1
|
Kahler JP, Ji S, Speelman-Rooms F, Vanhoutte R, Verhelst SHL. Phosphinate Esters as Novel Warheads for Quenched Activity-Based Probes Targeting Serine Proteases. ACS Chem Biol 2024; 19:1409-1415. [PMID: 38913607 DOI: 10.1021/acschembio.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases. Here, we report on the construction of qABPs based on the phosphinate warhead, exemplified by probes for the neutrophil serine proteases. The most successful probes show sub-stoichiometric reaction with human neutrophil elastase, efficient fluorescence quenching, and rapid unquenching of fluorescence upon reaction with target proteases.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Herestraat 49 box 802, 3000 Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Ninck S, Klaus T, Kochetkova TV, Esser SP, Sewald L, Kaschani F, Bräsen C, Probst AJ, Kublanov IV, Siebers B, Kaiser M. Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities. ENVIRONMENTAL MICROBIOME 2024; 19:36. [PMID: 38831353 PMCID: PMC11145796 DOI: 10.1186/s40793-024-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging. RESULTS Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia. CONCLUSIONS By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Ninck
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.
| | - Thomas Klaus
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Tatiana V Kochetkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60-Let Oktyabrya 7-2, Moscow, 117312, Russia
| | - Sarah P Esser
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Leonard Sewald
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany
- Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
- Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60-Let Oktyabrya 7-2, Moscow, 117312, Russia
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45117, Essen, Germany.
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.
| |
Collapse
|
3
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
4
|
Yan J, Liu H, Wu Y, Niu B, Deng X, Zhang L, Dang Q, Wang Y, Lu X, Zhang B, Sun W. Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging. Biomaterials 2023; 301:122281. [PMID: 37643487 DOI: 10.1016/j.biomaterials.2023.122281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Flourished in the past two decades, fluorescent probe technology provides researchers with accurate and efficient tools for in situ imaging of biomarkers in living cells and tissues and may play a significant role in clinical diagnosis and treatment such as biomarker detection, fluorescence imaging-guided surgery, and photothermal/photodynamic therapy. In situ imaging of biomarkers depends on the spatial resolution of molecular probes. Nevertheless, the majority of currently available molecular fluorescent probes suffer from the drawback of diffusing from the target region. This leads to a rapid attenuation of the fluorescent signal over time and a reduction in spatial resolution. Consequently, the diffused fluorescent signal cannot accurately reflect the in situ information of the target. Self-immobilizing and self-precipitating molecular fluorescent probes can be used to overcome this problem. These probes ensure that the fluorescent signal remains at the location where the signal is generated for a long time. In this review, we introduce the development history of the two types of probes and classify them in detail according to different design strategies. In addition, we compare their advantages and disadvantages, summarize some representative studies conducted in recent years, and propose prospects for this field.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Ben Niu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yubo Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiao Lu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
5
|
Ji S, Verhelst SHL. Furin-targeting activity-based probes with phosphonate and phosphinate esters as warheads. Org Biomol Chem 2023; 21:6498-6502. [PMID: 37530461 DOI: 10.1039/d3ob00948c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Activity-based probes (ABPs) are covalent chemical tools that are widely used to target proteases in chemical biology. Here, we report a series of novel ABPs for the serine protease furin with phosphonate and phosphinate esters as reactive electrophiles. We show that these probes covalently label furin and have nanomolar potencies, because of proposed interactions with the different recognition pockets around the active site of furin.
Collapse
Affiliation(s)
- Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
7
|
Chen S, Liang C, Li H, Yu W, Prothiwa M, Kopczynski D, Loroch S, Fransen M, Verhelst SHL. Pepstatin-Based Probes for Photoaffinity Labeling of Aspartic Proteases and Application to Target Identification. ACS Chem Biol 2023; 18:686-692. [PMID: 36920024 DOI: 10.1021/acschembio.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.
Collapse
Affiliation(s)
- Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Chunguang Liang
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany.,Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hongli Li
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Weimeng Yu
- Bioinformatik, Biozentrum, Universität Würzburg, 97074 Würzburg, Germany
| | - Michaela Prothiwa
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,Ruhr-Universität Bochum, Medizinisches Proteom-Center, Building ProDi E2.240, Gesundheitscampus 4, D-44801 Bochum, Germany.,ProtiFi LLC, 1000 Turk Hill Road, Suite 180, 2nd Floor, Fairport, New York 14450, United States
| | - Marc Fransen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Leibniz Institut für Analytische Wissenschaften - ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany.,KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Ramos-Llorca A, Decraecker L, Cacheux VMY, Zeiburlina I, De bruyn M, Battut L, Moreno-Cinos C, Ceradini D, Espinosa E, Dietrich G, Berg M, De Meester I, Van Der Veken P, Boeckxstaens G, Lambeir AM, Denadai-Souza A, Augustyns K. Chemically diverse activity-based probes with unexpected inhibitory mechanisms targeting trypsin-like serine proteases. Front Chem 2023; 10:1089959. [PMID: 36688031 PMCID: PMC9849758 DOI: 10.3389/fchem.2022.1089959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Activity-based probes (ABP) are molecules that bind covalently to the active form of an enzyme family, making them an attractive tool for target and biomarker identification and drug discovery. The present study describes the synthesis and biochemical characterization of novel activity-based probes targeting trypsin-like serine proteases. We developed an extensive library of activity-based probes with "clickable" affinity tags and a diaryl phosphonate warhead. A wide diversity was achieved by including natural amino acid analogs as well as basic polar residues as side chains. A detailed enzymatic characterization was performed in a panel of trypsin-like serine proteases. Their inhibitory potencies and kinetic profile were examined, and their IC50 values, mechanism of inhibition, and kinetic constants were determined. The activity-based probes with a benzyl guanidine side chain showed the highest inhibitory effects in the panel. Surprisingly, some of the high-affinity probes presented a reversible inhibitory mechanism. On the other hand, probes with different side chains exhibited the expected irreversible mechanism. For the first time, we demonstrate that not only irreversible probes but also reversible probes can tightly label recombinant proteases and proteases released from human mast cells. Even under denaturing SDS-PAGE conditions, reversible slow-tight-binding probes can label proteases due to the formation of high-affinity complexes and slow dissociation rates. This unexpected finding will transform the view on the required irreversible nature of activity-based probes. The diversity of this library of activity-based probes combined with a detailed enzyme kinetic characterization will advance their applications in proteomic studies and drug discovery.
Collapse
Affiliation(s)
- Alba Ramos-Llorca
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valérie M. Y. Cacheux
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Irena Zeiburlina
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Michelle De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carlos Moreno-Cinos
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Maya Berg
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Henehan GT, Ryan BJ, Kinsella GK. Approaches to Avoid Proteolysis During Protein Expression and Purification. Methods Mol Biol 2023; 2699:77-95. [PMID: 37646995 DOI: 10.1007/978-1-0716-3362-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
All cells contain proteases, which hydrolyze the peptide bonds between amino acids of a protein backbone. Typically, proteases are prevented from nonspecific proteolysis by regulation and by their physical separation into different subcellular compartments; however, this segregation is not retained during cell lysis, which is the initial step in any protein isolation procedure. Prevention of proteolysis during protein purification often takes the form of a two-pronged approach: first, inhibition of proteolysis in situ, followed by the early separation of the protease from the protein of interest via chromatographic purification. Protease inhibitors are routinely used to limit the effect of the proteases before they are physically separated from the protein of interest via column chromatography. In this chapter, commonly used approaches to reducing or avoiding proteolysis during protein expression and purification are reviewed.
Collapse
Affiliation(s)
- Gary T Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Barry J Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Gemma K Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, Dublin, Ireland.
| |
Collapse
|
10
|
Afzaal M, Saeed F, Hussain M, Shahid F, Siddeeg A, Al‐Farga A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci Nutr 2022; 10:2333-2346. [PMID: 35844910 PMCID: PMC9281926 DOI: 10.1002/fsn3.2842] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
Adulteration and mislabeling have become a very common global malpractice in food industry. Especially foods of animal origin are prepared from plant sources and intentionally mislabeled. This type of mislabeling is an important concern in food safety as the replaced ingredients may cause a food allergy or toxicity to vulnerable consumers. Moreover, foodborne pathogens also pose a major threat to food safety. There is a dire need to develop strong analytical tools to deal with related issues. In this context, proteomics stands out as a promising tool used to report the aforementioned issues. The development in the field of omics has inimitable advantages in enabling the understanding of various biological fields especially in the discipline of food science. In this review, current applications and the role of proteomics in food authenticity, safety, and quality and food traceability are highlighted comprehensively. Additionally, the other components of proteomics have also been comprehensively described. Furthermore, this review will be helpful in the provision of new intuition into the use of proteomics in food analysis. Moreover, the pathogens in food can also be identified based on differences in their protein profiling. Conclusively, proteomics, an indicator of food properties, its origin, the processes applied to food, and its composition are also the limelight of this article.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farheen Shahid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| |
Collapse
|
11
|
Brinkmann S, Semmler S, Kersten C, Patras MA, Kurz M, Fuchs N, Hammerschmidt SJ, Legac J, Hammann PE, Vilcinskas A, Rosenthal PJ, Schirmeister T, Bauer A, Schäberle TF. Identification, Characterization, and Synthesis of Natural Parasitic Cysteine Protease Inhibitors: Pentacitidins Are More Potent Falcitidin Analogues. ACS Chem Biol 2022; 17:576-589. [PMID: 35262340 DOI: 10.1021/acschembio.1c00861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protease inhibitors represent a promising therapeutic option for the treatment of parasitic diseases such as malaria and human African trypanosomiasis. Falcitidin was the first member of a new class of inhibitors of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Using a metabolomics dataset of 25 Chitinophaga strains for molecular networking enabled identification of over 30 natural analogues of falcitidin. Based on MS/MS spectra, they vary in their amino acid chain length, sequence, acyl residue, and C-terminal functionalization; therefore, they were grouped into the four falcitidin peptide families A-D. The isolation, characterization, and absolute structure elucidation of two falcitidin-related pentapeptide aldehyde analogues by extensive MS/MS spectrometry and NMR spectroscopy in combination with advanced Marfey's analysis was in agreement with the in silico analysis of the corresponding biosynthetic gene cluster. Total synthesis of chosen pentapeptide analogues followed by in vitro testing against a panel of proteases revealed selective parasitic cysteine protease inhibition and, additionally, low-micromolar inhibition of α-chymotrypsin. The pentapeptides investigated here showed superior inhibitory activity compared to falcitidin.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Sandra Semmler
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
| | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, R&D, Frankfurt am Main 65926, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Stefan J. Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | | | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen 35392, Germany
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California 94143, United States
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Frankfurt am Main 65926, Germany
| | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen 35392, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen 35392, Germany
| |
Collapse
|
12
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
13
|
Kaminska M, Bruyat P, Malgorn C, Doladilhe M, Cassar‐Lajeunesse E, Fruchart Gaillard C, De Souza M, Beau F, Thai R, Correia I, Galat A, Georgiadis D, Lequin O, Dive V, Bregant S, Devel L. Ligand‐Directed Modification of Active Matrix Metalloproteases: Activity‐based Probes with no Photolabile Group. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Monika Kaminska
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Pierrick Bruyat
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Carole Malgorn
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Marion Doladilhe
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Evelyne Cassar‐Lajeunesse
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Mélissa De Souza
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Fabrice Beau
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Robert Thai
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Isabelle Correia
- CNRS, Laboratoire des Biomolécules, LBM Sorbonne Université Ecole Normale Supérieure PSL University 75005 Paris France
| | - Andrzej Galat
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Dimitris Georgiadis
- Department of Chemistry Laboratory of Organic Chemistry University of Athens Panepistimiopolis Zografou 15771 Athens Greece
| | - Olivier Lequin
- CNRS, Laboratoire des Biomolécules, LBM Sorbonne Université Ecole Normale Supérieure PSL University 75005 Paris France
| | - Vincent Dive
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Sarah Bregant
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| | - Laurent Devel
- Université Paris-Saclay CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS 91191 Gif-sur-Yvette France
| |
Collapse
|
14
|
Kahler JP, Verhelst SHL. Phosphinate esters as novel warheads for activity-based probes targeting serine proteases. RSC Chem Biol 2021; 2:1285-1290. [PMID: 34458842 PMCID: PMC8341442 DOI: 10.1039/d1cb00117e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for serine proteases, specifically neutrophil serine proteases. The probes contain a phenylphosphinate warhead that mimics the P1 amino acid recognized by the primary recognition pocket of S1 family serine proteases. The warhead is easily synthesized from commercial starting materials and leads to potent probes which can be used for fluorescent in-gel protease detection and fluorescent microscopy imaging experiments.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven Herestraat 49 Box 802 3000 Leuven Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven Herestraat 49 Box 802 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS Otto-Hahn-Strasse 6b 44227 Dortmund Germany
| |
Collapse
|
15
|
Kaminska M, Bruyat P, Malgorn C, Doladilhe M, Cassar-Lajeunesse E, Fruchart Gaillard C, De Souza M, Beau F, Thai R, Correia I, Galat A, Georgiadis D, Lequin O, Dive V, Bregant S, Devel L. Ligand-Directed Modification of Active Matrix Metalloproteases: Activity-based Probes with no Photolabile Group. Angew Chem Int Ed Engl 2021; 60:18272-18279. [PMID: 34096148 DOI: 10.1002/anie.202106117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger. The ability of these probes to label recombinant MMPs was validated in vitro and the identity of the main labelling sites within their S3 ' region unambiguously assigned. We also demonstrated that our affinity probes can react with rhMMP12 at nanogram scale (that is, at 0.07 % (w/w)) in complex proteomes. Finally, this ligand-directed chemistry was successfully applied to label active MMP-12 secreted by eukaryote cells. We believe that this approach could be transferred more widely to many other metalloproteases, thus contributing to tackle their unresolved proteomic profiling in vivo.
Collapse
Affiliation(s)
- Monika Kaminska
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Pierrick Bruyat
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Marion Doladilhe
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Evelyne Cassar-Lajeunesse
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Mélissa De Souza
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Isabelle Correia
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005, Paris, France
| | - Andrzej Galat
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Olivier Lequin
- CNRS, Laboratoire des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, 75005, Paris, France
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Sante (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Wodtke R, Wodtke J, Hauser S, Laube M, Bauer D, Rothe R, Neuber C, Pietsch M, Kopka K, Pietzsch J, Löser R. Development of an 18F-Labeled Irreversible Inhibitor of Transglutaminase 2 as Radiometric Tool for Quantitative Expression Profiling in Cells and Tissues. J Med Chem 2021; 64:3462-3478. [PMID: 33705656 DOI: 10.1021/acs.jmedchem.1c00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transamidase activity of transglutaminase 2 (TGase 2) is considered to be important for several pathophysiological processes including fibrotic and neoplastic tissue growth, whereas in healthy cells this enzymatic function is predominantly latent. Methods that enable the highly sensitive detection of TGase 2, such as application of radiolabeled activity-based probes, will support the exploration of the enzyme's function in various diseases. In this context, the radiosynthesis and detailed in vitro radiopharmacological evaluation of an 18F-labeled Nε-acryloyllysine piperazide are reported. Robust and facile detection of the radiotracer-TGase 2 complex by autoradiography of thin layer plates and polyacrylamide gels after chromatographic and electrophoretic separation owing to irreversible covalent bond formation was demonstrated for the isolated protein, cell lysates, and living cells. By use of this radiotracer, quantitative data on the expression profile of activatable TGase 2 in mouse organs and selected tumors were obtained for the first time by autoradiography of tissue sections.
Collapse
Affiliation(s)
- Robert Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johanna Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sandra Hauser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Laube
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Rebecca Rothe
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Christin Neuber
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Markus Pietsch
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Klaus Kopka
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany.,Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
17
|
Yang J, Mendowicz RJ, Verhelst SHL. Tagged Benzoxazin-4-Ones as Novel Activity-Based Probes for Serine Proteases. Chembiochem 2021; 22:1578-1581. [PMID: 33438794 DOI: 10.1002/cbic.202000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Activity-based probes (ABPs) are valuable chemical tools for profiling enzymes. They have been particularly useful in the study of proteases. ABPs rely on electrophilic scaffolds that covalently modify the target enzymes. Ideally, they can be made in a fast and uncomplicated manner. Here, we explore alkyne-substituted benzoxazin-4-ones as ABPs for serine proteases, because they inhibitserine proteases covalently and their synthesis is very straightforward. We show that alkyne-tagged benzoxazin-4-ones can be used in two-step bioorthogonal tandem labeling procedures or pre-functionalized with a biotin or fluorophore. We demonstrate that these reagents can be used to label and identify various serine proteases. Therefore, we expect that tagged benzoxazin-4-ones will offer easily synthesizable tools for profiling of serine proteases.
Collapse
Affiliation(s)
- Jian Yang
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Rafal J Mendowicz
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| |
Collapse
|
18
|
Zhang X, Shuai Y, Tao H, Li C, He L. Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and Its Applications. ACS OMEGA 2021; 6:3675-3680. [PMID: 33585747 PMCID: PMC7876679 DOI: 10.1021/acsomega.0c05192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
No simple methods are used for the quantitative analysis of the protease activity in colored food up till now. Thus, this study aims to establish a new and simple method for the quantitative detection of protease activity, especially in colored food. The detection accuracy, detection limit, and repeatability of the casein plate method were analyzed. Then, the application of the casein plate method in sample detection and recovery was further evaluated. The results showed that the casein plate method for the quantitative detection of protease activity has high accuracy, high precision, and low detection limit. The recoveries of eight kinds of colored samples were in the range of 92.26-97.84%, and the relative standard deviation (RSD) was in the range of 3.56-10.88%. The results of the casein plate method exhibited high accuracy. This indicated that the method was suitable for the detection of colored samples. The casein plate method for the quantitative detection of protease activity is simple. The newly constructed casein plate method has broad potential application value in food industry, especially for the detection of dark food.
Collapse
Affiliation(s)
- Xin Zhang
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
| | - Yao Shuai
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Han Tao
- College
of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, Guiyang 550005, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Cuiqin Li
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- School
of Chemistry and Chemical Engineering, Guizhou
University, Guiyang 550025, P. R. China
| | - Laping He
- Key
Laboratory of Agricultural and Animal Products Store & Processing
of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
- College
of Liquor and Food Engineering, Guizhou
University, Guiyang 550025, P. R. China
| |
Collapse
|
19
|
Dubovetskyi A, Cherukuri KP, Ashani Y, Meshcheriakova A, Reuveny E, Ben-Nissan G, Sharon M, Fumagalli L, Tawfik DS. Quinone Methide-Based Organophosphate Hydrolases Inhibitors: Trans Proximity Labelers versus Cis Labeling Activity-Based Probes. Chembiochem 2020; 22:894-903. [PMID: 33105515 DOI: 10.1002/cbic.202000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Indexed: 11/05/2022]
Abstract
Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzyme-mediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QM-based inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QM-based inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolate-to-QM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cis-acting QM-based substrates could be used as activity-based probes to identify various phospho- and phosphono-ester hydrolases, and potentially other hydrolases.
Collapse
Affiliation(s)
- Artem Dubovetskyi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | | | - Yacov Ashani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Anna Meshcheriakova
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di, via Mangiagalli 25, 20133, Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76 100, Israel
| |
Collapse
|
20
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
21
|
van de Plassche MAT, Barniol-Xicota M, Verhelst SHL. Peptidyl Acyloxymethyl Ketones as Activity-Based Probes for the Main Protease of SARS-CoV-2*. Chembiochem 2020; 21:3383-3388. [PMID: 32717117 DOI: 10.1002/cbic.202000371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic caused by SARS-CoV-2 calls for the fast development of antiviral drugs against this particular coronavirus. Chemical tools to facilitate inhibitor discovery as well as detection of target engagement by hit or lead compounds from high-throughput screens are therefore in urgent need. We here report novel, selective activity-based probes that enable detection of the SARS-CoV-2 main protease. The probes are based on acyloxymethyl ketone reactive electrophiles combined with a peptide sequence including unnatural amino acids that targets the nonprimed site of the main protease substrate binding cleft. They are the first activity-based probes for the main protease of coronaviruses and display target labeling within a human proteome without background. We expect that these reagents will be useful in the drug-development pipeline, not only for the current SARS-CoV-2, but also for other coronaviruses.
Collapse
Affiliation(s)
- Merel A T van de Plassche
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Marta Barniol-Xicota
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
22
|
Breidenbach J, Bartz U, Gütschow M. Coumarin as a structural component of substrates and probes for serine and cysteine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140445. [PMID: 32405284 PMCID: PMC7219385 DOI: 10.1016/j.bbapap.2020.140445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. As components of fluorophore/quencher pairs or FRET donor/acceptor pairs, coumarins have frequently been applied in substrate mapping approaches for serine and cysteine proteases. This review also focuses on the incorporation of coumarins into the side chain of amino acids and the exploitation of the resulting fluorescent amino acids for the positional profiling of protease substrates. The protease-inhibiting properties of certain coumarin derivatives and the utilization of coumarin moieties to assemble activity-based probes for serine and cysteine proteases are discussed as well. Coumarins represent well-established structures to introduce fluorescence into tool compounds for biochemical investigations. They are valued for their small size, chemical stability and accessibility as well as their tunable photochemical properties. Coumarins are components of fluorophore/quencher pairs or FRET donor/acceptor pairs in substrate mapping of proteases. Coumarins have been incorporated into amino acids side chains to be used for the positional profiling of protease substrates. Coumarins have protease-inhibiting properties and are used for activity-based probes for serine and cysteine proteases.
Collapse
Affiliation(s)
- Julian Breidenbach
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
23
|
Kytidou K, Artola M, Overkleeft HS, Aerts JMFG. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. FRONTIERS IN PLANT SCIENCE 2020; 11:357. [PMID: 32318081 PMCID: PMC7154165 DOI: 10.3389/fpls.2020.00357] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
Plants contain numerous glycoconjugates that are metabolized by specific glucosyltransferases and hydrolyzed by specific glycosidases, some also catalyzing synthetic transglycosylation reactions. The documented value of plant-derived glycoconjugates to beneficially modulate metabolism is first addressed. Next, focus is given to glycosidases, the central theme of the review. The therapeutic value of plant glycosidases is discussed as well as the present production in plant platforms of therapeutic human glycosidases used in enzyme replacement therapies. The increasing knowledge on glycosidases, including structure and catalytic mechanism, is described. The novel insights have allowed the design of functionalized highly specific suicide inhibitors of glycosidases. These so-called activity-based probes allow unprecedented visualization of glycosidases cross-species. Here, special attention is paid on the use of such probes in plant science that promote the discovery of novel enzymes and the identification of potential therapeutic inhibitors and chaperones.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
24
|
Koenders SA, Wijaya LS, Erkelens MN, Bakker AT, van der Noord VE, van Rooden EJ, Burggraaff L, Putter PC, Botter E, Wals K, van den Elst H, den Dulk H, Florea BI, van de Water B, van Westen GJP, Mebius RE, Overkleeft HS, Le Dévédec SE, van der Stelt M. Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS CENTRAL SCIENCE 2019; 5:1965-1974. [PMID: 31893226 PMCID: PMC6936097 DOI: 10.1021/acscentsci.9b01022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/13/2023]
Abstract
Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.
Collapse
Affiliation(s)
- Sebastiaan
T. A. Koenders
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Lukas S. Wijaya
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Martje N. Erkelens
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Vera E. van der Noord
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Lindsey Burggraaff
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Pasquale C. Putter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Else Botter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Kim Wals
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Hans van den Elst
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bob van de Water
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gerard J. P. van Westen
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Reina E. Mebius
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sylvia E. Le Dévédec
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
- E-mail:
| |
Collapse
|
25
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
26
|
Muytjens CMJ, Yu Y, Diamandis EP. Functional proteomic profiling reveals KLK13 and TMPRSS11D as active proteases in the lower female reproductive tract. F1000Res 2019; 7:1666. [PMID: 30647911 PMCID: PMC6329257 DOI: 10.12688/f1000research.16255.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Cervical-vaginal fluid (CVF) hydrates the mucosa of the lower female reproductive tract and is known to contain numerous proteases. The low pH of CVF (4.5 or below in healthy women of reproductive age) is a uniquely human attribute and poses a challenge for the proteolytic functioning of the proteases identified in this complex biological fluid. Despite the abundance of certain proteases in CVF, the proteolytic activity and function of proteases in CVF is not well characterized. Methods: In the present study, we employed fluorogenic substrate screening to investigate the influence of pH and inhibitory compounds on the proteolytic activity in CVF. Activity-based probe (ABP) proteomics has evolved as a powerful tool to investigate active proteases within complex proteomes and a trypsin-specific ABP was used to identify active proteases in CVF. Results: Serine proteases are among the most abundant proteins in the CVF proteome. Labeling human CVF samples with the trypsin-specific ABP revealed serine proteases transmembrane protein serine 11D and kallikrein-related peptidase 13 as active proteases in CVF. Furthermore, we demonstrated that the proteolytic activity in CVF is highly pH-dependent with an almost absolute inhibition of trypsin-like proteolytic activity at physiological pH levels. Conclusions: These findings provide a framework to understand proteolytic activity in CVF. Furthermore, the present results provide clues for a novel regulatory mechanism in which fluctuations in CVF pH have the potential to control the catalytic activity in the lower female reproductive tract.
Collapse
Affiliation(s)
- Carla M J Muytjens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada
| | - Yijing Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Canada, Toronto, Canada
| |
Collapse
|
27
|
Van Kersavond T, Konopatzki R, Chakrabarty S, Blank-Landeshammer B, Sickmann A, Verhelst SHL. Short Peptides with Uncleavable Peptide Bond Mimetics as Photoactivatable Caspase-3 Inhibitors. Molecules 2019; 24:E206. [PMID: 30626051 PMCID: PMC6337261 DOI: 10.3390/molecules24010206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
Chemical probes that covalently interact with proteases have found increasing use for the study of protease function and localization. The design and synthesis of such probes is still a bottleneck, as the strategies to target different families are highly diverse. We set out to design and synthesize chemical probes based on protease substrate specificity with inclusion of an uncleavable peptide bond mimic and a photocrosslinker for covalent modification of the protease target. With caspase-3 as a model target protease, we designed reduced amide and triazolo peptides as substrate mimetics, whose sequences can be conveniently constructed by modified solid phase peptide synthesis. We found that these probes inhibited the caspase-3 activity, but did not form a covalent bond. It turned out that the reduced amide mimics, upon irradiation with a benzophenone as photosensitizer, are oxidized and form low concentrations of peptide aldehydes, which then act as inhibitors of caspase-3. This type of photoactivation may be utilized in future photopharmacology experiments to form protease inhibitors at a precise time and location.
Collapse
Affiliation(s)
- Tim Van Kersavond
- Leibniz-Institut für Analytische Wissenschaften ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| | - Raphael Konopatzki
- Leibniz-Institut für Analytische Wissenschaften ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| | - Suravi Chakrabarty
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven-University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium.
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven-University of Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem 2018; 10:2729-2744. [PMID: 30518266 DOI: 10.4155/fmc-2018-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enzymes play critical roles in the physiological and pathological processes of living systems. To provide detailed pictures of enzyme activity at the molecular and cellular levels, interdisciplinary studies of chemistry and biology have led to the emergence of many smart fluorescent probes, which emit fluorescence or show a shifted signal only upon interaction with their targets. With distinct advantage of a higher signal-to-noise ratio than traditional ‘always on’ probes, smart fluorescent probes enable sensitive detection of enzymes with clinical significance. In this review, we summarize the design strategies and selected applications of smart fluorescent probes for in situ imaging of enzyme activity. Current challenges and future developments in this field are also discussed.
Collapse
|
29
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Dubiella C, Cui H, Groll M. Tunable Probes with Direct Fluorescence Signals for the Constitutive and Immunoproteasome. Angew Chem Int Ed Engl 2018; 55:13330-13334. [PMID: 27709817 DOI: 10.1002/anie.201605753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/20/2016] [Indexed: 01/24/2023]
Abstract
Electrophiles are commonly used for the inhibition of proteases. Notably, inhibitors of the proteasome, a central determinant of cellular survival and a target of several FDA-approved drugs, are mainly characterized by the reactivity of their electrophilic head groups. We aimed to tune the inhibitory strength of peptidic sulfonate esters by varying the leaving groups. Indeed, proteasome inhibition correlated well with the pKa of the leaving group. The use of fluorophores as leaving groups enabled us to design probes that release a stoichiometric fluorescence signal upon reaction, thereby directly linking proteasome inactivation to the readout. This principle could be applicable to other sulfonyl fluoride based inhibitors and allows the design of sensitive probes for enzymatic studies.
Collapse
Affiliation(s)
- Christian Dubiella
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Haissi Cui
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
31
|
Abstract
The detection, visualization, and identification of active proteases can be facilitated by activity-based probes, which covalently bind to a catalytic residue of the target protease. The synthesis of activity-based probes can be challenging. We here outline a simple protocol for probe synthesis based on standard solid phase peptide synthesis followed by capping of the N-terminus with a reactive electrophile as a warhead. The applicability of the probes is illustrated by labeling cysteine proteases in cell and tissue lysates with Western blotting or fluorescence scanning as a readout.
Collapse
|
32
|
Abstract
All cells contain proteases which hydrolyze the peptide bonds between amino acids in a protein backbone. Typically, proteases are prevented from nonspecific proteolysis by regulation and by their physical separation into different subcellular compartments; however, this segregation is not retained during cell lysis, which is the initial step in any protein isolation procedure. Prevention of proteolysis during protein purification often takes the form of a two-pronged approach; firstly inhibition of proteolysis in situ, followed by the early separation of the protease from the protein of interest via chromatographical purification. Protease inhibitors are routinely used to limit the effect of the proteases before they are physically separated from the protein of interest via column chromatography. Here, commonly used approaches to reducing or avoiding proteolysis during protein purification and subsequent chromatography are reviewed.
Collapse
|
33
|
Abstract
Activity-based probes (ABPs) are reactive small molecules that covalently bind to active enzymes. When tagged with a fluorophore, ABPs serve as powerful tools to investigate enzymatic activity across a wide variety of applications. In this chapter, we provide detailed methods for using fluorescent ABPs to detect the activity of caspases during the onset of apoptosis in vitro. We describe how these probes can be used to biochemically profile caspase activity in vitro using fluorescent SDS-PAGE as well as their application to imaging protease activity in live animals and tissues.
Collapse
|
34
|
Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol 2017; 24:1523-1536.e4. [PMID: 29107700 PMCID: PMC5746060 DOI: 10.1016/j.chembiol.2017.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery. N-substituted peptidyl α-ketoamides are nanomolar inhibitors of rhomboid proteases Peptidyl ketoamides inhibit rhomboids covalently, reversibly, and non-competitively The peptide and ketoamide substituent independently modulate potency and selectivity Peptidyl ketoamides are selective for rhomboids, sparing most human serine proteases
Collapse
Affiliation(s)
- Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kutti R Vinothkumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| | - Kateřina Švehlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Minh T N Nguyen
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven H L Verhelst
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany; KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
35
|
Edgington-Mitchell LE, Barlow N, Aurelio L, Samha A, Szabo M, Graham B, Bunnett N. Fluorescent diphenylphosphonate-based probes for detection of serine protease activity during inflammation. Bioorg Med Chem Lett 2017; 27:254-260. [PMID: 27923620 PMCID: PMC10069441 DOI: 10.1016/j.bmcl.2016.11.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation.
Collapse
Affiliation(s)
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Aminath Samha
- Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Monika Szabo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Nigel Bunnett
- Drug Discovery Biology, Monash University, Parkville, VIC, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Live Cell Imaging and Profiling of Cysteine Cathepsin Activity Using a Quenched Activity-Based Probe. Methods Mol Biol 2017; 1491:145-159. [PMID: 27778287 DOI: 10.1007/978-1-4939-6439-0_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since protease activity is highly regulated by structural and environmental influences, the abundance of a protease often does not directly correlate with its activity. Because in most of the cases it is the activity of a protease that gives rise to its biological relevance, tools to report on this activity are of great value to the research community. Activity-based probes (ABPs) are small molecule tools that allow for the monitoring and profiling of protease activities in complex biological systems. The class of fluorescent quenched ABPs (qABPs), being intrinsically "dark" and only emitting fluorescence after reaction with the target protease, are ideally suited for imaging techniques such as small animal noninvasive fluorescence imaging and live cell fluorescence microscopy. An additional powerful characteristic of qABPs is their covalent and irreversible modification of the labeled protease, enabling in-depth target characterization. Here we describe the synthesis of a pan-cysteine cathepsin qABP BMV109 and the application of this probe to live cell fluorescence imaging and fluorescent SDS-PAGE cysteine cathepsin activity profiling.
Collapse
|
37
|
Dubiella C, Cui H, Groll M. Regulierbare Sonden mit direktem Fluoreszenzsignal für das konstitutive und das Immunoproteasom. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Dubiella
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Haissi Cui
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM); Fakultät für Chemie; Technische Universität München; Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
38
|
Twelve ways to confirm targets of activity-based probes in plants. Bioorg Med Chem 2016; 24:3304-11. [DOI: 10.1016/j.bmc.2016.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
|
39
|
Review on proteomics for food authentication. J Proteomics 2016; 147:212-225. [PMID: 27389853 DOI: 10.1016/j.jprot.2016.06.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Consumers have the right to know what is in the food they are eating. Accordingly, European and global food regulations require that the provenance of the food can be guaranteed from farm to fork. Many different instrumental techniques have been proposed for food authentication. Although traditional methods are still being used, new approaches such as genomics, proteomics, and metabolomics are helping to complement existing methodologies for verifying the claims made about certain food products. During the last decade, proteomics (the large-scale analysis of proteins in a particular biological system at a particular time) has been applied to different research areas within food technology. Since proteins can be used as markers for many properties of a food, even indicating processes to which the food has been subjected, they can provide further evidence of the foods labeling claim. This review is a comprehensive and updated overview of the applications, drawbacks, advantages, and challenges of proteomics for food authentication in the assessment of the foods compliance with labeling regulations and policies. SIGNIFICANCE This review paper provides a comprehensive and critical overview of the application of proteomics approaches to determine the authenticity of several food products updating the performances and current limitations of the applied techniques in both laboratory and industrial environments.
Collapse
|
40
|
Stiti N, Chandrasekar B, Strubl L, Mohammed S, Bartels D, van der Hoorn RAL. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases. ACS Chem Biol 2016; 11:1578-86. [PMID: 26990764 DOI: 10.1021/acschembio.5b00784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.
Collapse
Affiliation(s)
- Naim Stiti
- Institute
of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Balakumaran Chandrasekar
- Plant
Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1
3RB, Oxford, United Kingdom
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Laura Strubl
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shabaz Mohammed
- Department
of Biochemistry, University of Oxford, OX1 3QU, Oxford, United Kingdom
| | - Dorothea Bartels
- Institute
of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Renier A. L. van der Hoorn
- Plant
Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1
3RB, Oxford, United Kingdom
- Plant
Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
41
|
Rücker H, Al-Rifai N, Rascle A, Gottfried E, Brodziak-Jarosz L, Gerhäuser C, Dick TP, Amslinger S. Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Org Biomol Chem 2016; 13:3040-7. [PMID: 25622264 DOI: 10.1039/c4ob02301c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory signaling pathways orchestrate the cellular response to infection and injury. These pathways are known to be modulated by compounds that alkylate cysteinyl thiols. One class of phytochemicals with strong thiol alkylating activity is the chalcones. In this study we tested fourteen chalcone derivatives, α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH), for their ability to modulate inflammatory responses, as monitored by their influence on heme oxygenase-1 (HO-1) activity, inducible nitric oxide synthase (iNOS) activity, and cytokine expression levels. We confirmed that the transcriptional activity of Nrf2 was activated by α-X-TMCs while for NF-κB it was inhibited. For most α-X-TMCs, anti-inflammatory activity was positively correlated with thiol alkylating activity, i.e. stronger electrophiles (X = CF3, Br and Cl) being more potent. Notably, this correlation did not hold true for the strongest electrophiles (X = CN and NO2) which were found to be ineffective as anti-inflammatory compounds. These results emphasize the idea that chemical fine-tuning of electrophilicity is needed to achieve and optimize desired therapeutic effects.
Collapse
Affiliation(s)
- Hannelore Rücker
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee H, Kim YP. Fluorescent and Bioluminescent Nanoprobes for In Vitro and In Vivo Detection of Matrix Metalloproteinase Activity. BMB Rep 2016; 48:313-8. [PMID: 25817215 PMCID: PMC4578616 DOI: 10.5483/bmbrep.2015.48.6.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318]
Collapse
Affiliation(s)
- Hawon Lee
- Department of Life Scienc; Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133-791, Korea
| | - Young-Pil Kim
- Department of Life Scienc; Research Institute for Natural Sciences and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
43
|
Phosphorylation regulates proteolytic efficiency of TEV protease detected by a 5(6)-carboxyfluorescein-pyrene based fluorescent sensor. Talanta 2016; 150:340-5. [DOI: 10.1016/j.talanta.2015.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
|
44
|
|
45
|
Morimoto K, van der Hoorn RAL. The Increasing Impact of Activity-Based Protein Profiling in Plant Science. PLANT & CELL PHYSIOLOGY 2016; 57:446-61. [PMID: 26872839 DOI: 10.1093/pcp/pcw003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
46
|
Nguyen MTN, Kersavond TV, Verhelst SHL. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem Biol 2015; 10:2423-34. [PMID: 26473325 DOI: 10.1021/acschembio.5b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.
Collapse
Affiliation(s)
- Minh T. N. Nguyen
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Tim Van Kersavond
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
- KU Leuven − University of Leuven, Department
of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 Box 802, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
48
|
Wolf EV, Zeissler A, Verhelst SHL. Inhibitor Fingerprinting of Rhomboid Proteases by Activity-Based Protein Profiling Reveals Inhibitor Selectivity and Rhomboid Autoprocessing. ACS Chem Biol 2015. [PMID: 26218717 DOI: 10.1021/acschembio.5b00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhomboid proteases were discovered almost 15 years ago and are structurally the best characterized intramembrane proteases. Apart from the general serine protease inhibitor 3,4-dichloro-isocoumarin (DCI) and a few crystal structures of the Escherichia coli rhomboid GlpG with other inhibitors, there is surprisingly little information about inhibitors of rhomboids from other species, probably because of a lack of general methods to measure inhibition against different rhomboid species. We here present activity-based protein profiling (ABPP) as a general method to screen rhomboids for their activity and inhibition. Using ABPP, we compare the inhibitory capacity of 50 small molecules against 13 different rhomboids. We find one new pan rhomboid inhibitor and several inhibitors that display selectivity. We also demonstrate that inhibition profile and sequence similarity of rhomboids are not related, which suggests that related rhomboids may be selectively inhibited. Finally, by making use of the here discovered inhibitors, we were able to show that two bacterial rhomboids autoprocess themselves in their N-terminal part.
Collapse
Affiliation(s)
- Eliane V. Wolf
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Annett Zeissler
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Steven H. L. Verhelst
- Chair
for Chemistry of Biopolymers, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
- Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
49
|
Liu Y, Fredrickson JK, Sadler NC, Nandhikonda P, Smith RD, Wright AT. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:156. [PMID: 26413155 PMCID: PMC4582708 DOI: 10.1186/s13068-015-0343-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/16/2015] [Indexed: 06/02/2023]
Abstract
The development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.
Collapse
Affiliation(s)
- Yun Liu
- />Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 100029 Beijing, China
| | - James K. Fredrickson
- />Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, MSIN J4-02, Box 999, Richland, WA 99352 USA
| | - Natalie C. Sadler
- />Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, MSIN J4-02, Box 999, Richland, WA 99352 USA
| | - Premchendar Nandhikonda
- />Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, MSIN J4-02, Box 999, Richland, WA 99352 USA
| | - Richard D. Smith
- />Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, MSIN J4-02, Box 999, Richland, WA 99352 USA
| | - Aaron T. Wright
- />Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, MSIN J4-02, Box 999, Richland, WA 99352 USA
| |
Collapse
|
50
|
Ji K, Heyza J, Cavallo-Medved D, Sloane BF. Pathomimetic cancer avatars for live-cell imaging of protease activity. Biochimie 2015; 122:68-76. [PMID: 26375517 DOI: 10.1016/j.biochi.2015.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment.
Collapse
Affiliation(s)
- Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Joshua Heyza
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biological Sciences, University of Windsor, Windsor, Canada.
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biological Sciences, University of Windsor, Windsor, Canada.
| |
Collapse
|