1
|
Redjdal W, Benmahdjoub S, Luong TTH, Benmerad B, Le Bideau F, Vergnaud J, Messaoudi S. Pd-Catalyzed Coupling of Bromo-N- (β-glucopyranosyl)quinolin-2-ones with Amides: Synthesis of N-glucosyl-6BrCaQ Conjugates with Potent Anticancer Activity. ChemMedChem 2024; 19:e202400195. [PMID: 38687188 DOI: 10.1002/cmdc.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A series of N-glycosyl- 6BrCaQ conjugates was synthesized through a Pd-catalyzed cross-coupling reaction between brominated N-glycosyl quinolin-2-one derivatives and various nitrogen nucleophiles. Antiproliferative assays revealed that this new series of analogues represents a promising class of antitumor compounds as illustrated by the high biological activity observed for several derivatives towards different cancer cell lines compared to the non-glycosylated congeners.
Collapse
Affiliation(s)
- Wafa Redjdal
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
| | - Sara Benmahdjoub
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
- Département de Chimie, Université M'Hamed Bougara de Boumerdes, 35000, Boumerdes, Algeria
| | | | - Belkacem Benmerad
- Université de Bejaia, Faculté des Sciences Exactes, Laboratoire de Physico-Chimie des Matériaux et Catalyse, 06000, Bejaia, Algeria
| | | | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien-Paris Saclay, 92290, Orsay, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
2
|
Kostopoulou I, Tzani A, Chronaki K, Prousis KC, Pontiki E, Hadjiplavlou-Litina D, Detsi A. Novel Multi-Target Agents Based on the Privileged Structure of 4-Hydroxy-2-quinolinone. Molecules 2023; 29:190. [PMID: 38202773 PMCID: PMC10780633 DOI: 10.3390/molecules29010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation, focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as three reverse amides are synthesized and classified as multi-target agents according to their LOX inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone-carboxamide compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best LOX inhibitory activity (IC50 = 10 μM). Furthermore, carboxamide 3g and quinolinone hybrid with acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX inhibitory activity (3g: IC50 = 27.5 μM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7% ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e: IC50 = 52 μM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference compound) bind at the same alternative binding site in a similar binding mode.
Collapse
Affiliation(s)
- Ioanna Kostopoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Konstantina Chronaki
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Dimitra Hadjiplavlou-Litina
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| |
Collapse
|
3
|
Singh S, Chakrabortty G, Raha Roy S. Skeletal rearrangement through photocatalytic denitrogenation: access to C-3 aminoquinolin-2(1 H)-ones. Chem Sci 2023; 14:12541-12547. [PMID: 38020365 PMCID: PMC10646921 DOI: 10.1039/d3sc04447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The addition of an amine group to a heteroaromatic system is a challenging synthetic process, yet it is an essential one in the development of many bioactive molecules. Here, we report an alternative method for the synthesis of 3-amino quinolin-2(1H)-one that overcomes the limitations of traditional methods by editing the molecular skeleton via a cascade C-N bond formation and denitrogenation process. We used TMSN3 as an aminating agent and a wide variety of 3-ylideneoxindoles as synthetic precursors for the quinolin-2(1H)-one backbone, which demonstrates remarkable tolerance of sensitive functional groups. The control experiments showed that the triazoline intermediate plays a significant role in the formation of the product. The spectroscopic investigation further defined the potential reaction pathways.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Gopal Chakrabortty
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
4
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
5
|
Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications. Pharmaceutics 2022; 14:pharmaceutics14102220. [PMID: 36297655 PMCID: PMC9610671 DOI: 10.3390/pharmaceutics14102220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (Hsps) have garnered special attention in cancer therapy as molecular chaperones with regulatory/mediatory effects on folding, maintenance/stability, maturation, and conformation of proteins as well as their effects on prevention of protein aggregation. Hsp90 ensures the stability of various client proteins needed for the growth of cells or the survival of tumor cells; therefore, they are overexpressed in tumor cells and play key roles in carcinogenesis. Accordingly, Hsp90 inhibitors are recognized as attractive therapeutic agents for investigations pertaining to tumor suppression. Natural Hsp90 inhibitors comprising geldanamycin (GM), reclaimed analogs of GM including 17-AAG and DMAG, and radicicol, a natural macrocyclic antifungal, are among the first potent Hsp90 inhibitors. Herein, recently synthesized heterocyclic compounds recognized as potent Hsp90 inhibitors are reviewed along with the anticancer effects of heterocyclic compounds, comprising purine, pyrazole, triazine, quinolines, coumarin, and isoxazoles molecules.
Collapse
|
6
|
Larghi EL, Bruneau A, Sauvage F, Alami M, Vergnaud-Gauduchon J, Messaoudi S. Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1 H)-ones Bis-Heterocycles as Potential Inhibitors of the Protein Folding Machinery Hsp90. Molecules 2022; 27:412. [PMID: 35056725 PMCID: PMC8778022 DOI: 10.3390/molecules27020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the context of our SAR study concerning 6BrCaQ analogues as C-terminal Hsp90 inhibitors, we designed and synthesized a novel series of 3-(heteroaryl)quinolin-2(1H), of types 3, 4, and 5, as a novel class of analogues. A Pd-catalyzed Liebeskind-Srogl cross-coupling was developed as a convenient approach for easy access to complex purine architectures. This series of analogues showed a promising biological effect against MDA-MB231 and PC-3 cancer cell lines. This study led to the identification of the best compounds, 3b (IC50 = 28 µM) and 4e, which induce a significant decrease of CDK-1 client protein and stabilize the levels of Hsp90 and Hsp70 without triggering the HSR response.
Collapse
Affiliation(s)
- Enrique L. Larghi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Alexandre Bruneau
- Instituto de Química Rosario (IQUIR) CONICET/UNR, FBioyF, Rosario S2002LRK, Argentina;
| | - Félix Sauvage
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Mouad Alami
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Juliette Vergnaud-Gauduchon
- CNRS, Institut Galien-Paris Saclay, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (F.S.); (J.V.-G.)
| | - Samir Messaoudi
- CNRS, BioCIS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| |
Collapse
|
7
|
Synthesis and antiproliferative activity of 6BrCaQ-TPP conjugates for targeting the mitochondrial heat shock protein TRAP1. Eur J Med Chem 2021; 229:114052. [PMID: 34952432 DOI: 10.1016/j.ejmech.2021.114052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/23/2022]
Abstract
A series of 6BrCaQ-Cn-TPP conjugates 3a-f and 5 was designed and synthesized as a novel class of TRAP1 inhibitors. Compound 3a displayed an excellent anti-proliferative activity with mean GI50 values at a nanomolar level in a diverse set of human cancer cells (GI50 = 0.008-0.30 μM) including MDA-MB231, HT-29, HCT-116, K562, and PC-3 cancer cell lines. Moreover, the best lead compound 6BrCaQ-C10-TPP induces a significant mitochondrial membrane disturbance combined to a regulation of HSP and partner protein levels as a first evidence that his mechanism of action involves the TRAP-1 mitochondrial Hsp90 machinery.
Collapse
|
8
|
Somu P, Paul S. HSP90 and Its Inhibitors for Cancer Therapy: Use of Nano-delivery System to Improve Its Clinical Application. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
10
|
Sauvage F, Fattal E, Al-Shaer W, Denis S, Brotin E, Denoyelle C, Blanc-Fournier C, Toussaint B, Messaoudi S, Alami M, Barratt G, Vergnaud-Gauduchon J. Antitumor activity of nanoliposomes encapsulating the novobiocin analog 6BrCaQ in a triple-negative breast cancer model in mice. Cancer Lett 2018; 432:103-111. [DOI: 10.1016/j.canlet.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
11
|
Roy SS, Kapoor M. In silico identification and analysis of the binding site for aminocoumarin type inhibitors in the C-terminal domain of Hsp90. J Mol Graph Model 2018; 84:215-235. [PMID: 30031951 DOI: 10.1016/j.jmgm.2018.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/15/2022]
Abstract
Hsp90 contains two Nucleotide Binding Sites (NBS): one each in its N-terminal domain (NTD) and C-terminal domain (CTD), respectively. Previously we used computational techniques to locate a nucleotide-binding site in the CTD. Nucleotide binding at this site stabilized the structurally labile region within this domain, thus providing a rationale for increased resistance to thermal denaturation and proteolysis. A scan for ligand-binding sites in CTD revealed four potential sites with the requisite volume to accommodate aminocoumarins and -derived inhibitors. Only one of these reproducibly formed docked complexes with inhibitors and showed excellent interactions with residues lining the site. Fortuitously, it was identical to the aforementioned nucleotide-binding site thus providing an explanation for the reported direct competition between inhibitors and nucleotides. Further studies with carefully chosen inhibitors and some inactive analogues provided an explanation for the known Structure-Activity Relationships (SAR) of aminocoumarin and -derived inhibitors. We also performed similar studies of the NTD to discern the reason(s) for its inability to bind aminocoumarins, given the family resemblance to prokaryotic Top-IV and Gyr-B. Our studies permitted the identification of the putative inhibitor binding site in the CTD, an explanation for increased resistance to thermal denaturation and proteolysis upon inhibitor binding as well as direct competition with ATP.
Collapse
Affiliation(s)
- Samir S Roy
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Manju Kapoor
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
12
|
Redjdal W, Ibrahim N, Benmerad B, Alami M, Messaoudi S. Convergent Synthesis of N,S-bis Glycosylquinolin-2-ones via a Pd-G3-XantPhos Precatalyst Catalysis. Molecules 2018; 23:molecules23030519. [PMID: 29495402 PMCID: PMC6017768 DOI: 10.3390/molecules23030519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Buchwald-Hartwig-Migita cross-coupling of 1-thiosugars with α- or β-3-iodo-N-glycosylquinolin-2-ones has been accomplished under mild and operationally simple reaction conditions through the use of a Pd-G3 XantPhos palladacycle precatalyst. This new methodology has been successfully applied to a variety of α- or β-mono-, di-, and poly-thiosugar derivatives to efficiently synthesize a series of α- or β-N,S-bis-glycosyl quinolin-2-ones, which are difficult to synthesize by classical methods.
Collapse
Affiliation(s)
- Wafa Redjdal
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Nada Ibrahim
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 0600 Bejaia, Algeria.
| | - Mouad Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92296, France.
| |
Collapse
|
13
|
Al-Shuaeeb RAA, Dejean C, Alami M, Messaoudi S. Controllable Activation of Pd-G3 Palladacycle Precatalyst in the Presence of Thiosugars: Rapid Access to 1-Aminobiphenyl Thioglycoside Atropoisomers at Room Temperature. Chem Asian J 2017; 12:3114-3118. [PMID: 29071808 DOI: 10.1002/asia.201701415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/19/2017] [Indexed: 12/23/2022]
Abstract
A controllable method for the functionalization of XantPhos Pd-G3 precatalyst with thiosugars and thiols has been established. Under mild and operationally simple reaction conditions through just mixing of precatalyst and thiosugars (α- or β-mono-, di- and poly-thiosugar derivatives) in water at 25 °C for 20 min, a series of 1-aminobiphenyl thioglycosides that are difficult to synthesize by classical methods has been synthesized in very high yields.
Collapse
Affiliation(s)
| | - Camille Dejean
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
14
|
|
15
|
Chen XF, Ren C, Xu XY, Shao XS, Li Z. Direct one-pot synthesis of 3-nitroquinolin-2( 1H )-one via H 2 O/AcOH system: An improvement to classical Friedlander reaction. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Luong TTH, Touchet S, Alami M, Messaoudi S. Selective Palladium-Catalyzed Domino Heck/Buchwald-Hartwig Arylations ofN-Glycosylcinnamamides: An Efficient Route to 4-Aryl-N-glycosylquinolin-2-ones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thi Thanh Huyen Luong
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Sabrina Touchet
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Mouad Alami
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| | - Samir Messaoudi
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Equipe Labellisée Ligue Contre le Cancer, Laboratoire de Chimie Thérapeutique; Faculté de Pharmacie; 5 rue J.-B. Clément 92296 Châtenay-Malabry France
| |
Collapse
|
17
|
Sauvage F, Messaoudi S, Fattal E, Barratt G, Vergnaud-Gauduchon J. Heat shock proteins and cancer: How can nanomedicine be harnessed? J Control Release 2017; 248:133-143. [PMID: 28088573 DOI: 10.1016/j.jconrel.2017.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles.
Collapse
Affiliation(s)
- Félix Sauvage
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Samir Messaoudi
- BioCIS-UMR 8076, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, 92296, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Gillian Barratt
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| | - Juliette Vergnaud-Gauduchon
- Institut Galien Paris-Sud, CNRS, UMR 8612, LabEx LERMIT, Univ. Paris-Sud/Univ. Paris-Saclay, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France.
| |
Collapse
|
18
|
Montoir D, Barillé-Nion S, Tonnerre A, Juin P, Duflos M, Bazin MA. Novel 1,6-naphthyridin-2(1H)-ones as potential anticancer agents targeting Hsp90. Eur J Med Chem 2016; 119:17-33. [DOI: 10.1016/j.ejmech.2016.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
|
19
|
Hao F, Asahara H, Nishiwaki N. A direct and vicinal functionalization of the 1-methyl-2-quinolone framework: 4-alkoxylation and 3-chlorination. Org Biomol Chem 2016; 14:5128-35. [PMID: 27181022 DOI: 10.1039/c6ob00868b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(functionalization), 4-alkoxylation and 3-chlorination, of the 1-methyl-2-quinolone framework was achieved under mild conditions by a sequential treatment of 3-nitrated 1-methyl-2-quinolones with sodium alkoxide and N-chlorosuccinimide. Moreover, a succinimide group instead of an alkoxy group was introduced at the 4-position, affording a masked form of the 4-amino-3-chloro-2-quinolone derivative. Furthermore, the prepared vicinally functionalized quinolones thus obtained were subjected to a Suzuki-Miyaura coupling reaction, arylating the 3-position.
Collapse
Affiliation(s)
- Feiyue Hao
- School of Environmental Science and Engineering, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan.
| | | | | |
Collapse
|
20
|
Luong TTH, Brion JD, Lescop E, Alami M, Messaoudi S. Intramolecular Pd-Catalyzed Arylation of 1-Amidosugars: A New Route to N-Glycosyl Quinolin-2-ones. Org Lett 2016; 18:2126-9. [DOI: 10.1021/acs.orglett.6b00752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Jean-Daniel Brion
- BioCIS,
Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles ICSN-CNRS, Gif-sur-Yvette, France
| | - Mouad Alami
- BioCIS,
Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS,
Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
21
|
Sauvage F, Franzè S, Bruneau A, Alami M, Denis S, Nicolas V, Lesieur S, Legrand FX, Barratt G, Messaoudi S, Vergnaud-Gauduchon J. Formulation and in vitro efficacy of liposomes containing the Hsp90 inhibitor 6BrCaQ in prostate cancer cells. Int J Pharm 2016; 499:101-109. [DOI: 10.1016/j.ijpharm.2015.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
22
|
Luong TTH, Brachet E, Brion JD, Messaoudi S, Alami M. Palladium-Catalyzed Coupling ofN-Aminoazoles with 3-Halo-Substituted Quinolin-2(1H)-ones, Coumarins, Quinoxalin-2(1H)-ones, and Chromenes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. Eur J Med Chem 2014; 83:498-507. [DOI: 10.1016/j.ejmech.2014.06.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/13/2014] [Accepted: 06/28/2014] [Indexed: 01/05/2023]
|
24
|
Zhao H, Moroni E, Colombo G, Blagg BSJ. Identification of a new scaffold for hsp90 C-terminal inhibition. ACS Med Chem Lett 2014; 5:84-8. [PMID: 24900777 DOI: 10.1021/ml400404s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 01/07/2023] Open
Abstract
Inhibition of Hsp90 C-terminal function is an advantageous therapeutic paradigm for the treatment of cancer. Currently, the majority of Hsp90 C-terminal inhibitors are derived from novobiocin, a natural product traditionally used as an antibiotic. Assisted by molecular docking studies, a scaffold containing a biphenyl moiety in lieu of the coumarin ring system found in novobiocin was identified for development of new Hsp90 C-terminal inhibitors. Initial structure-activity studies led to derivatives that manifest good antiproliferative activity against two breast cancer cell lines through Hsp90 inhibition. This platform serves as a scaffold upon which new Hsp90 C-terminal inhibitors can be readily assembled for further investigation.
Collapse
Affiliation(s)
- Huiping Zhao
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott
4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States
| | - Elisabetta Moroni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via
Mario Bianco 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via
Mario Bianco 9, 20131 Milano, Italy
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott
4070, The University of Kansas, Lawrence, Kansas 66045-7563, United States
| |
Collapse
|
25
|
Bruneau A, Brion JD, Messaoudi S, Alami M. A general Pd/Cu-catalyzed C–H heteroarylation of 3-bromoquinolin-2(1H)-ones. Org Biomol Chem 2014; 12:8533-41. [DOI: 10.1039/c4ob01610f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd(OAc)2/CuI system effectively catalyzes the coupling of 3-bromoquinolin-2(1H)-ones with a series of azoles to give 3-(heteroaryl)quinolin-2(1H)-ones in good yields.
Collapse
Affiliation(s)
- Alexandre Bruneau
- Univ Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre le Cancer
| | - Jean-Daniel Brion
- Univ Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre le Cancer
| | - Samir Messaoudi
- Univ Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre le Cancer
| | - Mouad Alami
- Univ Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
26
|
Morán-Poladura P, Rubio E, González JM. Gold(I)-catalyzed hydroarylation reaction of aryl (3-iodoprop-2-yn-1-yl) ethers: synthesis of 3-iodo-2H-chromene derivatives. Beilstein J Org Chem 2013; 9:2120-8. [PMID: 24204424 PMCID: PMC3817509 DOI: 10.3762/bjoc.9.249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/20/2013] [Indexed: 01/13/2023] Open
Abstract
An efficient entry to the preparation of elusive 4-unsubstituted-3-iodo-2H-chromenes has been accomplished as result of a catalytic cyclization. Thus, upon exposition of [(3-iodoprop-2-yn-1-yl)oxy]arenes to IPrAuNTf2 (3 mol %), in 1,4-dioxane at 100 °C, the desired heterocyclic motif is readily assembled. This process nicely tolerates a variety of functional groups and, interestingly, it is compatible with the presence of strong electron-withdrawing groups attached to the arene. The overall transformation can be termed as a new example of a migratory cycloisomerization and, formally, it involves well-blended 1,2-iodine shift and hydroarylation steps.
Collapse
Affiliation(s)
- Pablo Morán-Poladura
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, C/Julián Clavería 8, Oviedo, 33006, Spain
| | | | | |
Collapse
|
27
|
Messaoudi S, Gabillet M, Brion JD, Alami M. An efficient synthesis of 3-triazolyl-2(1H
)-quinolones by CuTC-catalyzed azide-alkyne cycloaddition reaction. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.2946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samir Messaoudi
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Marie Gabillet
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Jean-Daniel Brion
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| | - Mouâd Alami
- Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie; Université Paris-Sud; Châtenay-Malabry France
| |
Collapse
|
28
|
Palladium-Catalyzed Cross-Coupling Reaction of Thioglycosides with (Hetero)aryl Halides. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol 2013; 85:449-65. [DOI: 10.1016/j.bcp.2012.10.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
30
|
Brachet E, Peyrat JF, Brion JD, Messaoudi S, Alami M. A palladium-catalyzed coupling of 3-chloroquinoxalinones with various nitrogen-containing nucleophiles. Org Biomol Chem 2013; 11:3808-16. [DOI: 10.1039/c3ob40338f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Wang Z, Xing X, Xue L, Gao F, Fang L. Synthesis of 3H-pyrrolo[2,3-c]quinolin-4(5H)-ones via Pd-catalyzed cross-coupling reaction and cyclization. Org Biomol Chem 2013; 11:7334-41. [DOI: 10.1039/c3ob41629a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Renoir JM. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77:1249-61. [PMID: 22917634 DOI: 10.1016/j.steroids.2012.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.
Collapse
|
33
|
Synthesis and antikinetoplastid activities of 3-substituted quinolinones derivatives. Eur J Med Chem 2012; 52:44-50. [PMID: 22472166 DOI: 10.1016/j.ejmech.2012.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/03/2023]
|
34
|
Messaoudi S, Brion JD, Alami M. Palladium-Catalyzed Decarboxylative Coupling of Quinolinone-3-Carboxylic Acids and Related Heterocyclic Carboxylic Acids with (Hetero)aryl Halides. Org Lett 2012; 14:1496-9. [DOI: 10.1021/ol300235k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Samir Messaoudi
- Université Paris-Sud, CNRS, BioCIS-UMR 8076, LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, 92296 France
| | - Jean-Daniel Brion
- Université Paris-Sud, CNRS, BioCIS-UMR 8076, LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, 92296 France
| | - Mouad Alami
- Université Paris-Sud, CNRS, BioCIS-UMR 8076, LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, 92296 France
| |
Collapse
|
35
|
Alami M. Author profile. Mouâd Alami. ChemMedChem 2012; 7:193. [PMID: 22170732 DOI: 10.1002/cmdc.201100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Hamze A, Tréguier B, Brion JD, Alami M. Copper-catalyzed reductive coupling of tosylhydrazones with amines: a convenient route to α-branched amines. Org Biomol Chem 2011; 9:6200-4. [PMID: 21796313 DOI: 10.1039/c1ob05664f] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general procedure for the reductive coupling of N-tosylhydrazones with amines in the presence of Cu(acac)(2) and Cs(2)CO(3) has been developed. The protocol is very effective and chemoselective with various primary and secondary aliphatic amines, aminoalcohols as well as azole derivatives to give α-branched amines in good yields.
Collapse
Affiliation(s)
- Abdallah Hamze
- Université Paris-Sud 11, CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
37
|
Soussi MA, Audisio D, Messaoudi S, Provot O, Brion JD, Alami M. Palladium-Catalyzed Coupling of 3-Halo-Substituted Coumarins, Chromenes, and Quinolones with Various Nitrogen-Containing Nucleophiles. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Messaoudi S, Peyrat JF, Brion JD, Alami M. Heat-shock protein 90 inhibitors as antitumor agents: a survey of the literature from 2005 to 2010. Expert Opin Ther Pat 2011; 21:1501-42. [PMID: 21689065 DOI: 10.1517/13543776.2011.594041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Heat-shock protein 90 (Hsp90) is a validated novel anticancer target with unique features. As a molecular chaperone, Hsp90 is implicated in maintaining the conformation, stability, activity and cellular localization of several key oncogenic client proteins that are involved in signal transduction pathways leading to proliferation, cell-cycle progression, apoptosis, angiogenesis and metastasis. As a result, inhibitors of Hsp90 achieve their promising anticancer activity through disruption of the Hsp90 protein function, thereby freezing the chaperone cycle; this in turn decreases the affinity of Hsp90 for client proteins, thus leading to proteasome-mediated degradation of oncogenic client proteins within cancer cells. AREAS COVERED This review provides recent background information on Hsp90 inhibitors. It also highlights a panel of compounds of interest reported in patents and discusses the clinical results of the promising drug candidates. EXPERT OPINION In the past 5 years, Hsp90 inhibitors have remained the focus of much interest as new potential anticancer agents. A large variety of scaffolds were studied in both academia and industry. Consequently, these significant research efforts have provided several promising drug candidates for further clinical development. Further progress in the development of Hsp90 inhibitors, combined with a deeper understanding of the chaperon characteristics, strengthens their promise in cancer therapy.
Collapse
Affiliation(s)
- Samir Messaoudi
- Univ Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| | | | | | | |
Collapse
|
39
|
Audisio D, Messaoudi S, Peyrat JF, Brion JD, Alami M. A General Copper Powder-Catalyzed Ullmann-Type Reaction of 3-Halo-4(1H)-quinolones With Various Nitrogen-Containing Nucleophiles. J Org Chem 2011; 76:4995-5005. [DOI: 10.1021/jo200680j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Davide Audisio
- 1Univ Paris-Sud, 2CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| | - Samir Messaoudi
- 1Univ Paris-Sud, 2CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| | - Jean-François Peyrat
- 1Univ Paris-Sud, 2CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| | - Jean-Daniel Brion
- 1Univ Paris-Sud, 2CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| | - Mouâd Alami
- 1Univ Paris-Sud, 2CNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, F-92296, France
| |
Collapse
|