Maximilian Dürr
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Olav Larsen
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Gertrud Malene Hjortø
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Nuska Tschammer
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
20
|
Abstract
Chemokines and their receptors are known to play important roles in disease. More than 40 chemokine ligands and 20 chemokine receptors have been identified, but, to date, only two small molecule chemokine receptor antagonists have been approved by the FDA. The chemokine receptor CXCR3 was identified in 1996, and nearly 20 years later, new areas of CXCR3 disease biology continue to emerge. Several classes of small molecule CXCR3 antagonists have been developed, and two have shown efficacy in preclinical models of inflammatory disease. However, only one CXCR3 antagonist has been evaluated in clinical trials, and there remain many opportunities to further investigate known classes of CXCR3 antagonists and to identify new chemotypes. This Perspective reviews the known CXCR3 antagonists and considers future opportunities for the development of small molecules for clinical evaluation.
Collapse
Affiliation(s)
- Stephen P Andrews
- Heptares Therapeutics , BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - Rhona J Cox
- Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca, Respiratory, Inflammation & Autoimmunity IMED , Pepparedsleden, 431 83 Mölndal, Sweden
| |
Collapse
|
21
|
Mladic M, Scholten DJ, Wijtmans M, Falck D, Leurs R, Niessen WMA, Smit MJ, Kool J. Metabolic profiling of ligands for the chemokine receptor CXCR3 by liquid chromatography-mass spectrometry coupled to bioaffinity assessment. Anal Bioanal Chem 2015; 407:7067-81. [PMID: 26164305 PMCID: PMC4551560 DOI: 10.1007/s00216-015-8867-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023]
Abstract
Chemokine receptors belong to the class of G protein-coupled receptors and are important in the host defense against infections and inflammation. However, aberrant chemokine signaling is linked to different disorders such as cancer, central nervous system and immune disorders, and viral infections [Scholten DJ et al. (2012) Br J Pharmacol 165(6):1617–1643]. Modulating the chemokine receptor function provides new ways of targeting specific diseases. Therefore, discovery and development of drugs targeting chemokine receptors have received considerable attention from the pharmaceutical industry in the past decade. Along with that, the determination of bioactivities of individual metabolites derived from lead compounds towards chemokine receptors is crucial for drug selectivity, pharmacodynamics, and potential toxicity issues. Therefore, advanced analytical methodologies are in high demand. This study is aimed at the optimization of a new analytical method for metabolic profiling with parallel bioaffinity assessment of CXCR3 ligands of the azaquinazolinone and piperazinyl-piperidine class and their metabolites. The method is based on mass spectrometric (MS) identification after liquid chromatographic (LC) separation of metabolic mixtures. The bioaffinity assessment is performed “at-line” via high-resolution nanofractionation onto 96-well plates allowing direct integration of radioligand binding assays. This new method enables identification of metabolites from lead compounds with associated estimation of their individual bioaffinity. Moreover, the identification of the metabolite structures via accurate mass measurements and MS2 allows the identification of liable metabolic “hotspots” for further lead optimization. The efficient combination of chemokine receptor ligand binding assays with analytical techniques, involving nanofractionation as linking technology, allows implementation of comprehensive metabolic profiling in an early phase of the drug discovery process.
Collapse
Affiliation(s)
- Marija Mladic
- />Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- />Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Danny J. Scholten
- />Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Maikel Wijtmans
- />Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - David Falck
- />Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Rob Leurs
- />Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Wilfried M. A. Niessen
- />Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- />hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| | - Martine J. Smit
- />Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Jeroen Kool
- />Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Scholten DJ, Wijtmans M, van Senten JR, Custers H, Stunnenberg A, de Esch IJP, Smit MJ, Leurs R. Pharmacological characterization of [3H]VUF11211, a novel radiolabeled small-molecule inverse agonist for the chemokine receptor CXCR3. Mol Pharmacol 2015; 87:639-48. [PMID: 25576486 DOI: 10.1124/mol.114.095265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds serve as interesting tools for investigating receptor activation and antagonism. Accumulating evidence suggests that many of these compounds are allosteric modulators for CXCR3. One feature of allosteric ligands is that the magnitude of the mediated allosteric effect is dependent on the orthosteric probe that is used. Consequently, there is a risk for incorrect assessment of affinity for allosteric modulators with orthosteric radioligands, which has so far been the most applied approach for chemokine receptors. Therefore, we aimed to use a small-molecule allosteric ligand from the piperazinyl-piperidine class, also known as VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide]. VUF11211 acts as an inverse agonist at a constitutively active mutant of CXCR3. Radiolabeling of VUF11211 gave [(3)H]VUF11211, which in radioligand binding studies shows high affinity for CXCR3 (Kd = 0.65 nM) and reasonably fast association (kon= 0.03 minute(-1)nM(-1)) and dissociation kinetics (koff = 0.02 minute(-1)). The application of the [(3)H]VUF11211 to assess CXCR3 pharmacology was validated with diverse classes of CXCR3 compounds, including both antagonists and agonists, as well as VUF11211 analogs. Interestingly, VUF11211 seems to bind to a different population of CXCR3 conformations compared with the CXCR3 agonists CXC chemokine ligand 11 (CXCL11), VUF11418 [1-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-N-((2'-iodobiphenyl-4-yl)methyl)-N,N-dimethylmethanaminium Iodide], and VUF10661 [N-(6-amino-1-(2,2-diphenylethylamino)-1-oxohexan-2-yl)-2-(4-oxo-4-phenylbutanoyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide]. These findings, taken together, indicate that this allosteric inverse agonist radioligand for CXCR3 may facilitate the discovery, characterization, and optimization of allosteric modulators for the chemokine receptor CXCR3.
Collapse
Affiliation(s)
- Danny J Scholten
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Hans Custers
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ailas Stunnenberg
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Bernat V, Brox R, Heinrich MR, Auberson YP, Tschammer N. Ligand-Biased and Probe-Dependent Modulation of Chemokine Receptor CXCR3 Signaling by Negative Allosteric Modulators. ChemMedChem 2015; 10:566-74. [DOI: 10.1002/cmdc.201402507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/14/2015] [Indexed: 11/10/2022]
|
24
|
Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med 2014; 6:223ra23. [PMID: 24523323 DOI: 10.1126/scitranslmed.3007811] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vitiligo is an autoimmune disease of the skin that results in disfiguring white spots. There are no U.S. Food and Drug Administration-approved treatments for vitiligo, and most off-label treatments yield unsatisfactory results. Vitiligo patients have increased numbers of autoreactive, melanocyte-specific CD8(+) T cells in the skin and blood, which are directly responsible for melanocyte destruction. We report that gene expression in lesional skin from vitiligo patients revealed an interferon-γ (IFN-γ)-specific signature, including the chemokine CXCL10. CXCL10 was elevated in both vitiligo patient skin and serum, and CXCR3, its receptor, was expressed on pathogenic T cells. To address the function of CXCL10 in vitiligo, we used a mouse model of disease that also exhibited an IFN-γ-specific gene signature, expression of CXCL10 in the skin, and up-regulation of CXCR3 on antigen-specific T cells. Mice that received Cxcr3(-/-) T cells developed minimal depigmentation, as did mice lacking Cxcl10 or treated with CXCL10-neutralizing antibody. CXCL9 promoted autoreactive T cell global recruitment to the skin but not effector function, whereas CXCL10 was required for effector function and localization within the skin. Surprisingly, CXCL10 neutralization in mice with established, widespread depigmentation induces reversal of disease, evidenced by repigmentation. These data identify a critical role for CXCL10 in both the progression and maintenance of vitiligo and thereby support inhibiting CXCL10 as a targeted treatment strategy.
Collapse
Affiliation(s)
- Mehdi Rashighi
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bernat V, Admas TH, Brox R, Heinemann FW, Tschammer N. Boronic acids as probes for investigation of allosteric modulation of the chemokine receptor CXCR3. ACS Chem Biol 2014; 9:2664-77. [PMID: 25233453 DOI: 10.1021/cb500678c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The chemokine receptor CXCR3 is a G protein-coupled receptor, which conveys extracellular signals into cells by changing its conformation upon agonist binding. To facilitate the mechanistic understanding of allosteric modulation of CXCR3, we combined computational modeling with the synthesis of novel chemical tools containing boronic acid moiety, site-directed mutagenesis, and detailed functional characterization. The design of boronic acid derivatives was based on the predictions from homology modeling and docking. The choice of the boronic acid moiety was dictated by its unique ability to interact with proteins in a reversible covalent way, thereby influencing conformational dynamics of target biomolecules. During the synthesis of the library we have developed a novel approach for the purification of drug-like boronic acids. To validate the predicted binding mode and to identify amino acid residues responsible for the transduction of signal through CXCR3, we conducted a site-directed mutagenesis study. With the use of allosteric radioligand RAMX3 we were able to establish the existence of a second allosteric binding pocket in CXCR3, which enables different binding modes of structurally closely related allosteric modulators of CXCR3. We have also identified residues Trp109(2.60) and Lys300(7.35) inside the transmembrane bundle of the receptor as crucial for the regulation of the G protein activation. Furthermore, we report the boronic acid 14 as the first biased negative allosteric modulator of the receptor. Overall, our data demonstrate that boronic acid derivatives represent an outstanding tool for determination of key receptor-ligand interactions and induction of ligand-biased signaling.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Tizita Haimanot Admas
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Frank W. Heinemann
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Nuska Tschammer
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
26
|
Steen A, Larsen O, Thiele S, Rosenkilde MM. Biased and g protein-independent signaling of chemokine receptors. Front Immunol 2014; 5:277. [PMID: 25002861 PMCID: PMC4066200 DOI: 10.3389/fimmu.2014.00277] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor), different receptors (with the same ligand), or different tissues or cells (for the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of “classic” redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor-, or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the solution.
Collapse
Affiliation(s)
- Anne Steen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Stefanie Thiele
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
27
|
CXCR3-Mediated Skin Homing of Autoreactive CD8 T Cells Is a Key Determinant in Murine Graft-Versus-Host Disease. J Invest Dermatol 2014; 134:1552-1560. [DOI: 10.1038/jid.2014.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022]
|
28
|
Nair AG, Wong MKC, Shu Y, Jiang Y, Jenh CH, Kim SH, Yang DY, Zeng Q, Shao Y, Zawacki LG, Duo J, McGuinness BF, Carroll CD, Hobbs DW, Shih NY, Rosenblum SB, Kozlowski JA. IV. Discovery of CXCR3 antagonists substituted with heterocycles as amide surrogates: improved PK, hERG and metabolic profiles. Bioorg Med Chem Lett 2014; 24:1085-8. [PMID: 24486132 DOI: 10.1016/j.bmcl.2014.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/29/2022]
Abstract
The structure-human CXCR3 binding affinity relationship of a series of pyridyl/pyrazinyl-piperazinyl-piperidine derivatives were explored with a focus to improve PK, hERG and metabolic profiles. Several small heterocycles were identified as amide surrogates, which minimized many potential metabolite issues. During the course of SAR development, we have observed the additive effect of desirable functional groups to improve hERG and PK profiles which lead to the discovery of many clinically developable CXCR3 antagonists with excellent overall profile.
Collapse
Affiliation(s)
- Anilkumar G Nair
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Michael K C Wong
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Youheng Shu
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Yueheng Jiang
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Chung-Her Jenh
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Seong Heon Kim
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - De-Yi Yang
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Qingbei Zeng
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Yuefei Shao
- Ligand Pharmaceuticals, 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA
| | - Lisa Guise Zawacki
- Ligand Pharmaceuticals, 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA
| | - Jingqi Duo
- Ligand Pharmaceuticals, 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA
| | - Brian F McGuinness
- Ligand Pharmaceuticals, 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA
| | | | - Doug W Hobbs
- Ligand Pharmaceuticals, 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA
| | - Neng-Yang Shih
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Stuart B Rosenblum
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Joseph A Kozlowski
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
29
|
Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Scholten DJ, Roumen L, Wijtmans M, Verkade-Vreeker MCA, Custers H, Lai M, de Hooge D, Canals M, de Esch IJP, Smit MJ, de Graaf C, Leurs R. Identification of overlapping but differential binding sites for the high-affinity CXCR3 antagonists NBI-74330 and VUF11211. Mol Pharmacol 2014; 85:116-26. [PMID: 24174496 DOI: 10.1124/mol.113.088633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is suggested that these compounds bind in an allosteric fashion, thus far no evidence has been provided regarding the molecular details of their interaction with CXCR3. Using site-directed mutagenesis complemented with in silico homology modeling, we report the binding modes of two high-affinity CXCR3 antagonists of distinct chemotypes: VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide] (piperazinyl-piperidine) with a rigid elongated structure containing two basic groups and NBI-74330 [(R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-2-(4-fluoro-3-(trifluoromethyl)phenyl)-N-(pyridin-3-ylmethyl)acetamide] (8-azaquinazolinone) without any basic group. Here we show that NBI-74330 is anchored in the transmembrane minor pocket lined by helices 2 (W2.60, D2.63), 3 (F3.32), and 7 (S7.39, Y7.43), whereas VUF11211 extends from the minor pocket into the major pocket of the transmembrane domains, located between residues in helices 1 (Y1.39), 2 (W2.60), 3 (F3.32), 4 (D4.60), 6 (Y6.51), and 7 (S7.39, Y7.43). Mutation of these residues did not affect CXCL11 binding significantly, confirming the allosteric nature of the interaction of these small molecules with CXCR3. Moreover, the model derived from our in silico-guided studies fits well with the already published structure-activity relationship data on these ligands. Altogether, in this study, we show overlapping, yet different binding sites for two high-affinity CXCR3 antagonists, which offer new opportunities for the structure-based design of allosteric modulators for CXCR3.
Collapse
Affiliation(s)
- Danny J Scholten
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines, and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Watts AO, van Lipzig MMH, Jaeger WC, Seeber RM, van Zwam M, Vinet J, van der Lee MMC, Siderius M, Zaman GJR, Boddeke HWGM, Smit MJ, Pfleger KDG, Leurs R, Vischer HF. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. Br J Pharmacol 2013; 168:1662-74. [PMID: 23170857 DOI: 10.1111/bph.12064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/29/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heteromers. We investigated whether CXCR3 and CXCR4 can form heteromeric complexes and the binding characteristics of chemokines and small ligand compounds to these chemokine receptor heteromers. EXPERIMENTAL APPROACH CXCR3-CXCR4 heteromers were identified in HEK293T cells using co-immunoprecipitation, time-resolved fluorescence resonance energy transfer, saturation BRET and the GPCR-heteromer identification technology (HIT) approach. Equilibrium competition binding and dissociation experiments were performed to detect negative binding cooperativity. KEY RESULTS We provide evidence that chemokine receptors CXCR3 and CXCR4 form heteromeric complexes in HEK293T cells. Chemokine binding was mutually exclusive on membranes co-expressing CXCR3 and CXCR4 as revealed by equilibrium competition binding and dissociation experiments. The small CXCR3 agonist VUF10661 impaired binding of CXCL12 to CXCR4, whereas small antagonists were unable to cross-inhibit chemokine binding to the other chemokine receptor. In contrast, negative binding cooperativity between CXCR3 and CXCR4 chemokines was not observed in intact cells. However, using the GPCR-HIT approach, we have evidence for specific β-arrestin2 recruitment to CXCR3-CXCR4 heteromers in response to agonist stimulation. CONCLUSIONS AND IMPLICATIONS This study indicates that heteromeric CXCR3-CXCR4 complexes may act as functional units in living cells, which potentially open up novel therapeutic opportunities.
Collapse
Affiliation(s)
- A O Watts
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vummidi BR, Noreen F, Alzeer J, Moelling K, Luedtke NW. Photodynamic agents with anti-metastatic activities. ACS Chem Biol 2013; 8:1737-46. [PMID: 23672401 DOI: 10.1021/cb400008t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new concept in multifunctional anticancer agents is demonstrated. Tetrakis-(diisopropyl-guanidino) zinc phthalocyanine (Zn-DIGP) exhibits excellent properties as a photodynamic therapy (PDT) agent, as well as potential anti-metastatic activities in vivo. Zn-DIGP exhibits good cellular uptake and low toxicity in the dark (EC50 > 80 μM) and is well tolerated upon its intravenous injection into mice at 8 mg/kg. Upon photoexcitation with red laser light (660 nm), Zn-DIGP exhibits a high quantum yield for singlet oxygen formation (Φ ≈ 0.51) that results in potent phototoxicity to cell cultures (EC50 ≈ 0.16 μM). Zn-DIGP is also capable of inhibiting the formation of tumor colonies in the lungs of C57BL/6 mice injected with B16F10 cells. Zn-DIGP therefore inhibits cancer growth by both light-dependent and light-independent pathways. The anti-metastatic activities of Zn-DIGP possibly result from its ability to interfere with the signaling between chemokine CXCL10 and the G protein-coupled receptor CXCR3. Zn-DIGP is a competitive inhibitor of CXCR3 activation (IC50 = 3.8 μM) and selectively inhibits downstream events such as CXCL10-activated cell migration. Consistent with the presence of feedback regulation between CXCR3 binding and CXCL10 expression, Zn-DIGP causes overexpression of CXCL10. Interestingly, Zn-DIGP binds to CXCR3 without activating the receptor yet is able to cause endocytosis and degradation of this GPCR. To the best of our knowledge, Zn-DIGP is the first PDT agent that can facilitate the photodynamic treatment of primary tumors while simultaneously inhibiting the formation of metastatic tumor colonies by a light-independent mode of action.
Collapse
Affiliation(s)
- Balayeshwanth R. Vummidi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Faiza Noreen
- Institute
of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich,
Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Karin Moelling
- Institute
of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich,
Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| |
Collapse
|
33
|
Schmitz K, Pickert G, Wijnvoord N, Häussler A, Tegeder I. Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 2013; 32:186-200. [PMID: 23643685 DOI: 10.1016/j.bbi.2013.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
The chemokine CCL21 is released from injured neurons and acts as a ligand of the chemokine receptor, CXCR3, which likely contributes to pro-inflammatory adaptations and secondary neuronal damage. CCL21-CXCR3 signalling may therefore impact on the development of neuropathic pain. By using the respective knockout mice we show that deficiency of CCL19/21 in plt/plt mice attenuates nerve injury evoked pain but not the hyperalgesia evoked by autoimmune encephalomyelitis (EAE). Oppositely, CXCR3-deficiency had no protective effect after traumatic nerve injury but reduced EAE-evoked hyperalgesia and was associated with reduced clinical EAE scores, a reduction of the pro-inflammatory cell infiltration and reduced upregulation of interferon gamma and interleukin-17 in the spinal cord. In contrast, microglia activation in the spinal cord after traumatic sciatic nerve injury was neither attenuated in CXCR3(-/-) nor plt/plt mice, nor in double knockouts. However, the severity of EAE, but not the hyperalgesia, was also reduced in plt/plt mice, which was associated with reduced infiltration of the spinal cord with CCR7+ T-cells, an increase of CD25+ T-cells and reduced upregulation of CXCL9 and 10, CCL11 and 12. The data show that CCL21 and CXCR3 have dichotomous functions in traumatic and EAE-evoked neuropathic pain suggesting diverse mechanisms likely requiring diverse treatments although both types of neuropathic pain are mediated in part through the immune activation.
Collapse
Affiliation(s)
- Katja Schmitz
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
34
|
Compton C, McBryan D, Bucchioni E, Patalano F. The Novartis view on emerging drugs and novel targets for the treatment of chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2013; 26:562-73. [PMID: 23748050 DOI: 10.1016/j.pupt.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterized by airflow limitation and chronic inflammation in the lungs. The mainstay of drug therapy for COPD is represented by long-acting bronchodilators, an important aspect of Novartis' development program. Novel once-daily dosing bronchodilators, such as the long-acting muscarinic antagonist (LAMA) glycopyrronium and the LAMA/long-acting β2-agonist (LABA) fixed-dose combination QVA149, have been shown to provide significant benefits to patients with COPD in terms of improvement in lung function, exercise tolerance, health-related quality of life, symptoms and reduction in the rate of exacerbations. Despite the benefits provided by these new treatment options, prevention of disease progression and control of exacerbations in certain patient phenotypes remain key challenges in the treatment of COPD. In order to address these needs and gain new insights into the complexity of COPD, Novartis is, in addition to bronchodilator-only therapies, developing LABA/inhaled corticosteroids (ICS) combinations to target inflammation, such as QMF149, as well as non-steroid based anti-inflammatory agents against key novel targets. These commitments are central to the Novartis' final goal of improving the standard of care in respiratory medicine and offering a better quality of life to patients with COPD.
Collapse
Affiliation(s)
- C Compton
- Novartis Pharma, Basel, Switzerland.
| | | | | | | |
Collapse
|
35
|
Lacotte S, Decossas M, Le Coz C, Brun S, Muller S, Dumortier H. Early differentiated CD138(high) MHCII+ IgG+ plasma cells express CXCR3 and localize into inflamed kidneys of lupus mice. PLoS One 2013; 8:e58140. [PMID: 23520491 PMCID: PMC3592892 DOI: 10.1371/journal.pone.0058140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/04/2013] [Indexed: 11/30/2022] Open
Abstract
Humoral responses are central to the development of chronic autoimmune diseases such as systemic lupus erythematosus. Indeed, autoantibody deposition is responsible for tissue damage, the kidneys being one of the main target organs. As the source of pathogenic antibodies, plasma cells are therefore critical players in this harmful scenario, both at systemic and local levels. The aim of the present study was to analyze plasma cells in NZB/W lupus mice and to get a better understanding of the mechanisms underlying their involvement in the renal inflammation process. Using various techniques (i.e. flow cytometry, quantitative PCR, ELISpot), we identified and extensively characterized three plasma cell intermediates, according to their B220/CD138/MHCII expression levels. Each of these cell subsets displays specific proliferation and antibody secretion capacities. Moreover, we evidenced that the inflammation-related CXCR3 chemokine receptor is uniquely expressed by CD138highMHCII+ plasma cells, which encompass both short- and long-lived cells and mostly produce IgG (auto)antibodies. Expression of CXCR3 allows efficient chemotactic responsiveness of these cells to cognate chemokines, which production is up-regulated in the kidneys of diseased NZB/W mice. Finally, using fluorescence and electron microscopy, we demonstrated the presence of CD138+CXCR3+IgG+ cells in inflammatory areas in the kidneys, where they are very likely involved in the injury process. Thus, early differentiated CD138highMHCII+ rather than terminally differentiated CD138highMHCIIlow plasma cells may be involved in the renal inflammatory injury in lupus, due to CXCR3 expression and IgG secretion.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
| | - Marion Decossas
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
| | - Carole Le Coz
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
| | - Susana Brun
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
| | - Sylviane Muller
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
| | - Hélène Dumortier
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis, Strasbourg, France
- * E-mail:
| |
Collapse
|
36
|
Wijtmans M, Scholten DJ, Roumen L, Canals M, Custers H, Glas M, Vreeker MCA, de Kanter FJJ, de Graaf C, Smit MJ, de Esch IJP, Leurs R. Chemical Subtleties in Small-Molecule Modulation of Peptide Receptor Function: The Case of CXCR3 Biaryl-Type Ligands. J Med Chem 2012; 55:10572-83. [DOI: 10.1021/jm301240t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Maikel Wijtmans
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Danny J. Scholten
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Luc Roumen
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Meritxell Canals
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Hans Custers
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Marjolein Glas
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Marlies C. A. Vreeker
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Frans J. J. de Kanter
- Division of Organic and Inorganic
Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Chris de Graaf
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Martine J. Smit
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| | - Rob Leurs
- Leiden/Amsterdam Center for
Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, The Netherlands
| |
Collapse
|
37
|
Scholten DJ, Canals M, Wijtmans M, de Munnik S, Nguyen P, Verzijl D, de Esch IJP, Vischer HF, Smit MJ, Leurs R. Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3. Br J Pharmacol 2012; 166:898-911. [PMID: 21883151 DOI: 10.1111/j.1476-5381.2011.01648.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CXCR3 is a GPCR found predominantly on activated T cells. CXCR3 is activated by three endogenous peptides; CXCL9, CXCL10 and CXCL11. Recently, a small-molecule agonist, VUF10661, has been reported in the literature and synthesized in our laboratory. The aim of the present study was to provide a detailed pharmacological characterization of VUF10661 by comparing its effects with those of CXCL11. EXPERIMENTAL APPROACH Agonistic properties of VUF10661 were assessed in a chemotaxis assay with murine L1.2 cells transiently transfected with cDNA encoding the human CXCR3 receptor and in binding studies, with [(125)I]-CXCL10 and [(125)I]-CXCL11, on membrane preparations from HEK293 cells stably expressing CXCR3. [(35)S]-GTPγS binding was used to determine its potency to induce CXCR3-mediated G protein activation and BRET-based assays to investigate its effects on intracellular cAMP levels and β-arrestin recruitment. KEY RESULTS VUF10661 acted as a partial agonist in CXCR3-mediated chemotaxis, bound to CXCR3 in an allosteric fashion in ligand binding assays and activated G(i) proteins with the same efficacy as CXCL11 in the [(35)S]-GTPγS binding and cAMP assay, while it recruited more β-arrestin1 and β-arrestin2 to CXCR3 receptors than the chemokine. CONCLUSIONS AND IMPLICATIONS VUF10661, like CXCL11, activates both G protein-dependent and -independent signalling via the CXCR3 receptor, but probably exerts its effects from an allosteric binding site that is different from that for CXCL11. It could stabilize different receptor and/or β-arrestin conformations leading to differences in functional output. Such ligand-biased signalling might offer interesting options for the therapeutic use of CXCR3 agonists.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Herzig DS, Guo Y, Fang G, Toliver-Kinsky TE, Sherwood ER. Therapeutic efficacy of CXCR3 blockade in an experimental model of severe sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R168. [PMID: 22992408 PMCID: PMC3682267 DOI: 10.1186/cc11642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/14/2012] [Indexed: 01/21/2023]
Abstract
Introduction In our previous studies we demonstrated that CXC chemokine receptor 3 (CXCR3) participates in the regulation of lymphocyte trafficking during cecal ligation and puncture (CLP)-induced sepsis. In this study, we evaluated the effects of treatment with anti-CXCR3 immunoglobulin (IgG) and antibiotics on outcome during septic shock caused by CLP. Methods C57BL/6J mice were treated with neutralizing IgG against CXCR3 plus Primaxin either 24 hours prior to, 2 hours after or 6 hours after CLP. Control mice received nonspecific IgG plus Primaxin in the same regimen. Survival, core body temperature, bacterial clearance and systemic cytokine production were evaluated. Results Our results show that treatment with anti-CXCR3 IgG plus Primaxin significantly improved survival when administered 24 hours prior to CLP (50% vs. 10%), 2 hours after CLP (55% vs. 10%) or 6 hours after CLP (55% vs. 25%) compared with mice receiving nonspecific IgG plus Primaxin. Treatment with anti-CXCR3 plus Primaxin 24 hours prior to CLP attenuated hypothermia and IL-6 and macrophage inflammatory protein 2 (MIP-2) production but did not alter bacterial clearance. Treatment with anti-CXCR3 IgG and Primaxin 2 hours after CLP did not improve bacterial clearance and systemic cytokine production compared with mice treated with IgG and Primaxin, whereas 6 hours after CLP the bacterial clearance and IL-6 and MIP-2 concentrations, both in plasma and peritoneal lavage fluid, were significantly improved in mice receiving anti-CXCR3 IgG and Primaxin compared with mice that only received nonspecific IgG and Primaxin. Conclusion The results from this study indicate that neutralization of CXCR3 prior to, 2 hours after or 6 hours after the initiation of CLP-induced septic shock improves survival and attenuates CLP-induced inflammation and physiologic dysfunction.
Collapse
|
39
|
Abstract
Chemokines and their receptors have a multifaceted role in tumor biology and are implicated in nearly all aspects of cancer growth, survival and dissemination. Modulation of the interaction between chemokines and their cell surface receptor is, therefore, a promising area for the development of new cancer medicines. In this review, we look at the compelling evidence that is emerging to support targeting CXC chemokines, also known as family α chemokines, as novel therapeutic strategies in the treatment of cancer.
Collapse
|
40
|
Evans VA, Khoury G, Saleh S, Cameron PU, Lewin SR. HIV persistence: chemokines and their signalling pathways. Cytokine Growth Factor Rev 2012; 23:151-7. [PMID: 22749173 DOI: 10.1016/j.cytogfr.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Latently infected resting CD4+ T cells are the major barrier to curing HIV. We have recently demonstrated that chemokines, which bind to the chemokine receptors CCR7, CXCR3 and CCR6, facilitate efficient HIV nuclear localisation and integration in resting CD4+ T cells, leading to latency. As latently infected cells are enriched in lymphoid tissues, where chemokines are highly concentrated, this may provide a mechanism for the generation of latently infected cells in vivo. Here we review the role of chemokines in HIV persistence; the main signalling pathways that are involved; and how these pathways may be exploited to develop novel strategies to reduce or eliminate latently infected cells.
Collapse
Affiliation(s)
- Vanessa A Evans
- Department of Medicine, Monash University, Melbourne, 3004, Australia
| | | | | | | | | |
Collapse
|
41
|
Bernat V, Heinrich MR, Baumeister P, Buschauer A, Tschammer N. Synthesis and Application of the First Radioligand Targeting the Allosteric Binding Pocket of Chemokine Receptor CXCR3. ChemMedChem 2012; 7:1481-9. [DOI: 10.1002/cmdc.201200184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/10/2012] [Indexed: 11/05/2022]
|
42
|
Nimmagadda S. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging. Front Oncol 2012; 2:46. [PMID: 22662317 PMCID: PMC3362738 DOI: 10.3389/fonc.2012.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 04/24/2012] [Indexed: 12/15/2022] Open
Abstract
Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.
Collapse
Affiliation(s)
- Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
43
|
Jöhrer K, Hofbauer SW, Zelle-Rieser C, Greil R, Hartmann TN. Chemokine-dependent B cell-T cell interactions in chronic lymphocytic leukemia and multiple myeloma - targets for therapeutic intervention? Expert Opin Biol Ther 2012; 12:425-41. [PMID: 22332909 DOI: 10.1517/14712598.2012.664128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chemokines and their receptors play essential roles in the development, maintenance and proper functioning of the immune system. B cell-T cell interactions are modulated by chemokines. In B cell malignancies, these interactions may have tumor-promoting consequences. AREAS COVERED This review summarizes physiological B cell-T cell interactions and discusses their pathological role in the onset and progression of B cell malignancies with a special focus on chronic lymphocytic leukemia and multiple myeloma. Experimental data on chemokine-guided B cell-T cell actions in B cell malignancies from murine models as well as in vitro data are summarized and their potential as future therapeutic targets is critically discussed. EXPERT OPINION Direct or indirect targeting of chemokine receptors involved in localization and T-cell-dependent activation of B lymphocytes can provide strong synergisms with conventional or immunomodulatory therapies by disrupting the microenvironmental conditions necessary for survival and proliferation of malignant B lymphocytes. However, further knowledge of these interactions between B and T cells is needed.
Collapse
Affiliation(s)
- Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
44
|
Jenh CH, Cox MA, Cui L, Reich EP, Sullivan L, Chen SC, Kinsley D, Qian S, Kim SH, Rosenblum S, Kozlowski J, Fine JS, Zavodny PJ, Lundell D. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunol 2012; 13:2. [PMID: 22233170 DOI: 10.1186/1471-2172-13-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. RESULTS In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. CONCLUSIONS SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to prevent transplant rejection.
Collapse
Affiliation(s)
- Chung-Her Jenh
- Department of Respiratory and Immunology, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang ST, Tchitchek N, Ghosh D, Benecke A, Katze MG. A chemokine gene expression signature derived from meta-analysis predicts the pathogenicity of viral respiratory infections. BMC SYSTEMS BIOLOGY 2011; 5:202. [PMID: 22189154 PMCID: PMC3297540 DOI: 10.1186/1752-0509-5-202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND During respiratory viral infections host injury occurs due in part to inappropriate host responses. In this study we sought to uncover the host transcriptional responses underlying differences between high- and low-pathogenic infections. RESULTS From a compendium of 12 studies that included responses to influenza A subtype H5N1, reconstructed 1918 influenza A virus, and SARS coronavirus, we used meta-analysis to derive multiple gene expression signatures. We compared these signatures by their capacity to segregate biological conditions by pathogenicity and predict pathogenicity in a test data set. The highest-performing signature was expressed as a continuum in low-, medium-, and high-pathogenicity samples, suggesting a direct, analog relationship between expression and pathogenicity. This signature comprised 57 genes including a subnetwork of chemokines, implicating dysregulated cell recruitment in injury. CONCLUSIONS Highly pathogenic viruses elicit expression of many of the same key genes as lower pathogenic viruses but to a higher degree. This increased degree of expression may result in the uncontrolled co-localization of inflammatory cell types and lead to irreversible host damage.
Collapse
Affiliation(s)
- Stewart T Chang
- Department of Microbiology, University of Washington, Seattle WA, USA
| | | | - Debashis Ghosh
- Department of Statistics, Pennsylvania State University, University Park PA, USA
| | - Arndt Benecke
- Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle WA, USA
- Washington National Primate Research Center, Seattle WA, USA
| |
Collapse
|
46
|
III. Identification of novel CXCR3 chemokine receptor antagonists with a pyrazinyl–piperazinyl–piperidine scaffold. Bioorg Med Chem Lett 2011; 21:6982-6. [DOI: 10.1016/j.bmcl.2011.09.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022]
|
47
|
Kawada K, Hasegawa S, Murakami T, Itatani Y, Hosogi H, Sonoshita M, Kitamura T, Fujishita T, Iwamoto M, Matsumoto T, Matsusue R, Hida K, Akiyama G, Okoshi K, Yamada M, Kawamura J, Taketo MM, Sakai Y. Molecular mechanisms of liver metastasis. Int J Clin Oncol 2011; 16:464-72. [PMID: 21847533 DOI: 10.1007/s10147-011-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is the second most common cancer, and is the third leading cause of cancer-related death in Japan. The majority of these deaths is attributable to liver metastasis. Recent studies have provided increasing evidence that the chemokine-chemokine receptor system is a potential mechanism of tumor metastasis via multiple complementary actions: (a) by promoting cancer cell migration, invasion, survival and angiogenesis; and (b) by recruiting distal stromal cells (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor invasion and metastasis. Here, we discuss recent preclinical and clinical data supporting the view that chemokine pathways are potential therapeutic targets for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
CXCR3 antagonists: Quaternary ammonium salts equipped with biphenyl- and polycycloaliphatic-anchors. Bioorg Med Chem 2011; 19:3384-93. [DOI: 10.1016/j.bmc.2011.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/04/2011] [Accepted: 04/17/2011] [Indexed: 12/26/2022]
|
49
|
Wijtmans M, de Esch IJP, Leurs R. Therapeutic Targeting of the CXCR3 Receptor. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1002/9783527631995.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
50
|
Shao Y, Anilkumar GN, Carroll CD, Dong G, Hall JW, Hobbs DW, Jiang Y, Jenh CH, Kim SH, Kozlowski JA, McGuinness BF, Rosenblum SB, Schulman I, Shih NY, Shu Y, Wong MK, Yu W, Zawacki LG, Zeng Q. II. SAR studies of pyridyl–piperazinyl-piperidine derivatives as CXCR3 chemokine antagonists. Bioorg Med Chem Lett 2011; 21:1527-31. [DOI: 10.1016/j.bmcl.2010.12.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
|