1
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Benfeito S, Albuquerque B, Sequeira L, Lima C, Chavarria D, Serrão P, Cagide F, Soares-da-Silva P, Borges F. Discovery of a Potent, Selective, and Blood-Brain Barrier Permeable Non-nitrocatechol Inhibitor of Catechol- O-methyltransferase. J Med Chem 2024; 67:18384-18399. [PMID: 39374514 DOI: 10.1021/acs.jmedchem.4c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A new library of non-nitrocatechol compounds (HetCAMs) was developed and their efficacy was compared to tolcapone, a standard COMT inhibitor for PD. Compound 9 emerged as the most potent inhibitor, showing selective inhibition of brain (IC50 = 24 nM) and liver (IC50 = 81 nM) MB-COMT over liver S-COMT (IC50 = 620 nM) isoforms. Although compound 9 presented higher IC50 values than tolcapone, it was more selective for brain MB-COMT than liver S-COMT. Unlike tolcapone, compound 9 is not a tight-binding inhibitor and is less cytotoxic to HepG2 and SK-N-SH cells. Additionally, compound 9 is predicted to cross the blood-brain barrier (BBB) by passive diffusion and chelate divalent metals like Fe(II) and Cu(II). The results demonstrate the potential of this rational drug design strategy for developing new CNS-active drug candidates, offering symptom relief via COMT inhibition that can provide a long-term, disease-modifying outcome (chelation of divalent metals) in PD.
Collapse
Affiliation(s)
- Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Bárbara Albuquerque
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Lisa Sequeira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Carla Lima
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Paula Serrão
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| | - Patrício Soares-da-Silva
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto 4200-319, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
| |
Collapse
|
3
|
McKenna SM, Florea BI, Zisterer DM, van Kasteren SI, McGouran JF. Probing the metalloproteome: an 8-mercaptoquinoline motif enriches minichromosome maintenance complex components as significant metalloprotein targets in live cells. RSC Chem Biol 2024; 5:776-786. [PMID: 39092446 PMCID: PMC11289876 DOI: 10.1039/d4cb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Affinity-based probes are valuable tools for detecting binding interactions between small molecules and proteins in complex biological environments. Metalloproteins are a class of therapeutically significant biomolecules which bind metal ions as part of key structural or catalytic domains and are compelling targets for study. However, there is currently a limited range of chemical tools suitable for profiling the metalloproteome. Here, we describe the preparation and application of a novel, photoactivatable affinity-based probe for detection of a subset of previously challenging to engage metalloproteins. The probe, bearing an 8-mercaptoquinoline metal chelator, was anticipated to engage several zinc metalloproteins, including the 26S-proteasome subunit Rpn11. Upon translation of the labelling experiment to mammalian cell lysate and live cell experiments, proteomic analysis revealed that several metalloproteins were competitively enriched. The diazirine probe SMK-24 was found to effectively enrich multiple components of the minichromosome maintenance complex, a zinc metalloprotein assembly with helicase activity essential to DNA replication. Cell cycle analysis experiments revealed that HEK293 cells treated with SMK-24 experienced stalling in G0/G1 phase, consistent with inactivation of the DNA helicase complex. This work represents an important contribution to the library of cell-permeable chemical tools for studying a collection of metalloproteins for which no previous probe existed.
Collapse
Affiliation(s)
- Sean M McKenna
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| | - Bogdan I Florea
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
| | - Sander I van Kasteren
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse St Dublin 2 Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC) Ireland
| |
Collapse
|
4
|
Shi S, Fu L, Yi J, Yang Z, Zhang X, Deng Y, Wang W, Wu C, Zhao W, Hou T, Zeng X, Lyu A, Cao D. ChemFH: an integrated tool for screening frequent false positives in chemical biology and drug discovery. Nucleic Acids Res 2024; 52:W439-W449. [PMID: 38783035 PMCID: PMC11223804 DOI: 10.1093/nar/gkae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.
Collapse
Affiliation(s)
- Shaohua Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, 999077, P.R. China
| | - Li Fu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jiacai Yi
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Ziyi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaochen Zhang
- School of Information Technology, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Youchao Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengkun Wu
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Wentao Zhao
- School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, 999077, P.R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
5
|
Yang K, Xie Z, Li Z, Qian X, Sun N, He T, Xu Z, Jiang J, Mei Q, Wang J, Qu S, Xu X, Chen C, Ju B. MolProphet: A One-Stop, General Purpose, and AI-Based Platform for the Early Stages of Drug Discovery. J Chem Inf Model 2024; 64:2941-2947. [PMID: 38563534 PMCID: PMC11040716 DOI: 10.1021/acs.jcim.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Artificial intelligence (AI) is an effective tool to accelerate drug discovery and cut costs in discovery processes. Many successful AI applications are reported in the early stages of small molecule drug discovery. However, most of those applications require a deep understanding of software and hardware, and focus on a single field that implies data normalization and transfer between those applications is still a challenge for normal users. It usually limits the application of AI in drug discovery. Here, based on a series of robust models, we formed a one-stop, general purpose, and AI-based drug discovery platform, MolProphet, to provide complete functionalities in the early stages of small molecule drug discovery, including AI-based target pocket prediction, hit discovery and lead optimization, and compound targeting, as well as abundant analyzing tools to check the results. MolProphet is an accessible and user-friendly web-based platform that is fully designed according to the practices in the drug discovery industry. The molecule screened, generated, or optimized by the MolProphet is purchasable and synthesizable at low cost but with good drug-likeness. More than 400 users from industry and academia have used MolProphet in their work. We hope this platform can provide a powerful solution to assist each normal researcher in drug design and related research areas. It is available for everyone at https://www.molprophet.com/.
Collapse
Affiliation(s)
- Keda Yang
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Zewen Xie
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Zhen Li
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Xiaoliang Qian
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Nannan Sun
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Tao He
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Zuodong Xu
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Jing Jiang
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Qi Mei
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Jie Wang
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Shugang Qu
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| | - Xiaoling Xu
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Chaoxiang Chen
- Key
Laboratory of Artificial Organs and Computational Medicine in Zhejiang
Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Bin Ju
- Hangzhou
SanOmics Information Technology Co., Ltd., Hangzhou 310015, P. R. China
| |
Collapse
|
6
|
Schuck B, Brenk R. On the hunt for metalloenzyme inhibitors: Investigating the presence of metal-coordinating compounds in screening libraries and chemical spaces. Arch Pharm (Weinheim) 2024; 357:e2300648. [PMID: 38279543 DOI: 10.1002/ardp.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Metalloenzymes play vital roles in various biological processes, requiring the search for inhibitors to develop treatment options for diverse diseases. While compound library screening is a conventional approach, the exploration of virtual chemical spaces housing trillions of compounds has emerged as an alternative strategy. In this study, we investigated the suitability of selected screening libraries and chemical spaces for discovering inhibitors of metalloenzymes featuring common ions (Mg2+, Mn2+, and Zn2+). First, metal-coordinating groups from ligands interacting with ions in the Protein Data Bank were extracted. Subsequently, the prevalence of these groups in two focused screening libraries (Life Chemicals' chelator library, comprising 6,428 compounds, and Otava's chelator fragment library, with 1,784 fragments) as well as two chemical spaces (GalaXi and REAL space, containing billions of virtual products) was investigated. In total, 1,223 metal-coordinating groups were identified, with about a quarter of these groups found within the examined libraries and spaces. Our results indicate that these can serve as valuable starting points for drug discovery targeting metalloenzymes. In addition, this study suggests ways to improve libraries and spaces for better success in finding potential inhibitors for metalloenzymes.
Collapse
Affiliation(s)
- Bruna Schuck
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Zhang L, Yang Y, Yang Y, Xiao Z. Discovery of Novel Metalloenzyme Inhibitors Based on Property Characterization: Strategy and Application for HDAC1 Inhibitors. Molecules 2024; 29:1096. [PMID: 38474606 DOI: 10.3390/molecules29051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metalloenzymes are ubiquitously present in the human body and are relevant to a variety of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery strategy was established, which is characterized by the property characterization of zinc-dependent metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified, and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature was set as a required feature and applied to a search for novel inhibitors for histone deacetylase 1 (HDAC1). Ten potential HDAC1 inhibitors were recognized, and one of them (compound 9) was a known potent HDAC1 inhibitor. The results demonstrated the effectiveness of our strategy to identify novel inhibitors for zinc-dependent metalloenzymes.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Manelfi C, Tazzari V, Lunghini F, Cerchia C, Fava A, Pedretti A, Stouten PFW, Vistoli G, Beccari AR. "DompeKeys": a set of novel substructure-based descriptors for efficient chemical space mapping, development and structural interpretation of machine learning models, and indexing of large databases. J Cheminform 2024; 16:21. [PMID: 38395961 PMCID: PMC10893756 DOI: 10.1186/s13321-024-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The conversion of chemical structures into computer-readable descriptors, able to capture key structural aspects, is of pivotal importance in the field of cheminformatics and computer-aided drug design. Molecular fingerprints represent a widely employed class of descriptors; however, their generation process is time-consuming for large databases and is susceptible to bias. Therefore, descriptors able to accurately detect predefined structural fragments and devoid of lengthy generation procedures would be highly desirable. To meet additional needs, such descriptors should also be interpretable by medicinal chemists, and suitable for indexing databases with trillions of compounds. To this end, we developed-as integral part of EXSCALATE, Dompé's end-to-end drug discovery platform-the DompeKeys (DK), a new substructure-based descriptor set, which encodes the chemical features that characterize compounds of pharmaceutical interest. DK represent an exhaustive collection of curated SMARTS strings, defining chemical features at different levels of complexity, from specific functional groups and structural patterns to simpler pharmacophoric points, corresponding to a network of hierarchically interconnected substructures. Because of their extended and hierarchical structure, DK can be used, with good performance, in different kinds of applications. In particular, we demonstrate how they are very well suited for effective mapping of chemical space, as well as substructure search and virtual screening. Notably, the incorporation of DK yields highly performing machine learning models for the prediction of both compounds' activity and metabolic reaction occurrence. The protocol to generate the DK is freely available at https://dompekeys.exscalate.eu and is fully integrated with the Molecular Anatomy protocol for the generation and analysis of hierarchically interconnected molecular scaffolds and frameworks, thus providing a comprehensive and flexible tool for drug design applications.
Collapse
Affiliation(s)
- Candida Manelfi
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123, Napoli, Italy
| | - Valerio Tazzari
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123, Napoli, Italy
| | - Filippo Lunghini
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123, Napoli, Italy
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Fava
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123, Napoli, Italy
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | - Pieter F W Stouten
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso de Amicis 95, 80123, Napoli, Italy
- Stouten Pharma Consultancy BV, Kempenarestraat 47, 2860, Sint-Katelijne-Waver, Belgium
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133, Milano, Italy
| | | |
Collapse
|
9
|
Cseh K, Berasaluce I, Fuchs V, Banc A, Schweikert A, Prado-Roller A, Hejl M, Wernitznig D, Koellensperger G, Jakupec MA, Kandioller W, Malarek MS, Keppler BK. Anticancer Tungstenocenes with a Diverse Set of ( O,O-), ( O, S-) and ( O, N-) Chelates-A Detailed Biological Study Using an Improved Evaluation via 3D Spheroid Models. Pharmaceutics 2023; 15:1875. [PMID: 37514061 PMCID: PMC10384408 DOI: 10.3390/pharmaceutics15071875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O-), (S,O-) and (N,O-) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O-) chelates are more active than their (O,O-) and (N,O-) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W-S or W-O bond.
Collapse
Affiliation(s)
- Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Iker Berasaluce
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Valentin Fuchs
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Alexandra Banc
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michael S Malarek
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| |
Collapse
|
10
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
11
|
Ahmad I, Khan H, Serdaroğlu G. Physicochemical Properties, Drug Likeness, ADMET, DFT Studies and in vitro antioxidant activity of Oxindole Derivatives. Comput Biol Chem 2023; 104:107861. [PMID: 37060784 DOI: 10.1016/j.compbiolchem.2023.107861] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Poor pharmacokinetic and safety profiles create significant hurdles in the drug development process. This work focuses on a detailed understanding of drug discovery interplay among physicochemical, pharmacokinetic, toxicity endpoints, and antioxidant properties of oxindole derivatives. DFT compıutations were also performed at B3LYP/6-311G** level to evaluate the physicochemical properties, global reactivity features, and intramolecular interactions. The BOILED-Egg pharmacokinetic model envisaged gastrointestinal absorption, blood-brain barrier penetration, and no interaction with p-glycoprotein for compounds C1 and C2. The physicochemical evaluation revealed that C1 possesses superior drug-like properties fit for oral absorption. Both derivatives were predicted to have high plasma protein binding, efficient distribution, and inhibiting CYP 450 major isoforms but serve as substrates only for a few of them. Both molecules have mild to moderate clearance rates. Out of ten toxicity parameters, only hepatotoxicity was predicted. DFT results implied that the meta position of the -OH group made the possibility of charge transfer greater than -para positioned -OH, due to the ΔNmax (eV) values of molecules C1 and C2 being calculated at 2.596 and 2.477, respectively. Both C1 and C2 exhibited a concentration dependant DPPH and ABTS radical scavenging activity. The chemical structure-physicochemical-pharmacokinetic relationship identified the meta position as the favorite for the electron-withdrawing hydroxyl group. This provides useful insight to medicinal chemists to design 6-chlorooxindole derivatives with an acceptable drug-like and pharmacokinetic property.
Collapse
|
12
|
Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974. [PMID: 37123881 PMCID: PMC10133580 DOI: 10.3389/fchem.2023.1145974] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Computational pharmacology and chemistry of drug-like properties along with pharmacokinetic studies have made it more amenable to decide or predict a potential drug candidate. 4-Hydroxyisoleucine is a pharmacologically active natural product with prominent antidiabetic properties. In this study, ADMETLab 2.0 was used to determine its important drug-related properties. 4-Hydroxyisoleucine is compliant with important drug-like physicochemical properties and pharma giants' drug-ability rules like Lipinski's, Pfizer, and GlaxoSmithKline (GSK) rules. Pharmacokinetically, it has been predicted to have satisfactory cell permeability. Blood-brain barrier permeation may add central nervous system (CNS) effects, while a very slight probability of being CYP2C9 substrate exists. None of the well-known toxicities were predicted in silico, being congruent with wet lab results, except for a "very slight risk" for respiratory toxicity predicted. The molecule is non ecotoxic as analyzed with common indicators such as bioconcentration and LC50 for fathead minnow and daphnia magna. The toxicity parameters identified 4-hydroxyisoleucine as non-toxic to androgen receptors, PPAR-γ, mitochondrial membrane receptor, heat shock element, and p53. However, out of seven parameters, not even a single toxicophore was found. The density functional theory (DFT) study provided support to the findings obtained from drug-like property predictions. Hence, it is a very logical approach to proceed further with a detailed pharmacokinetics and drug development process for 4-hydroxyisoleucine.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aleksey E. Kuznetsov
- Department of Chemistry, Universidad Tecnica Federico Santa Maria, Santiago, Chile
| | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- *Correspondence: Haroon Khan,
| |
Collapse
|
13
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
14
|
Lucas SCC, Börjesson U, Bostock MJ, Cuff J, Edfeldt F, Embrey KJ, Eriksson PO, Gohlke A, Gunnarson A, Lainchbury M, Milbradt AG, Moore R, Rawlins PB, Sinclair I, Stubbs C, Storer RI. Fragment screening at AstraZeneca: developing the next generation biophysics fragment set. RSC Med Chem 2022; 13:1052-1057. [PMID: 36324499 PMCID: PMC9491351 DOI: 10.1039/d2md00154c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 05/18/2024] Open
Abstract
Fragment based drug discovery is a critical part of the lead generation toolbox and relies heavily on a readily available, high quality fragment library. Over years of use, the AstraZeneca fragment set had become partially depleted and instances of compound deterioration had been found. It was recognised that a redevelopment was required. This provided an opportunity to evolve our screening sets strategy, whilst ensuring that the quality of the fragment set met the robust requirements of fragment screening campaigns. In this communication we share the strategy employed, in particular highlighting two aspects of our approach that we believe others in the community would benefit from, namely that; (i) fragments were selected with input from Medicinal Chemists at an early stage, and (ii) the library was arranged in a layered format to ensure maximum flexibility on a per target basis.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - John Cuff
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Kevin J Embrey
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Per-Olof Eriksson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Anders Gunnarson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Gothenburg Sweden
| | | | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Rachel Moore
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Philip B Rawlins
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Ian Sinclair
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca Alderley Park UK
| | - Christopher Stubbs
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - R Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| |
Collapse
|
15
|
In Silico Identification of Novel Inhibitors Targeting the Homodimeric Interface of Superoxide Dismutase from the Dental Pathogen Streptococcus mutans. Antioxidants (Basel) 2022; 11:antiox11040785. [PMID: 35453470 PMCID: PMC9029323 DOI: 10.3390/antiox11040785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The microaerophile Streptococcus mutans, the main microaerophile responsible for the development of dental plaque, has a single cambialistic superoxide dismutase (SmSOD) for its protection against reactive oxygen species. In order to discover novel inhibitors of SmSOD, possibly interfering with the biofilm formation by this pathogen, a virtual screening study was realised using the available 3D-structure of SmSOD. Among the selected molecules, compound ALS-31 was capable of inhibiting SmSOD with an IC50 value of 159 µM. Its inhibition power was affected by the Fe/Mn ratio in the active site of SmSOD. Furthermore, ALS-31 also inhibited the activity of other SODs. Gel-filtration of SmSOD in the presence of ALS-31 showed that the compound provoked the dissociation of the SmSOD homodimer in two monomers, thus compromising the catalytic activity of the enzyme. A docking model, showing the binding mode of ALS-31 at the dimer interface of SmSOD, is presented. Cell viability of the fibroblast cell line BJ5-ta was not affected up to 100 µM ALS-31. A preliminary lead optimization program allowed the identification of one derivative, ALS-31-9, endowed with a 2.5-fold improved inhibition power. Interestingly, below this concentration, planktonic growth and biofilm formation of S. mutans cultures were inhibited by ALS-31, and even more by its derivative, thus opening the perspective of future drug design studies to fight against dental caries.
Collapse
|
16
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
17
|
Ke D, Zhang L, Zhong X, Shao J, Yu Y, Chen W. Boronic-Acid-Accelerated Electrophilic Activation of Unprotected Maltols to N-Substituted Hydroxypyridinones in Water. Org Lett 2022; 24:1263-1267. [DOI: 10.1021/acs.orglett.1c03833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Ke
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou 310058, People’s Republic of China
| | - Lei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou 310058, People’s Republic of China
| | - Xiuwen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou 310058, People’s Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Zhejiang, Hangzhou 310015, People’s Republic of China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou 310058, People’s Republic of China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
18
|
Zhang L, Tian J, Cheng H, Yang Y, Yang Y, Ye F, Xiao Z. Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups. Eur J Med Chem 2022; 230:114101. [DOI: 10.1016/j.ejmech.2022.114101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
19
|
Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113619. [PMID: 34467865 DOI: 10.1016/j.jenvman.2021.113619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Fei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yong-Jia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
20
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
DeLaney C, Sheng Y, Pectol DC, Vantansever E, Zhang H, Bhuvanesh N, Salas I, Liu WR, Fierke CF, Darensbourg MY. Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease. Dalton Trans 2021; 50:12226-12233. [PMID: 34396374 DOI: 10.1039/d1dt02499j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous organic molecules are known to inhibit the main protease of SARS-CoV-2, (SC2Mpro), a key component in viral replication of the 2019 novel coronavirus. We explore the hypothesis that zinc ions, long used as a medicinal supplement and known to support immune function, bind to the SC2Mpro enzyme in combination with lipophilic tropolone and thiotropolone ligands, L, block substrate docking, and inhibit function. This study combines synthetic inorganic chemistry, in vitro protease activity assays, and computational modeling. While the ligands themselves have half maximal inhibition concentrations, IC50, for SC2Mpro in the 8-34 μM range, the IC50 values are ca. 100 nM for Zn(NO3)2 which are further enhanced in Zn-L combinations (59-97 nM). Isolation of the Zn(L)2 binary complexes and characterization of their ability to undergo ligand displacement is the basis for computational modeling of the chemical features of the enzyme inhibition. Blind docking onto the SC2Mpro enzyme surface using a modified Autodock4 protocol found preferential binding into the active site pocket. Such Zn-L combinations orient so as to permit dative bonding of Zn(L)+ to basic active site residues.
Collapse
Affiliation(s)
| | - Yan Sheng
- 3255 TAMU, College Station, TX, 77843, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Grifagni D, Calderone V, Giuntini S, Cantini F, Fragai M, Banci L. SARS-CoV-2 M pro inhibition by a zinc ion: structural features and hints for drug design. Chem Commun (Camb) 2021; 57:7910-7913. [PMID: 34278402 DOI: 10.1039/d1cc02956h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Structural data on the SARS-CoV-2 main protease in complex with a zinc-containing organic inhibitor are already present in the literature and gave hints on the presence of a zinc binding site involving the catalytically relevant cysteine and histidine residues. In this paper, the structural basis of ionic zinc binding to the SARS-CoV-2 main protease has been elucidated by X-ray crystallography. The zinc binding affinity and its ability to inhibit the SARS-CoV-2 main protease have been investigated. These findings provide solid ground for the design of potent and selective metal-conjugated inhibitors of the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino, 50019, Italy. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy and Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
23
|
Adamek RN, Suire CN, Stokes RW, Brizuela MK, Cohen SM, Leissring MA. Hydroxypyridinethione Inhibitors of Human Insulin-Degrading Enzyme. ChemMedChem 2021; 16:1775-1787. [PMID: 33686743 DOI: 10.1002/cmdc.202100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Indexed: 01/29/2023]
Abstract
Insulin-degrading enzyme (IDE) is a human mononuclear Zn2+ -dependent metalloenzyme that is widely regarded as the primary peptidase responsible for insulin degradation. Despite its name, IDE is also critically involved in the hydrolysis of several other disparate peptide hormones, including glucagon, amylin, and the amyloid β-protein. As such, the study of IDE inhibition is highly relevant to deciphering the role of IDE in conditions such as type-2 diabetes mellitus and Alzheimer disease. There have been few reported IDE inhibitors, and of these, inhibitors that directly target the active-site Zn2+ ion have yet to be fully explored. In an effort to discover new, zinc-targeting inhibitors of IDE, a library of ∼350 metal-binding pharmacophores was screened against IDE, resulting in the identification of 1-hydroxypyridine-2-thione (1,2-HOPTO) as an effective Zn2+ -binding scaffold. Screening a focused library of HOPTO compounds identified 3-sulfonamide derivatives of 1,2-HOPTO as inhibitors of IDE (Ki values of ∼50 μM). Further structure-activity relationship studies yielded several thiophene-sulfonamide HOPTO derivatives with good, broad-spectrum activity against IDE that have the potential to be useful pharmacological tools for future studies of IDE.
Collapse
Affiliation(s)
- Rebecca N Adamek
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin N Suire
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Monica K Brizuela
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Shakil MS, Parveen S, Rana Z, Walsh F, Movassaghi S, Söhnel T, Azam M, Shaheen MA, Jamieson SMF, Hanif M, Rosengren RJ, Hartinger CG. High Antiproliferative Activity of Hydroxythiopyridones over Hydroxypyridones and Their Organoruthenium Complexes. Biomedicines 2021; 9:biomedicines9020123. [PMID: 33513800 PMCID: PMC7912191 DOI: 10.3390/biomedicines9020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hydroxypyr(id)ones are a pharmaceutically important class of compounds that have shown potential in diverse areas of drug discovery. We investigated the 3-hydroxy-4-pyridones 1a-1c and 3-hydroxy-4-thiopyridones 1d-1f as well as their Ru(η6-p-cymene)Cl complexes 2a-2f, and report here the molecular structures of 1b and 1d as determined by X-ray diffraction analysis. Detailed cell biological investigations revealed potent cytotoxic activity, in particular of the 3-hydroxy-4-thiopyridones 1d-1f, while the Ru complexes of both compound types were less potent, despite still showing antiproliferative activity in the low μM range. The compounds did not modulate the cell cycle distribution of cancer cells but were cytostatic in A549 and cytotoxic in NCI-H522 non-small lung cancer cells, among other effects on cancer cells.
Collapse
Affiliation(s)
- Md. Salman Shakil
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | - Shahida Parveen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | - Fearghal Walsh
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Mayur Azam
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | | | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| | - Rhonda J. Rosengren
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| |
Collapse
|
25
|
Lin L, Turner LD, Šilhár P, Pellett S, Johnson EA, Janda KD. Identification of 3-hydroxy-1,2-dimethylpyridine-4(1 H)-thione as a metal-binding motif for the inhibition of botulinum neurotoxin A. RSC Med Chem 2021; 12:137-143. [PMID: 34046606 PMCID: PMC8130615 DOI: 10.1039/d0md00320d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is an important therapeutic target owing to its extremely potent nature, but also has potential use as a biowarfare agent. Currently, no therapeutic exists to reverse the long-lasting paralysis caused by BoNT/A. Herein, we describe the identification of 3-hydroxy-1,2-dimethylpyridine-4(1H)-thione (3,4-HOPTO) as a metal binding warhead for the inhibition of BoNT/A1. An initial screen of 96 metal binding fragments identified three derivatives containing the 3,4-HOPTO scaffold to inhibit the BoNT/A1 light chain (LC) at >95% at 1 mM. Additional screening of a 3,4-HOPTO sub-library identified structure-activity relationships (SARs) between N-substituted 3,4-HOPTO derivatives and the BoNT/A1 LC. Subsequent synthesis was conducted to improve on inhibitory potency - achieving low μM biochemical IC50 values. Representative compounds were evaluated in a cellular-based assay and showed promising μM activity.
Collapse
Affiliation(s)
- Lucy Lin
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Lewis D Turner
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Peter Šilhár
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison Wisconsin 53706 USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin 1550 Linden Drive Madison Wisconsin 53706 USA
| | - Kim D Janda
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
26
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
27
|
Harringer S, Matzinger M, Gajic N, Hejl M, Jakupec MA, Kandioller W, Keppler BK. First insights into the novel class of organometallic compounds bearing a bidentate selenopyridone coordination motif: Synthesis, characterization, stability and biological investigations. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Baggio C, Velazquez JV, Fragai M, Nordgren TM, Pellecchia M. Therapeutic Targeting of MMP-12 for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2020; 63:12911-12920. [PMID: 33107733 DOI: 10.1021/acs.jmedchem.0c01285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung disorder characterized by progressive airflow obstruction associated with inflammation and emphysema, and it is currently one of the leading causes of death worldwide. Recent studies with genetically engineered mice reported that during pulmonary inflammation, basophil-derived interleukin-4 can act on lung-infiltrating monocytes causing aberrant expression of the matrix metalloproteinase-12 (MMP-12). MMP-12 activity in turn causes the destruction of alveolar walls leading to emphysema, making it potentially a valid target for pharmacological intervention. Using nuclear magnetic resonance (NMR)- and structure-based optimizations, the current study reports on the optimized novel, potent, and selective MMP-12 inhibitors with single-digit nanomolar affinity in vitro and in vivo efficacy. Using a murine model of elastase-induced emphysema we demonstrated that the most potent agents exhibited a significant decrease in emphysema-like pathology compared to vehicle-treated mice, thus suggesting that the reported agents may potentially be translated into novel therapeutics for the treatment of COPD.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
29
|
Yang ZY, Yang ZJ, Lu AP, Hou TJ, Cao DS. Scopy: an integrated negative design python library for desirable HTS/VS database design. Brief Bioinform 2020; 22:5901981. [PMID: 32892221 DOI: 10.1093/bib/bbaa194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-throughput screening (HTS) and virtual screening (VS) have been widely used to identify potential hits from large chemical libraries. However, the frequent occurrence of 'noisy compounds' in the screened libraries, such as compounds with poor drug-likeness, poor selectivity or potential toxicity, has greatly weakened the enrichment capability of HTS and VS campaigns. Therefore, the development of comprehensive and credible tools to detect noisy compounds from chemical libraries is urgently needed in early stages of drug discovery. RESULTS In this study, we developed a freely available integrated python library for negative design, called Scopy, which supports the functions of data preparation, calculation of descriptors, scaffolds and screening filters, and data visualization. The current version of Scopy can calculate 39 basic molecular properties, 3 comprehensive molecular evaluation scores, 2 types of molecular scaffolds, 6 types of substructure descriptors and 2 types of fingerprints. A number of important screening rules are also provided by Scopy, including 15 drug-likeness rules (13 drug-likeness rules and 2 building block rules), 8 frequent hitter rules (four assay interference substructure filters and four promiscuous compound substructure filters), and 11 toxicophore filters (five human-related toxicity substructure filters, three environment-related toxicity substructure filters and three comprehensive toxicity substructure filters). Moreover, this library supports four different visualization functions to help users to gain a better understanding of the screened data, including basic feature radar chart, feature-feature-related scatter diagram, functional group marker gram and cloud gram. CONCLUSION Scopy provides a comprehensive Python package to filter out compounds with undesirable properties or substructures, which will benefit the design of high-quality chemical libraries for drug design and discovery. It is freely available at https://github.com/kotori-y/Scopy.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University (Changsha)
| | - Zhi-Jiang Yang
- Xiangya School of Pharmaceutical Sciences, Central South University
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ting-Jun Hou
- College of Pharmaceutical Sciences, Zhejiang University, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| |
Collapse
|
30
|
Kupski O, Funk LM, Sautner V, Seifert F, Worbs B, Ramsbeck D, Meyer F, Diederichsen U, Buchholz M, Schilling S, Demuth HU, Tittmann K. Hydrazides Are Potent Transition-State Analogues for Glutaminyl Cyclase Implicated in the Pathogenesis of Alzheimer's Disease. Biochemistry 2020; 59:2585-2591. [PMID: 32551535 DOI: 10.1021/acs.biochem.0c00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloidogenic plaques are hallmarks of Alzheimer's disease (AD) and typically consist of high percentages of modified Aβ peptides bearing N-terminally cyclized glutamate residues. The human zinc(II) enzyme glutaminyl cyclase (QC) was shown in vivo to catalyze the cyclization of N-terminal glutamates of Aβ peptides in a pathophysiological side reaction establishing QC as a druggable target for therapeutic treatment of AD. Here, we report crystallographic snapshots of human QC catalysis acting on the neurohormone neurotensin that delineate the stereochemical course of catalysis and suggest that hydrazides could mimic the transition state of peptide cyclization and deamidation. This hypothesis is validated by a sparse-matrix inhibitor screening campaign that identifies hydrazides as the most potent metal-binding group compared to classic Zn binders. The structural basis of hydrazide inhibition is illuminated by X-ray structure analysis of human QC in complex with a hydrazide-bearing peptide inhibitor and reveals a pentacoordinated Zn complex. Our findings inform novel strategies in the design of potent and highly selective QC inhibitors by employing hydrazides as the metal-binding warhead.
Collapse
Affiliation(s)
- Oliver Kupski
- Department of Molecular Enzymology, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.,Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lisa-Marie Funk
- Department of Molecular Enzymology, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.,Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Viktor Sautner
- Department of Molecular Enzymology, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.,Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Franziska Seifert
- Department of Molecular Enzymology, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Brigitte Worbs
- Institute for Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstraß 2, 37077 Göttingen, Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Franc Meyer
- Institute for Inorganic Chemistry, Georg-August University Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg-August University Göttingen, Tammannstraß 2, 37077 Göttingen, Germany
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy und Immunology IZI, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle/Saale, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany.,Department of Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
31
|
Harringer S, Happl B, Ozenil M, Kast C, Hejl M, Wernitznig D, Legin AA, Schweikert A, Gajic N, Roller A, Koellensperger G, Jakupec MA, Kandioller W, Keppler BK. Synthesis, Modification, and Biological Evaluation of a Library of Novel Water-Soluble Thiopyridone-Based Organometallic Complexes and Their Unexpected (Biological) Behavior. Chemistry 2020; 26:5419-5433. [PMID: 31958176 PMCID: PMC7217150 DOI: 10.1002/chem.201905546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/27/2022]
Abstract
A series of 16 dinuclear thiopyridone-based organometallics with excellent water solubility, increased stability and remarkable cytotoxicity were synthesized and characterized. The complexes of this work formed dimeric species featuring a double positive charge in polar protic solvents, accounting for their outstanding solubility in aqueous solution. Most of them displayed higher antiproliferative activity than their parental thiomaltol complex, with unexpected cytotoxicity trends depending on the employed metal center, ligand modification, and cell line. Insights into their behavior in biological systems were gathered by means of amino-acid interaction studies, cytotoxicity tests in 3D spheroid models, laser ablation, cellular accumulation measurements, as well as cell cycle experiments.
Collapse
Affiliation(s)
- Sophia Harringer
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Barbara Happl
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsGeneral Hospital of ViennaWaehringer Guertel 18–201090ViennaAustria
- Department of Biomedical Imaging and Image-guided TherapyDivision of Nuclear MedicineMedical University of ViennaSpitalgasse 231090ViennaAustria
| | - Marius Ozenil
- Department of Biomedical Imaging and Image-guided TherapyDivision of Nuclear MedicineMedical University of ViennaSpitalgasse 231090ViennaAustria
| | - Caroline Kast
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Anton A. Legin
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Andreas Schweikert
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 381090ViennaAustria
| | - Natalie Gajic
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Alexander Roller
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 381090ViennaAustria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Strasse 421090ViennaAustria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Strasse 421090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Waehringer Strasse 421090ViennaAustria
| |
Collapse
|
32
|
Yu X, Zhu X, Zhou Y, Li Q, Hu Z, Li T, Tao J, Dou M, Zhang M, Shao Y, Sun R. Discovery of N-Aryl-pyridine-4-ones as Novel Potential Agrochemical Fungicides and Bactericides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13904-13913. [PMID: 31765135 DOI: 10.1021/acs.jafc.9b06296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of N-aryl-pyridine-4-one derivatives were designed and synthesized using maltol and antidesmone as lead compounds, and then their fungicidal/bactericidal activities and possible mechanism of action against Colletotrichum musae were explored. Most of these compounds exhibited significant fungicidal activity in vitro. Especially, compound 23 has more than 90% inhibitory activity against nine plant pathogenic fungi at 50 μg mL-1, which is superior to azoxystrobin. Moreover, an in vivo bioassay also demonstrated that compound 23 exhibited high-efficiency broad-spectrum antifungal activity and can effectively control postharvest diseases of mango. In addition, it was found that compounds 22 and 23 can also effectively control rice bacterial leaf blight in pot experiments, which was even more effective than zhongshengmycin. Preliminary mechanism studies revealed that compound 23 may cause cell membrane and mitochondria destruction. These findings indicate that compound 23 can be used to develop potential agrochemical fungicides and bactericides.
Collapse
Affiliation(s)
- Xiuqiang Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Xinyue Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Yang Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Qinglin Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Ting Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Haikou , Hainan 570228 , People's Republic of China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Haikou , Hainan 570228 , People's Republic of China
| | - Menglan Dou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Meng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Yu Shao
- Danzhou Tobacco Company , Hainan Provincial Branch of China National Tobacco Corporation (CNTC) , Danzhou , Hainan 571700 , People's Republic of China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| |
Collapse
|
33
|
Giordano A, Forte G, Terracciano S, Russo A, Sala M, Scala MC, Johansson C, Oppermann U, Riccio R, Bruno I, Di Micco S. Identification of the 2-Benzoxazol-2-yl-phenol Scaffold as New Hit for JMJD3 Inhibition. ACS Med Chem Lett 2019; 10:601-605. [PMID: 30996803 DOI: 10.1021/acsmedchemlett.8b00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
JMJD3 is a member of the KDM6 subfamily and catalyzes the demethylation of lysine 27 on histone H3 (H3K27). This protein was identified as a useful tool in understanding the role of epigenetics in inflammatory conditions and in cancer as well. Guided by a virtual fragment screening approach, we identified the benzoxazole scaffold as a new hit suitable for the development of tighter JMJD3 inhibitors. Compounds were synthesized by a microwave-assisted one-pot reaction under catalyst and solvent-free conditions. Among these, compound 8 presented the highest inhibitory activity (IC50 = 1.22 ± 0.22 μM) in accordance with molecular modeling calculations. Moreover, 8 induced the cycle arrest in S-phase on A375 melanoma cells.
Collapse
Affiliation(s)
- Assunta Giordano
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Napoli, Italy
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Giovanni Forte
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Maria C. Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Catrine Johansson
- Botnar Research Centre, Oxford NIHR BRU, Oxford University, Oxford Centre for Translational Myeloma Research, Oxford, OX3 7LD, U.K
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRU, Oxford University, Oxford Centre for Translational Myeloma Research, Oxford, OX3 7LD, U.K
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| | - Simone Di Micco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
34
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
35
|
Credille CV, Dick BL, Morrison CN, Stokes RW, Adamek RN, Wu NC, Wilson IA, Cohen SM. Structure-Activity Relationships in Metal-Binding Pharmacophores for Influenza Endonuclease. J Med Chem 2018; 61:10206-10217. [PMID: 30351002 DOI: 10.1021/acs.jmedchem.8b01363] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metalloenzymes represent an important target space for drug discovery. A limitation to the early development of metalloenzyme inhibitors has been the lack of established structure-activity relationships (SARs) for molecules that bind the metal ion cofactor(s) of a metalloenzyme. Herein, we employed a bioinorganic perspective to develop an SAR for inhibition of the metalloenzyme influenza RNA polymerase PAN endonuclease. The identified trends highlight the importance of the electronics of the metal-binding pharmacophore (MBP), in addition to MBP sterics, for achieving improved inhibition and selectivity. By optimization of the MBPs for PAN endonuclease, a class of highly active and selective fragments was developed that displays IC50 values <50 nM. This SAR led to structurally distinct molecules that also displayed IC50 values of ∼10 nM, illustrating the utility of a metal-centric development campaign in generating highly active and selective metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States.,The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
36
|
Adamek RN, Credille CV, Dick BL, Cohen SM. Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition. J Biol Inorg Chem 2018; 23:1129-1138. [PMID: 30003339 DOI: 10.1007/s00775-018-1593-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Hydroxypyridinethiones (HOPTOs) are strong ligands for metal ions and potentially useful pharmacophores for inhibiting metalloenzymes relevant to human disease. However, HOPTOs have been sparingly used in drug discovery efforts due, in part, to concerns that this scaffold will act as a promiscuous, non-selective metalloenzyme inhibitor, as well as possess poor pharmacokinetics (PK), which may undermine drug candidates containing this functional group. To advance HOPTOs as a useful pharmacophore for metalloenzyme inhibitors, a library of 22 HOPTO isostere compounds has been synthesized and investigated. This library demonstrates that it is possible to maintain the core metal-binding pharmacophore (MBP) while generating diversity in structure, electronics, and PK properties. This HOPTO library has been screened against a set of four different metalloenzymes, demonstrating that while the same metal-binding donor atoms are maintained, there is a wide range of activity between metalloenzyme targets. Overall, this work shows that HOPTO isosteres are useful MBPs and valuable scaffolds for metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Rebecca N Adamek
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Cy V Credille
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
37
|
Suire CN, Lane S, Leissring MA. Development and Characterization of Quantitative, High-Throughput-Compatible Assays for Proteolytic Degradation of Glucagon. SLAS DISCOVERY 2018; 23:1060-1069. [PMID: 29995452 DOI: 10.1177/2472555218786509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucagon is a vital peptide hormone involved in the regulation of blood sugar under fasting conditions. Although the processes underlying glucagon production and secretion are well understood, far less is known about its degradation, which could conceivably be manipulated pharmacologically for therapeutic benefit. We describe here the development of novel assays for glucagon degradation, based on fluoresceinated and biotinylated glucagon (FBG) labeled at the N- and C-termini, respectively. Proteolysis at any peptide bond within FBG separates the fluorescent label from the biotin tag, which can be quantified in multiple ways. In one method requiring no specialized equipment, intact FBG is separated from the cleaved fluoresceinated fragments using NeutrAvidin agarose beads, and hydrolysis is quantified by fluorescence. In an alternative, high-throughput-compatible method, the degree of hydrolysis is quantified using fluorescence polarization after addition of unmodified avidin. Using a known glucagon protease, we confirm that FBG is cleaved at similar sites as unmodified glucagon and use both methods to quantify the kinetic parameters of FBG degradation. We show further that the fluorescence polarization-based assay performs exceptionally well ( Z'-factor values >0.80) in a high-throughput, mix-and-measure format.
Collapse
Affiliation(s)
- Caitlin N Suire
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Shelley Lane
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Malcolm A Leissring
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
38
|
Giordano A, del Gaudio F, Johansson C, Riccio R, Oppermann U, Di Micco S. Virtual Fragment Screening Identification of a Quinoline-5,8-dicarboxylic Acid Derivative as a Selective JMJD3 Inhibitor. ChemMedChem 2018; 13:1160-1164. [PMID: 29633584 PMCID: PMC6055880 DOI: 10.1002/cmdc.201800198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 11/08/2022]
Abstract
The quinoline-5,8 dicarboxylic acid scaffold has been identified by a fragment-based approach as new potential lead compound for the development of JMJD3 inhibitors. Among them, 3-(2,4-dimethoxypyrimidin-5-yl)quinoline-5,8-dicarboxylic acid (compound 3) shows low micromolar inhibitory activity against Jumonji domain-containing protein 3 (JMJD3). The experimental evaluation of inhibitory activity against seven related isoforms of JMJD3 highlighted an unprecedented selectivity toward the biological target of interest.
Collapse
Affiliation(s)
- Assunta Giordano
- Institute of Biomolecular Chemistry (ICB)Consiglio Nazionale delle Ricerche (CNR)Via Campi Flegrei 3480078Pozzuoli (Napoli)Italy
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084Fisciano (Salerno)Italy
| | - Federica del Gaudio
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084Fisciano (Salerno)Italy
- PhD Program in Drug Discovery and DevelopmentUniversity of SalernoVia Giovanni Paolo II, 13284084Fisciano (Salerno)Italy
- Farmaceutici Damor S.p.AVia E. Scaglione 2780145NaplesItaly
| | - Catrine Johansson
- Botnar Research Centre, Oxford NIHR BRUOxford University, Oxford Centre for Translational Myeloma ResearchOxfordOX3 7LDUK
| | - Raffaele Riccio
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084Fisciano (Salerno)Italy
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRUOxford University, Oxford Centre for Translational Myeloma ResearchOxfordOX3 7LDUK
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Simone Di Micco
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II, 13284084Fisciano (Salerno)Italy
| |
Collapse
|
39
|
Szamosvári D, Reichle VF, Jureschi M, Böttcher T. Synthetic quinolone signal analogues inhibiting the virulence factor elastase of Pseudomonas aeruginosa. Chem Commun (Camb) 2018; 52:13440-13443. [PMID: 27722551 DOI: 10.1039/c6cc06295d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore the chemical space of Pseudomonas quinolone signal analogs as privileged structures and report the discovery of a thioquinolone as a potent inhibitor of the important virulence factor elastase of the human pathogen Pseudomonas aeruginosa. We provide evidence that the derivative binds to the active site zinc of elastase and additionally acts as a fluorescent zinc sensor.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Valentin F Reichle
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Monica Jureschi
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
40
|
Baggio C, Cerofolini L, Fragai M, Luchinat C, Pellecchia M. HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes. ACS Med Chem Lett 2018; 9:137-142. [PMID: 29456802 DOI: 10.1021/acsmedchemlett.7b00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 11/28/2022] Open
Abstract
We have recently proposed a novel drug discovery approach based on biophysical screening of focused positional scanning libraries in which each element of the library contained a common binding moiety for the given target or class of targets. In this Letter, we report on the implementation of this approach to target metal containing proteins. In our implementation, we first derived a focused positional scanning combinatorial library of peptide mimetics (of approximately 100,000 compounds) in which each element of the library contained the metal-chelating moiety hydroxamic acid at the C-terminal. Screening of this library by nuclear magnetic resonance spectroscopy in solution allowed the identification of a novel and selective compound series targeting MMP-12. The data supported that our general approach, perhaps applied using other metal chelating agents or other initial binding fragments, may result very effective in deriving novel and selective agents against metalloenzyme.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical
Sciences, School of Medicine, University of California—Riverside, Riverside, California 92521, United States
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi
6, 50019 Sesto Fiorentino, Italy
| | - Maurizio Pellecchia
- Division of Biomedical
Sciences, School of Medicine, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
41
|
Chrysanthopoulos PK, Mujumdar P, Woods LA, Dolezal O, Ren B, Peat TS, Poulsen SA. Identification of a New Zinc Binding Chemotype by Fragment Screening. J Med Chem 2017; 60:7333-7349. [PMID: 28817930 DOI: 10.1021/acs.jmedchem.7b00606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of a new zinc binding chemotype from screening a nonbiased fragment library is reported. Using the orthogonal fragment screening methods of native state mass spectrometry and surface plasmon resonance a 3-unsubstituted 2,4-oxazolidinedione fragment was found to have low micromolar binding affinity to the zinc metalloenzyme carbonic anhydrase II (CA II). This affinity approached that of fragment sized primary benzenesulfonamides, the classical zinc binding group found in most CA II inhibitors. Protein X-ray crystallography established that 3-unsubstituted 2,4-oxazolidinediones bound to CA II via an interaction of the acidic ring nitrogen with the CA II active site zinc, as well as two hydrogen bonds between the oxazolidinedione ring oxygen and the CA II protein backbone. Furthermore, 3-unsubstituted 2,4-oxazolidinediones appear to be a viable starting point for the development of an alternative class of CA inhibitor, wherein the medicinal chemistry pedigree of primary sulfonamides has dominated for several decades.
Collapse
Affiliation(s)
| | - Prashant Mujumdar
- Griffith University , Griffith Institute for Drug Discovery, Nathan, Brisbane, Queensland 4111, Australia
| | - Lucy A Woods
- Griffith University , Griffith Institute for Drug Discovery, Nathan, Brisbane, Queensland 4111, Australia
| | - Olan Dolezal
- CSIRO , Biomedical Manufacturing Program, 343 Royal Parade, Parkville, Melbourne, Victoria 3052, Australia
| | - Bin Ren
- CSIRO , Biomedical Manufacturing Program, 343 Royal Parade, Parkville, Melbourne, Victoria 3052, Australia
| | - Thomas S Peat
- CSIRO , Biomedical Manufacturing Program, 343 Royal Parade, Parkville, Melbourne, Victoria 3052, Australia
| | - Sally-Ann Poulsen
- Griffith University , Griffith Institute for Drug Discovery, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
42
|
Chen AY, Thomas PW, Stewart AC, Bergstrom A, Cheng Z, Miller C, Bethel CR, Marshall SH, Credille CV, Riley CL, Page RC, Bonomo RA, Crowder MW, Tierney DL, Fast W, Cohen SM. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J Med Chem 2017; 60:7267-7283. [PMID: 28809565 PMCID: PMC5599375 DOI: 10.1021/acs.jmedchem.7b00407] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The efficacy of β-lactam antibiotics is threatened by the emergence and global spread of metallo-β-lactamase (MBL) mediated resistance, specifically New Delhi metallo-β-lactamase-1 (NDM-1). By utilization of fragment-based drug discovery (FBDD), a new class of inhibitors for NDM-1 and two related β-lactamases, IMP-1 and VIM-2, was identified. On the basis of 2,6-dipicolinic acid (DPA), several libraries were synthesized for structure-activity relationship (SAR) analysis. Inhibitor 36 (IC50 = 80 nM) was identified to be highly selective for MBLs when compared to other Zn(II) metalloenzymes. While DPA displayed a propensity to chelate metal ions from NDM-1, 36 formed a stable NDM-1:Zn(II):inhibitor ternary complex, as demonstrated by 1H NMR, electron paramagnetic resonance (EPR) spectroscopy, equilibrium dialysis, intrinsic tryptophan fluorescence emission, and UV-vis spectroscopy. When coadministered with 36 (at concentrations nontoxic to mammalian cells), the minimum inhibitory concentrations (MICs) of imipenem against clinical isolates of Eschericia coli and Klebsiella pneumoniae harboring NDM-1 were reduced to susceptible levels.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alesha C Stewart
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Callie Miller
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Christopher R Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Christopher L Riley
- Department of Molecular Biosciences, University of Texas , Austin, Texas 78712, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center , Cleveland, Ohio 44106, United States
- Department of Medicine, Department of Molecular Biology and Microbiology, Department of Biochemistry, and Department of Pharmacology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas , Austin, Texas 78712, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
43
|
Cohen SM. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes. Acc Chem Res 2017; 50:2007-2016. [PMID: 28715203 DOI: 10.1021/acs.accounts.7b00242] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metal-dependent enzymes (i.e., metalloenzymes) make up a large fraction of all enzymes and are critically important in a wide range of biological processes, including DNA modification, protein homeostasis, antibiotic resistance, and many others. Consequently, metalloenzymes represent a vast and largely untapped space for drug development. The discovery of effective therapeutics that target metalloenzymes lies squarely at the interface of bioinorganic and medicinal chemistry and requires expertise, methods, and strategies from both fields to mount an effective campaign. In this Account, our research program that brings together the principles and methods of bioinorganic and medicinal chemistry are described, in an effort to bridge the gap between these fields and address an important class of medicinal targets. Fragment-based drug discovery (FBDD) is an important drug discovery approach that is particularly well suited for metalloenzyme inhibitor development. FBDD uses relatively small but diverse chemical structures that allow for the assembly of privileged molecular collections that focus on a specific feature of the target enzyme. For metalloenzyme inhibition, the specific feature is rather obvious, namely, a metal-dependent active site. Surprisingly, prior to our work, the exploration of diverse molecular fragments for binding the metal active sites of metalloenzymes was largely unexplored. By assembling a modest library of metal-binding pharmacophores (MBPs), we have been able to find lead hits for many metalloenzymes and, from these hits, develop inhibitors that act via novel mechanisms of action. A specific case study on the use of this strategy to identify a first-in-class inhibitor of zinc-dependent Rpn11 (a component of the proteasome) is highlighted. The application of FBDD for the development of metalloenzyme inhibitors has raised several other compelling questions, such as how the metalloenzyme active site influences the coordination chemistry of bound fragments, how one can identify the best fragments for a given metalloenzyme, and many others. Among the most significant, and concerning, questions for metalloenzyme inhibition are those that reside around issues of specificity and whether metalloenzyme inhibitors can be as selective and specific as other small molecule inhibitors (i.e., compounds that inhibit enzymes that do not utilize a metal at their active site). This also leads to the question of whether metalloenzyme inhibitors might interfere more broadly with the metallome. Efforts to address these and related questions are discussed, with the expectation that our findings will illuminate some of these topics, alleviate some of these concerns, and encourage greater interest in this important, undervalued class of drug targets.
Collapse
Affiliation(s)
- Seth M. Cohen
- Department of Chemistry and
Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
44
|
Peng G, McEwen AG, Olieric V, Schmitt C, Albrecht S, Cavarelli J, Tarnus C. Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis. Proteins 2017; 85:1413-1421. [DOI: 10.1002/prot.25301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Guanya Peng
- Paul Scherrer Institut (SLS) WSLB; 5232 Villigen Suisse Switzerland
| | - Alastair G. McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Illkirch France
- Centre National de la Recherche Scientifique; UMR7104; Illkirch France
- Institut National de la Santé et de la Recherche Médicale; U964; Illkirch France
- Université de Strasbourg; Illkirch France
| | - Vincent Olieric
- Paul Scherrer Institut (SLS) WSLB; 5232 Villigen Suisse Switzerland
| | - Celine Schmitt
- Laboratoire de Chimie Organique et Bioorganique; EA4566; Université de Haute Alsace, Institut Jean Baptiste Donnet; Mulhouse France
| | - Sebastien Albrecht
- Laboratoire de Chimie Organique et Bioorganique; EA4566; Université de Haute Alsace, Institut Jean Baptiste Donnet; Mulhouse France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Illkirch France
- Centre National de la Recherche Scientifique; UMR7104; Illkirch France
- Institut National de la Santé et de la Recherche Médicale; U964; Illkirch France
- Université de Strasbourg; Illkirch France
| | - Celine Tarnus
- Laboratoire de Chimie Organique et Bioorganique; EA4566; Université de Haute Alsace, Institut Jean Baptiste Donnet; Mulhouse France
| |
Collapse
|
45
|
|
46
|
Ponedel'kina IY, Gaskarova AR, Khaybrakhmanova EA, Lukina ES, Odinokov VN. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2. Carbohydr Polym 2016; 144:17-24. [PMID: 27083788 DOI: 10.1016/j.carbpol.2016.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased.
Collapse
Affiliation(s)
- Irina Yu Ponedel'kina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation.
| | - Aigul R Gaskarova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Elvira A Khaybrakhmanova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Elena S Lukina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Victor N Odinokov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| |
Collapse
|
47
|
Maize KM, Kurbanov EK, Johnson RL, Amin EA, Finzel BC. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor. FEBS Lett 2015; 589:3836-41. [PMID: 26578066 DOI: 10.1016/j.febslet.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'(∗) which might afford new opportunities to design selective inhibitors that target this subsite.
Collapse
Affiliation(s)
- Kimberly M Maize
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Elbek K Kurbanov
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Rodney L Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Elizabeth Ambrose Amin
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States
| | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, Minneapolis, MN 55455, United States.
| |
Collapse
|
48
|
Martin DP, Blachly PG, Marts AR, Woodruff TM, de Oliveira CAF, McCammon JA, Tierney DL, Cohen SM. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. J Am Chem Soc 2014; 136:5400-6. [PMID: 24635441 PMCID: PMC4104174 DOI: 10.1021/ja500616m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The
binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active
site of human carbonic anhydrase II (hCAII) has been investigated.
Two of these ligands display a monodentate mode of coordination to
the active site Zn2+ ion in hCAII that is not recapitulated
in model complexes of the enzyme active site. This unprecedented binding
mode in the hCAII-thiomaltol complex has been characterized by both
X-ray crystallography and X-ray spectroscopy. In addition, the steric
restrictions of the active site force the ligands into a ‘flattened’
mode of coordination compared with inorganic model complexes. This
change in geometry has been shown by density functional computations
to significantly decrease the strength of the metal–ligand
binding. Collectively, these data demonstrate that the mode of binding
by small metal-binding groups can be significantly influenced by the
protein active site. Diminishing the strength of the metal–ligand
bond results in unconventional modes of metal coordination not found
in typical coordination compounds or even carefully engineered active
site models, and understanding these effects is critical to the rational
design of inhibitors that target clinically relevant metalloproteins.
Collapse
Affiliation(s)
- David P Martin
- Department of Chemistry and Biochemistry, §Pharmacology, and ∥Howard Hughes Medical Institute, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Synthesis, characterization, and cytotoxicity studies of Cu(II), Zn(II), and Fe(III) complexes of N-derivatized 3-hydroxy-4-pyridiones. J Inorg Biochem 2014; 132:59-66. [DOI: 10.1016/j.jinorgbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
|
50
|
Capodagli GC, Sedhom WG, Jackson M, Ahrendt KA, Pegan SD. A noncompetitive inhibitor for Mycobacterium tuberculosis's class IIa fructose 1,6-bisphosphate aldolase. Biochemistry 2014; 53:202-13. [PMID: 24325645 PMCID: PMC4167715 DOI: 10.1021/bi401022b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Class II fructose 1,6-bisphosphate aldolase (FBA) is an enzyme critical for bacterial, fungal, and protozoan glycolysis/gluconeogenesis. Importantly, humans lack this type of aldolase, having instead a class I FBA that is structurally and mechanistically distinct from class II FBAs. As such, class II FBA is considered a putative pharmacological target for the development of novel antibiotics against pathogenic bacteria such as Mycobacterium tuberculosis, the causative agent for tuberculosis (TB). To date, several competitive class II FBA substrate mimic-styled inhibitors have been developed; however, they lack either specificity, potency, or properties that limit their potential as possible therapeutics. Recently, through the use of enzymatic and structure-based assisted screening, we identified 8-hydroxyquinoline carboxylic acid (HCA) that has an IC50 of 10 ± 1 μM for the class II FBA present in M. tuberculosis (MtFBA). As opposed to previous inhibitors, HCA behaves in a noncompetitive manner, shows no inhibitory properties toward human and rabbit class I FBAs, and possesses anti-TB properties. Furthermore, we were able to determine the crystal structure of HCA bound to MtFBA to 2.1 Å. HCA also demonstrates inhibitory effects for other class II FBAs, including pathogenic bacteria such as methicillin-resistant Staphylococcus aureus. With its broad-spectrum potential, unique inhibitory characteristics, and flexibility of functionalization, the HCA scaffold likely represents an important advancement in the development of class II FBA inhibitors that can serve as viable preclinical candidates.
Collapse
Affiliation(s)
- Glenn C. Capodagli
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Wafik G. Sedhom
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kateri A. Ahrendt
- Department of Chemistry, Regis University, Denver, Colorado 80221, United States,Corresponding Authors Department of Chemistry, Regis University, 3333 Regis Blvd., Denver, CO 80221. . Telephone: (303) 964-5088. Eleanor Roosevelt Institute and Department of Chemistry and Biochemistry, University of Denver, 2190 E. Iliff Ave., Olin 202, Denver, CO 80208. . Telephone: (303) 871-2533
| | - Scott D. Pegan
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States,Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, United States,Corresponding Authors Department of Chemistry, Regis University, 3333 Regis Blvd., Denver, CO 80221. . Telephone: (303) 964-5088. Eleanor Roosevelt Institute and Department of Chemistry and Biochemistry, University of Denver, 2190 E. Iliff Ave., Olin 202, Denver, CO 80208. . Telephone: (303) 871-2533
| |
Collapse
|