1
|
Kumar GS, Sahoo AK, Ranjan N, Dwivedi VD, Agrawal S. Suppressing Mycobacterium tuberculosis virulence and drug resistance by targeting Eis protein through computational drug discovery. Mol Divers 2025; 29:1697-1723. [PMID: 39096353 DOI: 10.1007/s11030-024-10946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Tuberculosis (TB) remains a critical health threat, particularly with the emergence of multidrug-resistant strains. This demands attention from scientific communities and healthcare professionals worldwide to develop effective treatments. The enhanced intracellular survival (Eis) protein is an acetyltransferase enzyme of Mycobacterium tuberculosis that functions by adding acetyl groups to aminoglycoside antibiotics, which interferes with their ability to bind to the bacterial ribosome, thereby preventing them from inhibiting protein synthesis and killing the bacterium. Therefore, targeting this protein accelerates the chance of restoring the aminoglycoside drug activity, thereby reducing the emergence of drug-resistant TB. For this, we have screened 406,747 natural compounds from the Coconut database against Eis protein. Based on MM/GBSA rescoring binding energy, the top 5 most prominent natural compounds, viz. CNP0187003 (- 96.14 kcal/mol), CNP0176690 (- 93.79 kcal/mol), CNP0136537 (- 92.31 kcal/mol), CNP0398701 (- 91.96 kcal/mol), and CNP0043390 (- 91.60 kcal/mol) were selected. These compounds exhibited the presence of a substantial number of hydrogen bonds and other significant interactions confirming their strong binding affinity with the Eis protein during the docking process. Subsequently, the MD simulation of these compounds exhibited that the Eis-CNP0043390 complex was the most stable, followed by Eis-CNP0187003 and Eis-CNP0176690 complex, further verified by binding free energy calculation, principal component analysis (PCA), and Free energy landscape analysis. These compounds demonstrated the most favourable results in all parameters utilised for this investigation and may have the potential to inhibit the Eis protein. There these findings will leverage computational techniques to identify and develop a natural compound inhibitor as an alternative for drug-resistant TB.
Collapse
Affiliation(s)
- Geethu S Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India
| | - Nishant Ranjan
- University Centre for Research and Development, Department of Mechanical Engineering, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Sharad Agrawal
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
2
|
Radhakrishnan L, Dani R, Navabshan I, Jamal S, Ahmed N. Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin. Protein J 2024; 43:12-23. [PMID: 37932619 DOI: 10.1007/s10930-023-10165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family - GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug's action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.
Collapse
Affiliation(s)
- Logesh Radhakrishnan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Rahul Dani
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Irfan Navabshan
- School of Pharmacy, BSA Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Shazia Jamal
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Neesar Ahmed
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science & Technology, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
3
|
Pang AH, Green KD, Tsodikov OV, Garneau-Tsodikova S. Discovery and development of inhibitors of acetyltransferase Eis to combat Mycobacterium tuberculosis. Methods Enzymol 2023; 690:369-396. [PMID: 37858535 PMCID: PMC10949404 DOI: 10.1016/bs.mie.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Aminoglycosides are bactericidal antibiotics with a broad spectrum of activity, used to treat infections caused mostly by Gram-negative pathogens and as a second-line therapy against tuberculosis. A common resistance mechanism to aminoglycosides is bacterial aminoglycoside acetyltransferase enzymes (AACs), which render aminoglycosides inactive by acetylating their amino groups. In Mycobacterium tuberculosis, an AAC called Eis (enhanced intracellular survival) acetylates kanamycin and amikacin. When upregulated as a result of mutations, Eis causes clinically important aminoglycoside resistance; therefore, Eis inhibitors are attractive as potential aminoglycoside adjuvants for treatment of aminoglycoside-resistant tuberculosis. For over a decade, we have studied Eis and discovered several series of Eis inhibitors. Here, we provide a detailed protocol for a colorimetric assay used for high-throughput discovery of Eis inhibitors, their characterization, and testing their selectivity. We describe protocols for in vitro cell culture assays for testing aminoglycoside adjuvant properties of the inhibitors. A procedure for obtaining crystals of Eis-inhibitor complexes and determining their structures is also presented. Finally, we discuss applicability of these methods to discovery and testing of inhibitors of other AACs.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
4
|
Pang AH, Green KD, Punetha A, Chandrika NT, Howard KC, Garneau-Tsodikova S, Tsodikov OV. Discovery and Mechanistic Analysis of Structurally Diverse Inhibitors of Acetyltransferase Eis among FDA-Approved Drugs. Biochemistry 2023; 62:710-721. [PMID: 36657084 PMCID: PMC9905294 DOI: 10.1021/acs.biochem.2c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.
Collapse
Affiliation(s)
| | | | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Kaitlind C. Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
5
|
Pang AH, Green KD, Chandrika NT, Garzan A, Punetha A, Holbrook SYL, Willby MJ, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Discovery of substituted benzyloxy-benzylamine inhibitors of acetyltransferase Eis and their anti-mycobacterial activity. Eur J Med Chem 2022; 242:114698. [PMID: 36037791 PMCID: PMC9481687 DOI: 10.1016/j.ejmech.2022.114698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
A clinically significant mechanism of tuberculosis resistance to the aminoglycoside kanamycin (KAN) is its acetylation catalyzed by upregulated Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. In search for inhibitors of Eis, we discovered an inhibitor with a substituted benzyloxy-benzylamine scaffold. A structure-activity relationship study of 38 compounds in this structural family yielded highly potent (IC50 ∼ 1 μM) Eis inhibitors, which did not inhibit other acetyltransferases. Crystal structures of Eis in complexes with three of the inhibitors showed that the inhibitors were bound in the aminoglycoside binding site of Eis, consistent with the competitive mode of inhibition, as established by kinetics measurements. When tested in Mtb cultures, two inhibitors (47 and 55) completely abolished resistance to KAN of the highly KAN-resistant strain Mtb mc2 6230 K204, likely due to Eis inhibition as a major mechanism. Thirteen of the compounds were toxic even in the absence of KAN to Mtb and other mycobacteria, but not to non-mycobacteria or to mammalian cells. This, yet unidentified mechanism of toxicity, distinct from Eis inhibition, will merit future studies along with further development of these molecules as anti-mycobacterial agents.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Melisa J Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James E Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
6
|
Designing of a Chimeric Vaccine Using EIS (Rv2416c) Protein Against Mycobacterium tuberculosis H37Rv: an Immunoinformatics Approach. Appl Biochem Biotechnol 2021; 194:187-214. [PMID: 34817805 DOI: 10.1007/s12010-021-03760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a respiratory pathogen that causes tuberculosis (TB). There are a large number of proteins that are involved in the pathogenesis of TB. Stimulating the immune response against TB is very important to clear the pathogens from host. In the present study, an immunoinformatics conduit is used for designing an epitope based chimeric vaccine against TB. Enhanced intracellular survival (EIS) protein from Mtb is used for designing the chimeric vaccine. One B cell epitope, 8 cytotoxic T lymphocyte (CTL), and 6 helper T lymphocyte (HTL) epitopes were predicted based on the MHC allele binding, immunogenicity, antigenicity, allergenicity, toxicity and IFN epitopes. The selected epitopes were used for chimeric vaccine designing. Furthermore, 3D structure elucidation, structural refinement and validation of the designed chimeric vaccine were carried out. The 3D structure was used for protein-protein docking studies with Toll-like receptor 4 (TLR-4), followed by molecular dynamic simulation (MDS) and the interaction between the chimeric vaccine and TLR-4 complex was verified.
Collapse
|
7
|
Punetha A, Green KD, Garzan A, Thamban Chandrika N, Willby MJ, Pang AH, Hou C, Holbrook SYL, Krieger K, Posey JE, Parish T, Tsodikov OV, Garneau-Tsodikova S. Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis to overcome kanamycin resistance. RSC Med Chem 2021; 12:1894-1909. [PMID: 34825186 DOI: 10.1039/d1md00239b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a deadly bacterial disease. Drug-resistant strains of Mtb make eradication of TB a daunting task. Overexpression of the enhanced intracellular survival (Eis) protein by Mtb confers resistance to the second-line antibiotic kanamycin (KAN). Eis is an acetyltransferase that acetylates KAN, inactivating its antimicrobial function. Development of Eis inhibitors as KAN adjuvant therapeutics is an attractive path to forestall and overcome KAN resistance. We discovered that an antipsychotic drug, haloperidol (HPD, 1), was a potent Eis inhibitor with IC50 = 0.39 ± 0.08 μM. We determined the crystal structure of the Eis-haloperidol (1) complex, which guided synthesis of 34 analogues. The structure-activity relationship study showed that in addition to haloperidol (1), eight analogues, some of which were smaller than 1, potently inhibited Eis (IC50 ≤ 1 μM). Crystal structures of Eis in complexes with three potent analogues and droperidol (DPD), an antiemetic and antipsychotic, were determined. Three compounds partially restored KAN sensitivity of a KAN-resistant Mtb strain K204 overexpressing Eis. The Eis inhibitors generally did not exhibit cytotoxicity against mammalian cells. All tested compounds were modestly metabolically stable in human liver microsomes, exhibiting 30-60% metabolism over the course of the assay. While direct repurposing of haloperidol as an anti-TB agent is unlikely due to its neurotoxicity, this study reveals potential approaches to modifying this chemical scaffold to minimize toxicity and improve metabolic stability, while preserving potent Eis inhibition.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Melisa J Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention Atlanta GA 30329 USA
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Kyle Krieger
- Center for Global Infectious Disease Research, Seattle Children's Research Institute 307 Westlake Avenue N Seattle WA 98109 USA
| | - James E Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention Atlanta GA 30329 USA
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute 307 Westlake Avenue N Seattle WA 98109 USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536 USA
| |
Collapse
|
8
|
Guin S, Majee D, Samanta S. Unmasking the reverse reactivity of cyclic N-sulfonyl ketimines: multifaceted applications in organic synthesis. Chem Commun (Camb) 2021; 57:9010-9028. [PMID: 34498642 DOI: 10.1039/d1cc03439a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemistry related to the exploration of cyclic N-sulfonyl ketimines and their derivatives has attracted significant attention in the last few decades because of their intriguing structures and properties. They serve broadly as reactive synthons in various reactions to create a diverse set of synthetically and biologically attractive molecules. Furthermore, these moieties, which possess multiple heteroatoms (N, O and S), display or can enhance many biological activities. In the case of synthetic reactions, chemists mainly focus on the chemical manipulation of the highly reactive prochiral CN bond of N-sulfonyl ketimines. Besides their traditional role as electrophiles, N-sulfonyl ketimines possess α-Csp3-H protons, and thus behave as potential carbonucleophiles, where they can undergo several C-X (X = C, N and O) bond-forming reactions with different types of electrophiles under various conditions to form a wide range of fascinating asymmetric and non-asymmetric versions of fused heterocycles, carbocycles, spiro-fused skeletons, pyridines, pyrroles, etc. Herein, we highlight the recent examples from our research work and others covering the scope of cyclic N-sulfonyl ketimines as useful carbonucleophiles. In addition, the detailed mechanistic studies of the above-mentioned reactions are also presented.
Collapse
Affiliation(s)
- Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Debashis Majee
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
9
|
Borah P, Deb PK, Venugopala KN, Al-Shar'i NA, Singh V, Deka S, Srivastava A, Tiwari V, Mailavaram RP. Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies. Curr Top Med Chem 2021; 21:547-570. [PMID: 33319660 DOI: 10.2174/1568026621999201211200447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pran K Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Amavya Srivastava
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| |
Collapse
|
10
|
Ahmed S, Sony SA, Chowdhury MB, Ullah MM, Paul S, Hossain T. Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: a combination of in-silico and in-vitro study. Sci Rep 2020; 10:19381. [PMID: 33168871 PMCID: PMC7653040 DOI: 10.1038/s41598-020-76355-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Interference with antibiotic activity and its inactivation by bacterial modifying enzymes is a prevailing mode of bacterial resistance to antibiotics. Aminoglycoside antibiotics become inactivated by aminoglycoside-6′-N-acetyltransferase-Ib [AAC(6′)-Ib] of gram-negative bacteria which transfers an acetyl group from acetyl-CoA to the antibiotic. The aim of the study was to disrupt the enzymatic activity of AAC(6′)-Ib by adjuvants and restore aminoglycoside activity as a result. The binding affinities of several vitamins and chemical compounds with AAC(6′)-Ib of Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei were determined by molecular docking method to screen potential adjuvants. Adjuvants having higher binding affinity with target enzymes were further analyzed in-vitro to assess their impact on bacterial growth and bacterial modifying enzyme AAC(6′)-Ib activity. Four compounds—zinc pyrithione (ZnPT), vitamin D, vitamin E and vitamin K-exhibited higher binding affinity to AAC(6′)-Ib than the enzyme’s natural substrate acetyl-CoA. Combination of each of these adjuvants with three aminoglycoside antibiotics—amikacin, gentamicin and kanamycin—were found to significantly increase the antibacterial activity against the selected bacterial species as well as hampering the activity of AAC(6′)-Ib. The selection process of adjuvants and the use of those in combination with aminoglycoside antibiotics promises to be a novel area in overcoming bacterial resistance.
Collapse
Affiliation(s)
- Shamim Ahmed
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Sabrina Amita Sony
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Belal Chowdhury
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Mahib Ullah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shatabdi Paul
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
11
|
Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep 2020; 39:221456. [PMID: 31820790 PMCID: PMC6923341 DOI: 10.1042/bsr20191661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.
Collapse
|
12
|
Punetha A, Ngo HX, Holbrook SYL, Green KD, Willby MJ, Bonnett SA, Krieger K, Dennis EK, Posey JE, Parish T, Tsodikov OV, Garneau-Tsodikova S. Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium tuberculosis. ACS Chem Biol 2020; 15:1581-1594. [PMID: 32421305 DOI: 10.1021/acschembio.0c00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis (Mtb) is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of Mtb, we designed and optimized structurally unique thieno[2,3-d]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme-inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-d]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors in vitro as well as their ability to restore the activity of kanamycin in a resistant strain of Mtb, in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds in vitro. This study showcases how structural information can guide Eis inhibitor design.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Huy X. Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Shilah A. Bonnett
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
| | - Kyle Krieger
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, Washington 98145, United States
| | - Emily K. Dennis
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, Washington 98102, United States
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle Children’s Hospital, Seattle, Washington 98145, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
13
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Affiliation(s)
- Matthew D. Lloyd
- Drug & Target Development, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
15
|
Green KD, Punetha A, Hou C, Garneau-Tsodikova S, Tsodikov OV. Probing the Robustness of Inhibitors of Tuberculosis Aminoglycoside Resistance Enzyme Eis by Mutagenesis. ACS Infect Dis 2019; 5:1772-1778. [PMID: 31433614 DOI: 10.1021/acsinfecdis.9b00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Each year, millions of people worldwide contract tuberculosis (TB), the deadliest infection. The spread of infections with drug-resistant strains of Mycobacterium tuberculosis (Mtb) that are refractory to treatment poses a major global challenge. A major cause of resistance to antitubercular drugs of last resort, aminoglycosides, is overexpression of the Eis (enhanced intracellular survival) enzyme of Mtb, which inactivates aminoglycosides by acetylating them. We showed previously that this inactivation of aminoglycosides could be overcome by our recently reported Eis inhibitors that are currently in development as potential aminoglycoside adjunctive therapeutics against drug-resistant TB. To interrogate the robustness of the Eis inhibitors, we investigated the enzymatic activity of Eis and its inhibition by Eis inhibitors from three different structural families for nine single-residue mutants of Eis, including those found in the clinic. Three engineered mutations of the substrate binding site, D26A, W36A, and F84A, abolished inhibitor binding while compromising Eis enzymatic activity 2- to 3-fold. All other Eis mutants, including clinically observed ones, were potently inhibited by at least one inhibitor. This study helps position us one step ahead of Mtb resistance to Eis inhibitors as they are being developed for TB therapy.
Collapse
Affiliation(s)
- Keith D. Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
16
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
18
|
Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol 2018; 9:2179. [PMID: 30258428 PMCID: PMC6143652 DOI: 10.3389/fmicb.2018.02179] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from “curable” skin infections to only “manageable” pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria’s high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen’s phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.
Collapse
Affiliation(s)
- Sakshi Luthra
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| |
Collapse
|
19
|
Holbrook SY, Garneau-Tsodikova S. Evaluation of Aminoglycoside and Carbapenem Resistance in a Collection of Drug-Resistant Pseudomonas aeruginosa Clinical Isolates. Microb Drug Resist 2018; 24:1020-1030. [PMID: 29261405 PMCID: PMC6154764 DOI: 10.1089/mdr.2017.0101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is a member of the ESKAPE pathogens and one of the leading causes of healthcare-associated infections worldwide. Aminoglycosides (AGs) are recognized for their efficacy against P. aeruginosa. The most common resistance mechanism against AGs is the acquisition of AG-modifying enzymes (AMEs) by the bacteria, including AG N-acetyltransferases (AACs), AG O-phosphotransferases (APHs), and AG O-nucleotidyltransferases (ANTs). In this study, we obtained 122 multidrug-resistant P. aeruginosa clinical isolates and evaluated the antibacterial effects of six AGs and two carbapenems alone against all clinical isolates, and in combination against eight selected strains. We further probed for four representatives of the most common AME genes [aac(6')-Ib, aac(3)-IV, ant(2")-Ia, and aph(3')-Ia] by polymerase chain reaction (PCR) and compared the AME patterns of these 122 clinical isolates to their antibiotic resistance profile. Among the diverse antibiotics resistance profile displayed by these clinical isolates, we found correlations between the resistance to various AGs as well as between the resistance to one AG and the resistance to carbapenems. PCR results revealed that the presence of aac(6')-Ib renders these isolates more resistant to a variety of antibiotics. The correlation between resistance to various AGs and carbapenems partially reflects the complex resistance strategies adapted in these pathogens and encourages the development of strategic treatment for each P. aeruginosa infection by considering the genetic information of each isolated bacteria.
Collapse
Affiliation(s)
- Selina Y.L. Holbrook
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| | - Sylvie Garneau-Tsodikova
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Holbrook SYL, Gentry MS, Tsodikov OV, Garneau-Tsodikova S. Nucleoside triphosphate cosubstrates control the substrate profile and efficiency of aminoglycoside 3'- O-phosphotransferase type IIa. MEDCHEMCOMM 2018; 9:1332-1339. [PMID: 30151088 DOI: 10.1039/c8md00234g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics that play an important role in the control and treatment of bacterial infections. Despite the great antibacterial potency of AGs, resistance to these antibiotics has limited their clinical applications. The AG 3'-O-phosphotransferase of type IIa (APH(3')-IIa) encoded by the neoR gene is a common bacterial AG resistance enzyme that inactivates AG antibiotics. This enzyme is used as a selection marker in molecular biology research. APH(3')-IIa catalyzes the transfer of the γ-phosphoryl group of ATP to an AG at its 3'-OH group. Although APH(3')-IIa has been reported to utilize exclusively ATP as a cosubstrate, we demonstrate that this enzyme can utilize a broad array of NTPs. By substrate profiling, TLC, and enzyme kinetics experiments, we probe AG phosphorylation by APH(3')-IIa with an extensive panel of substrates and cosubstrates (13 AGs and 10 NTPs) for the purpose of gaining a thorough understanding of this resistance enzyme. We find, for the first time, that the identity of the NTP cosubstrate dictates the set of AGs modified by APH(3')-IIa and the phosphorylation efficiency for different AGs.
Collapse
Affiliation(s)
- Selina Y L Holbrook
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences , College of Pharmacy , University of Kentucky , Lexington , KY 40536-0596 , USA . ; ; ; Tel: +859 218 1686
| |
Collapse
|
21
|
Ngo HX, Green KD, Gajadeera CS, Willby MJ, Holbrook SYL, Hou C, Garzan A, Mayhoub AS, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Potent 1,2,4-Triazino[5,6 b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis. ACS Infect Dis 2018; 4:1030-1040. [PMID: 29601176 DOI: 10.1021/acsinfecdis.8b00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A common cause of resistance to kanamycin (KAN) in tuberculosis is overexpression of the enhanced intracellular survival (Eis) protein. Eis is an acetyltransferase that multiacetylates KAN and other aminoglycosides, rendering them unable to bind the bacterial ribosome. By high-throughput screening, a series of substituted 1,2,4-triazino[5,6 b]indole-3-thioether molecules were identified as effective Eis inhibitors. Herein, we purchased 17 and synthesized 22 new compounds, evaluated their potency, and characterized their steady-state kinetics. Four inhibitors were found not only to inhibit Eis in vitro, but also to act as adjuvants of KAN and partially restore KAN sensitivity in a Mycobacterium tuberculosis KAN-resistant strain in which Eis is upregulated. A crystal structure of Eis in complex with a potent inhibitor and CoA shows that the inhibitors bind in the aminoglycoside binding site snugly inserted into a hydrophobic cavity. These inhibitors will undergo preclinical development as novel KAN adjuvant therapies to treat KAN-resistant tuberculosis.
Collapse
Affiliation(s)
- Huy X. Ngo
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S. Gajadeera
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Atefeh Garzan
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Abdelrahman S. Mayhoub
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - James E. Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Oleg. V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Department of Medicinal Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
23
|
Green KD, Biswas T, Pang AH, Willby MJ, Reed MS, Stuchlik O, Pohl J, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight. Biochemistry 2018; 57:781-790. [PMID: 29345920 DOI: 10.1021/acs.biochem.7b01089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial nucleoid-associated proteins (NAPs) are critical to genome integrity and chromosome maintenance. Post-translational modifications of bacterial NAPs appear to function similarly to their better studied mammalian counterparts. The histone-like NAP HupB from Mycobacterium tuberculosis (Mtb) was previously observed to be acetylated by the acetyltransferase Eis, leading to genome reorganization. We report biochemical and structural aspects of acetylation of HupB by Eis. We also found that the SirT-family NAD+-dependent deacetylase Rv1151c from Mtb deacetylated HupB in vitro and characterized the deacetylation kinetics. We propose that activities of Eis and Rv1151c could regulate the acetylation status of HupB to remodel the mycobacterial chromosome in response to environmental changes.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
24
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
25
|
Esumi N, Suzuki K, Nishimoto Y, Yasuda M. Generation of α-Iminyl Radicals from α-Bromo Cyclic N
-Sulfonylimines and Application to Coupling with Various Radical Acceptors Using a Photoredox Catalyst. Chemistry 2017; 24:312-316. [DOI: 10.1002/chem.201704060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Naoto Esumi
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Kensuke Suzuki
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Yoshihiro Nishimoto
- Frontier Research Base for Global Young Researchers Center for Open Innovation Research and Education (COiRE), Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
26
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
27
|
Garzan A, Willby MJ, Ngo HX, Gajadeera CS, Green KD, Holbrook SYL, Hou C, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors. ACS Infect Dis 2017; 3:302-309. [PMID: 28192916 DOI: 10.1021/acsinfecdis.6b00193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to mammalian cells and are promising leads for the development of innovative AG adjuvant therapies against drug-resistant TB.
Collapse
Affiliation(s)
- Atefeh Garzan
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Melisa J. Willby
- Laboratory Branch, Division of Tuberculosis
Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and
TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Huy X. Ngo
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S. Gajadeera
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Selina Y. L. Holbrook
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - James E. Posey
- Laboratory Branch, Division of Tuberculosis
Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and
TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Kentucky, 789 South
Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
28
|
Garzan A, Willby MJ, Ngo HX, Gajadeera CS, Green KD, Holbrook SYL, Hou C, Posey JE, Tsodikov OV, Garneau-Tsodikova S. Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors. ACS Infect Dis 2017. [PMID: 28192916 DOI: 10.1021/acsinfecdis.6b00193.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to mammalian cells and are promising leads for the development of innovative AG adjuvant therapies against drug-resistant TB.
Collapse
Affiliation(s)
- Atefeh Garzan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Melisa J Willby
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, Georgia 30329, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S Gajadeera
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - James E Posey
- Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, Georgia 30329, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
29
|
Garzan A, Willby MJ, Green KD, Tsodikov OV, Posey JE, Garneau-Tsodikova S. Discovery and Optimization of Two Eis Inhibitor Families as Kanamycin Adjuvants against Drug-Resistant M. tuberculosis. ACS Med Chem Lett 2016; 7:1219-1221. [PMID: 27994767 DOI: 10.1021/acsmedchemlett.6b00261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/15/2016] [Indexed: 11/29/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a global threat and innovative approaches such as using adjuvants of anti-TB therapeutics are required to combat it. High-throughput screening yielded two lead scaffolds of inhibitors of Mycobacterium tuberculosis (Mtb) acetyltransferase Eis, whose upregulation causes resistance to the anti-TB drug kanamycin (KAN). Chemical optimization on these scaffolds resulted in potent Eis inhibitors. One compound restored the activity of KAN in a KAN-resistant Mtb strain. Model structures of Eis-inhibitor complexes explain the structure-activity relationship.
Collapse
Affiliation(s)
- Atefeh Garzan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Melisa J. Willby
- Mycobacteriology
Laboratory Branch, Division of Tuberculosis Elimination, National
Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Keith D. Green
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Oleg V. Tsodikov
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - James E. Posey
- Mycobacteriology
Laboratory Branch, Division of Tuberculosis Elimination, National
Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
30
|
Garzan A, Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis. J Med Chem 2016; 59:10619-10628. [PMID: 27933949 DOI: 10.1021/acs.jmedchem.6b01161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis in complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28-37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.
Collapse
Affiliation(s)
- Atefeh Garzan
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| | - Melisa J Willby
- Mycobacteriology Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, Georgia 30333, United States
| | - Keith D Green
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| | - Chathurada S Gajadeera
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| | - James E Posey
- Mycobacteriology Laboratory Branch, Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention , Atlanta, Georgia 30333, United States
| | - Sylvie Garneau-Tsodikova
- University of Kentucky , Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone St., Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
31
|
Holbrook SYL, Garneau-Tsodikova S. Expanding Aminoglycoside Resistance Enzyme Regiospecificity by Mutation and Truncation. Biochemistry 2016; 55:5726-5737. [PMID: 27618454 DOI: 10.1021/acs.biochem.6b00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics famous for their antibacterial activity against Gram-positive and Gram-negative bacteria, as well as mycobacteria. In the United States, the most prescribed AGs, including amikacin (AMK), gentamicin (GEN), and tobramycin (TOB), are vital components of the treatment for resistant bacterial infections. Arbekacin (ABK), a semisynthetic AG, is widely used for the treatment of resistant Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in Asia. However, the rapid emergence and development of bacterial resistance are limiting the clinical application of AG antibiotics. Of all bacterial resistance mechanisms against AGs, the acquisition of AG-modifying enzymes (AMEs) by bacteria is the most common. It was previously reported that a variant of a bifunctional AME, the 6'-N-AG acetyltransferase-Ie/2″-O-AG phosphotransferase-Ia [AAC(6')-Ie/APH(2″)-Ia], containing a D80G point mutation and a truncation after amino acid 240 modified ABK and AMK at a new position, the 4‴-amine, therefore displaying a change in regiospecificity. In this study, we aimed to verify the altered regiospecificity of this bifunctional enzyme by mutation and truncation for the potential of derivatizing AGs with chemoenzymatic reactions. With the three variant enzymes in this study that contained either mutation only (D80G), truncation only (1-240), or mutation and truncation (D80G-1-240), we characterized their activity by profiling their substrate promiscuity, determined their kinetics parameters, and performed mass spectrometry to determine how and where ABK and AMK were acetylated by these enzymes. We found that the three mutant enzymes possessed distinct acetylation regiospecificity compared to that of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme and the functional AAC(6')-Ie domain [AAC(6')/APH(2″)-1-194].
Collapse
Affiliation(s)
- Selina Y L Holbrook
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
32
|
Willby MJ, Green KD, Gajadeera CS, Hou C, Tsodikov OV, Posey JE, Garneau-Tsodikova S. Potent Inhibitors of Acetyltransferase Eis Overcome Kanamycin Resistance in Mycobacterium tuberculosis. ACS Chem Biol 2016; 11:1639-46. [PMID: 27010218 DOI: 10.1021/acschembio.6b00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A major cause of tuberculosis (TB) resistance to the aminoglycoside kanamycin (KAN) is the Mycobacterium tuberculosis (Mtb) acetyltransferase Eis. Upregulation of this enzyme is responsible for inactivation of KAN through acetylation of its amino groups. A 123 000-compound high-throughput screen (HTS) yielded several small-molecule Eis inhibitors that share an isothiazole S,S-dioxide heterocyclic core. These were investigated for their structure-activity relationships. Crystal structures of Eis in complex with two potent inhibitors show that these molecules are bound in the conformationally adaptable aminoglycoside binding site of the enzyme, thereby obstructing binding of KAN for acetylation. Importantly, we demonstrate that several Eis inhibitors, when used in combination with KAN against resistant Mtb, efficiently overcome KAN resistance. This approach paves the way toward development of novel combination therapies against aminoglycoside-resistant TB.
Collapse
Affiliation(s)
- Melisa J. Willby
- Division of Tuberculosis
Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and
TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Keith D. Green
- Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Chathurada S. Gajadeera
- Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Oleg V. Tsodikov
- Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - James E. Posey
- Division of Tuberculosis
Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and
TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, United States
| | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
33
|
Chiem K, Jani S, Fuentes B, Lin DL, Rasche ME, Tolmasky ME. Identification of an Inhibitor of the Aminoglycoside 6'- N-Acetyltransferase type Ib [AAC(6')-Ib] by Glide Molecular Docking. MEDCHEMCOMM 2016; 7:184-189. [PMID: 26973774 PMCID: PMC4784703 DOI: 10.1039/c5md00316d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aminoglycoside 6'-N-acetyltransferase type Ib, AAC(6')-Ib, confers resistance to clinically relevant aminoglycosides and is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens. An alternative to counter the action of this enzyme is the development of inhibitors. Glide is a computational strategy for rapidly docking ligands to protein sites and estimating their binding affinities. We docked a collection of 280,000 compounds from 7 sub-libraries of the Chembridge library as ligands to the aminoglycoside binding site of AAC(6')-Ib. We identified a compound, 1-[3-(2-aminoethyl)benzyl]-3-(piperidin-1-ylmethyl)pyrrolidin-3-ol (compound 1), that inhibited the acetylation of aminoglycosides in vitro with IC50 values of 39.7 and 34.9 µM when the aminoglycoside substrates assayed were kanamycin A or amikacin, respectively. The growth of an amikacin-resistant Acinetobacter baumannii clinical strain was inhibited in the presence of a combination of amikacin and compound 1.
Collapse
Affiliation(s)
- Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| | - Brooke Fuentes
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| | - David L. Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| | - Madeline E. Rasche
- Center for Applied Biotechnology Studies, Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
| |
Collapse
|
34
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
35
|
Thamban Chandrika N, Green KD, Houghton J, Garneau-Tsodikova S. Synthesis and Biological Activity of Mono- and Di-N-acylated Aminoglycosides. ACS Med Chem Lett 2015; 6:1134-9. [PMID: 26617967 PMCID: PMC4645238 DOI: 10.1021/acsmedchemlett.5b00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022] Open
Abstract
Despite issues with oto/nephrotoxicity and bacterial resistance, aminoglycosides (AGs) remain an effective and widely used class of antibacterial agents. For decades now, efforts toward the development of novel AGs with potential to overcome some of these problems have been major research focuses. 1-N-Acylation, especially γ-amino-β-hydroxybutyrate (AHB) derivatization, has proven to be one of the most successful strategies for improving the overall properties of AGs, including their ability to avoid certain resistance mechanisms. More recently, 6'-N-acylation arose as another possible strategy to improve the properties of these drugs. In this study, we report on the glycinyl, carboxybenzyl, and AHB mono- and diderivatization at the 1-, 6'-, and/or 4‴-amines of the AGs amikacin, kanamycin A, netilmicin, sisomicin, and tobramycin. We also present the antibacterial activities and the reduced reactivity of AG-modifying enzymes (AMEs) toward these new AG derivatives, and identify the AMEs present in the bacterial strains tested.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department
of Pharmaceutical Sciences, University of
Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Keith D. Green
- Department
of Pharmaceutical Sciences, University of
Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Jacob
L. Houghton
- Department
of Medicinal Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| | - Sylvie Garneau-Tsodikova
- Department
of Pharmaceutical Sciences, University of
Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
36
|
Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MEDCHEMCOMM 2015; 7:11-27. [PMID: 26877861 DOI: 10.1039/c5md00344j] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.
Collapse
Affiliation(s)
- Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. ; Tel: 859-218-1686
| | - Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI, USA. ; Tel: 608-363-2273
| |
Collapse
|
37
|
Chiem K, Fuentes BA, Lin DL, Tran T, Jackson A, Ramirez MS, Tolmasky ME. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance in Klebsiella pneumoniae by zinc and copper pyrithione. Antimicrob Agents Chemother 2015; 59:5851-3. [PMID: 26169410 PMCID: PMC4538519 DOI: 10.1128/aac.01106-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by CuCl2 with a 50% inhibitory concentration (IC50) of 2.8 μM. The growth of an amikacin-resistant Klebsiella pneumoniae strain isolated from a neonate with meningitis was inhibited when amikacin was supplemented by the addition of Zn(2+) or Cu(2+) in complex with the ionophore pyrithione. Coordination complexes between cations and ionophores could be developed for their use, in combination with aminoglycosides, to treat resistant infections.
Collapse
Affiliation(s)
- Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Brooke A Fuentes
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Alexis Jackson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Maria S Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| |
Collapse
|
38
|
Green KD, Pricer RE, Stewart MN, Garneau-Tsodikova S. Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria. ACS Infect Dis 2015; 1:272-83. [PMID: 27622743 DOI: 10.1021/acsinfecdis.5b00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antibiotic resistance is a growing problem worldwide. Of particular importance is the resistance of Mycobacterium tuberculosis (Mtb) to currently available antibiotics used in the treatment of infected patients. Up-regulation of an aminoglycoside (AG) acetyltransferase, the enhanced intracellular survival (Eis) protein of Mtb (Eis_Mtb), is responsible for resistance to the second-line injectable drug kanamycin A in a number of Mtb clinical isolates. This acetyltransferase is known to modify AGs, not at a single position, as usual for this type of enzyme, but at multiple amine sites. We identified, using in silico techniques, 22 homologues from a wide variety of bacteria, that we then cloned, purified, and biochemically studied. From the selected Eis homologues, 7 showed the ability to modify AGs to various degrees and displayed both similarities and differences when compared to Eis_Mtb. In addition, an inhibitor proved to be active against all homologues tested. Our findings show that this family of acetyltransferase enzymes exists in both mycobacteria and non-mycobacteria and in both pathogenic and nonpathogenic species. The bacterial strains described herein should be monitored for rising resistance rates to AGs.
Collapse
Affiliation(s)
- Keith D. Green
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | | | | |
Collapse
|
39
|
Green KD, Biswas T, Chang C, Wu R, Chen W, Janes BK, Chalupska D, Gornicki P, Hanna PC, Tsodikov OV, Joachimiak A, Garneau-Tsodikova S. Biochemical and structural analysis of an Eis family aminoglycoside acetyltransferase from bacillus anthracis. Biochemistry 2015; 54:3197-206. [PMID: 25928210 DOI: 10.1021/acs.biochem.5b00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.
Collapse
Affiliation(s)
- Keith D Green
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | - Changsoo Chang
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ruiying Wu
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | | | | | - Oleg V Tsodikov
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Andrzej Joachimiak
- ∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sylvie Garneau-Tsodikova
- ⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
40
|
Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob Agents Chemother 2015; 59:4148-56. [PMID: 25941215 DOI: 10.1128/aac.00885-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 11/20/2022] Open
Abstract
Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn(2+) metal ions displayed an inhibitory effect on the resistance enzyme AAC(6')-Ib in Acinetobacter baumannii and Escherichia coli. In this study, we explore a wide array of metal salts (Mg(2+), Cr(3+), Cr(6+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Au(3+) with different counter ions) and their inhibitory effect on a large repertoire of AACs [AAC(2')-Ic, AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, AAC(6')-Ib', AAC(6')-Ie, AAC(6')-IId, and Eis]. In addition, we determine the MIC values for amikacin and tobramycin in combination with a zinc pyrithione complex in clinical isolates of various bacterial strains (two strains of A. baumannii, three of Enterobacter cloacae, and four of Klebsiella pneumoniae) and one representative of each species purchased from the American Type Culture Collection.
Collapse
|
41
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
42
|
Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore. Antimicrob Agents Chemother 2014; 58:4238-41. [PMID: 24820083 DOI: 10.1128/aac.00129-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro activity of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was inhibited by ZnCl2 with a 50% inhibitory concentration (IC50) of 15 μM. Growth of Acinetobacter baumannii or Escherichia coli harboring aac(6')-Ib in cultures containing 8 μg/ml amikacin was significantly inhibited by the addition of 2 μM Zn(2+) in complex with the ionophore pyrithione (ZnPT).
Collapse
|
43
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
44
|
Houghton JL, Biswas T, Chen W, Tsodikov OV, Garneau-Tsodikova S. Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis. Chembiochem 2013; 14:2127-35. [PMID: 24106131 PMCID: PMC3947475 DOI: 10.1002/cbic.201300359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Indexed: 11/08/2022]
Abstract
A recently discovered cause of tuberculosis resistance to a drug of last resort, the aminoglycoside kanamycin, results from modification of this drug by the enhanced intracellular survival (Eis) protein. Eis is a structurally and functionally unique acetyltransferase with an unusual capability of acetylating aminoglycosides at multiple positions. The extent of this regioversatility and its defining protein features are unclear. Herein, we determined the positions and order of acetylation of five aminoglycosides by NMR spectroscopy. This analysis revealed unprecedented acetylation of the 3''-amine of kanamycin, amikacin, and tobramycin, and the γ-amine of the 4-amino-2-hydroxybutyryl group of amikacin. A crystal structure of Eis in complex with coenzyme A and tobramycin revealed how tobramycin can be accommodated in the Eis active site in two binding modes, consistent with its diacetylation. These studies, describing chemical and structural details of acetylation, will guide future efforts towards designing aminoglycosides and Eis inhibitors to overcome resistance in tuberculosis.
Collapse
Affiliation(s)
- Jacob L. Houghton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tapan Biswas
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenjing Chen
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596
| | | |
Collapse
|
45
|
Lin DL, Tran T, Adams C, Alam JY, Herron SR, Tolmasky ME. Inhibitors of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] identified by in silico molecular docking. Bioorg Med Chem Lett 2013; 23:5694-8. [PMID: 24011645 DOI: 10.1016/j.bmcl.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
AAC(6')-Ib is an important aminoglycoside resistance enzyme to target with enzymatic inhibitors. An in silico screening approach was used to identify potential inhibitors from the ChemBridge library. Several compounds were identified, of which two of them, 4-[(2-{[1-(3-methylphenyl)-4,6-dioxo-2-thioxotetrahydro-5(2H)-pyrimidinylidene]methyl}phenoxy)methyl]benzoic acid and 2-{5-[(4,6-dioxo-1,3-diphenyl-2-thioxotetrahydro-5(2H)-pyrimidinylidene)methyl]-2-furyl}benzoic acid, showed micromolar activity in inhibiting acetylation of kanamycin A. These compounds are predicted to bind the aminoglycoside binding site of AAC(6')-Ib and exhibited competitive inhibition against kanamycin A.
Collapse
Affiliation(s)
- David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Boulevard, Fullerton, CA 92834-6850, United States.
| | | | | | | | | | | |
Collapse
|
46
|
Green KD, Garneau-Tsodikova S. Resistance in tuberculosis: what do we know and where can we go? Front Microbiol 2013; 4:208. [PMID: 23888158 PMCID: PMC3719028 DOI: 10.3389/fmicb.2013.00208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 12/05/2022] Open
Abstract
Tuberculosis (TB) has become a worldwide threat, mainly due to the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb). This mini-review is focused on the various mechanisms of resistance to the currently available anti-TB drugs and provides perspective on novel strategies and lead scaffolds/compounds aimed at inhibiting/overcoming these resistance mechanisms.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky Lexington, KY, USA
| | | |
Collapse
|
47
|
Jennings BC, Labby KJ, Green KD, Garneau-Tsodikova S. Redesign of substrate specificity and identification of the aminoglycoside binding residues of Eis from Mycobacterium tuberculosis. Biochemistry 2013; 52:5125-32. [PMID: 23837529 DOI: 10.1021/bi4002985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The upsurge in drug-resistant tuberculosis (TB) is an emerging global problem. The increased expression of the enhanced intracellular survival (Eis) protein is responsible for the clinical resistance to aminoglycoside (AG) antibiotics of Mycobacterium tuberculosis . Eis from M. tuberculosis (Eis_Mtb) and M. smegmatis (Eis_Msm) function as acetyltransferases capable of acetylating multiple amines of many AGs; however, these Eis homologues differ in AG substrate preference and in the number of acetylated amine groups per AG. The AG binding cavity of Eis_Mtb is divided into two narrow channels, whereas Eis_Msm contains one large cavity. Five bulky residues lining one of the AG binding channels of Eis_Mtb, His119, Ile268, Trp289, Gln291, and Glu401, have significantly smaller counterparts in Eis_Msm, Thr119, Gly266, Ala287, Ala289, and Gly401, respectively. To identify the residue(s) responsible for AG binding in Eis_Mtb and for the functional differences from Eis_Msm, we have generated single, double, triple, quadruple, and quintuple mutants of these residues in Eis_Mtb by mutating them into their Eis_Msm counterparts, and we tested their acetylation activity with three structurally diverse AGs: kanamycin A (KAN), paromomyin (PAR), and apramycin (APR). We show that penultimate C-terminal residue Glu401 plays a critical role in the overall activity of Eis_Mtb. We also demonstrate that the identities of residues Ile268, Trp289, and Gln291 (in Eis_Mtb nomenclature) dictate the differences between the acetylation efficiencies of Eis_Mtb and Eis_Msm for KAN and PAR. Finally, we show that the mutation of Trp289 in Eis_Mtb into Ala plays a role in APR acetylation.
Collapse
Affiliation(s)
- Benjamin C Jennings
- Life Sciences Institute, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| | | | | | | |
Collapse
|
48
|
Ramirez MS, Nikolaidis N, Tolmasky ME. Rise and dissemination of aminoglycoside resistance: the aac(6')-Ib paradigm. Front Microbiol 2013; 4:121. [PMID: 23730301 PMCID: PMC3656343 DOI: 10.3389/fmicb.2013.00121] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 11/21/2022] Open
Abstract
Enzymatic modification is a prevalent mechanism by which bacteria defeat the action of antibiotics. Aminoglycosides are often inactivated by aminoglycoside modifying enzymes encoded by genes present in the chromosome, plasmids, and other genetic elements. The AAC(6′)-Ib (aminoglycoside 6′-N-acetyltransferase type Ib) is an enzyme of clinical importance found in a wide variety of gram-negative pathogens. The AAC(6′)-Ib enzyme is of interest not only because of his ubiquity but also because of other characteristics, it presents significant microheterogeneity at the N-termini and the aac(6′)-Ib gene is often present in integrons, transposons, plasmids, genomic islands, and other genetic structures. Excluding the highly heterogeneous N-termini, there are 45 non-identical AAC(6′)-Ib related entries in the NCBI database, 32 of which have identical name in spite of not having identical amino acid sequence. While some variants conserved similar properties, others show dramatic differences in specificity, including the case of AAC(6′)-Ib-cr that mediates acetylation of ciprofloxacin representing a rare case where a resistance enzyme acquires the ability to utilize an antibiotic of a different class as substrate. Efforts to utilize antisense technologies to turn off expression of the gene or to identify enzymatic inhibitors to induce phenotypic conversion to susceptibility are under way.
Collapse
Affiliation(s)
- María S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton, CA, USA
| | | | | |
Collapse
|
49
|
Houghton JL, Green KD, Pricer RE, Mayhoub AS, Garneau-Tsodikova S. Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J Antimicrob Chemother 2013; 68:800-5. [PMID: 23233486 PMCID: PMC3594498 DOI: 10.1093/jac/dks497] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The enhanced intracellular survival (Eis) protein from Mycobacterium tuberculosis (Eis_Mtb), a regio-versatile N-acetyltransferase active towards many aminoglycosides (AGs), confers resistance to kanamycin A in some cases of extensively drug-resistant tuberculosis (XDR-TB). We assessed the activity of Eis_Mtb and of its homologue from Mycobacterium smegmatis (Eis_Msm) against a panel of anti-tuberculosis (TB) drugs and lysine-containing compounds. METHODS AND RESULTS Both enzymes acetylated capreomycin and some lysine-containing compounds, but not other non-AG non-lysine-containing drugs tested. Modelling studies predicted the site of modification on capreomycin to be one of the two primary amines in its β-lysine side chain. Using Eis_Mtb, we established via nuclear magnetic resonance (NMR) spectroscopy that acetylation of capreomycin occurs on the ε-amine of the β-lysine side chain. Using Msm, we also demonstrated for the first time to our knowledge that acetylation of capreomycin results in deactivation of the drug. CONCLUSIONS Eis is a unique acetyltransferase capable of inactivating the anti-TB drug capreomycin, AGs and other lysine-containing compounds.
Collapse
Affiliation(s)
- Jacob L. Houghton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 4437, Ann Arbor, MI 48109, USA
| | - Keith D. Green
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 4437, Ann Arbor, MI 48109, USA
| | - Rachel E. Pricer
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 4437, Ann Arbor, MI 48109, USA
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abdelrahman S. Mayhoub
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 4437, Ann Arbor, MI 48109, USA
| | - Sylvie Garneau-Tsodikova
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Room 4437, Ann Arbor, MI 48109, USA
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Chim N, Owens CP, Contreras H, Goulding CW. Withdrawn. Infect Disord Drug Targets 2012:CDTID-EPUB-20121116-2. [PMID: 23167715 PMCID: PMC3695056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Withdrawn by the publisher.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Cedric P. Owens
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Heidi Contreras
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine CA 92697, USA
| |
Collapse
|