1
|
Chen Y, Liu H, Wang J, Wang K, Zhang Z, He B, Ye Y. Design, Synthesis, and Antifungal Evaluation of Diverse Heterocyclic Hydrazide Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12915-12924. [PMID: 38807027 DOI: 10.1021/acs.jafc.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 μg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 μg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 μg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 μM, respectively, which were superior to that of boscalid (IC50 = 2.38 μM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.
Collapse
Affiliation(s)
- Yiliang Chen
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, People's Republic of China
| | - Hao Liu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahao Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kaiyan Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenhua Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Bo He
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yonghao Ye
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
2
|
de Giacometi M, Mayer JCP, de Mello AB, Islabão YW, Strothmann AL, da Fonseca RN, Sena-Lopes Â, Dornelles L, Borsuk S, Hübner SDO, Oliveira CB. Activity of compounds derived from benzofuroxan in Trichomonasvaginalis. Exp Parasitol 2023; 253:108601. [PMID: 37625643 DOI: 10.1016/j.exppara.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Trichomoniasis is a sexually transmitted infection caused by the protozoan Trichomonas vaginalis. Currently, trichomoniasis is treated with the class of nitroimidazoles, namely, metronidazole; however, resistant isolates and strains have been reported. The compounds derived from benzofuroxan are biologically active heterocycles. This study evaluated the in vitro antiparasitic activity of these compounds in trophozoites of T. vaginalis and determined the mean inhibitory concentration (IC50), minimum inhibitory concentration (MIC), mortality curve, and cytotoxicity. The compounds were named EH1, EH2, EH3, and EA2 and tested in various concentrations: 100 to 15 μM (EH1 and EH2); 100 to 5 μM (EH3); and 100 to 25 μM (EA2), respectively. The greatest efficacy was observed in the highest concentrations in 24 h, with inhibition of approximately 100% of trophozoites. Compounds EH2 and EH3 had the lowest MIC: EH2 (35 μM) and EH3 (45 μM), with IC50 of 11.33 μM and 6.83 μM, respectively. Compound EA2 was effective at the highest concentrations. The activity of the compounds in T. vaginalis started in the first hour of incubation with 90% inhibition; after 12 h, inhibition >95% was observed. Compound EH1 showed the lowest activity, with the highest activity between 12 and 24 h after incubation. These results demonstrate that benzofuroxan derivatives are promising compounds for the in vitro treatment of T. vaginalis.
Collapse
Affiliation(s)
- Marjorie de Giacometi
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - João Cândido Pilar Mayer
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexia Brauner de Mello
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Yan Wahast Islabão
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Adriane Leites Strothmann
- Center for Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Ângela Sena-Lopes
- Center for Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Luciano Dornelles
- Department of Chemistry, LabSelen-NanoBio, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sibele Borsuk
- Center for Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - Camila Belmonte Oliveira
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Mo H, Zhang R, Chen Y, Li S, Wang Y, Zou W, Lin Q, Zhao DG, Du Y, Zhang K, Ma YY. Synthesis and anticancer activity of novel histone deacetylase inhibitors that inhibit autophagy and induce apoptosis. Eur J Med Chem 2022; 243:114705. [PMID: 36215854 DOI: 10.1016/j.ejmech.2022.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
|
4
|
Liu ML, Li WY, Fang HL, Ye YX, Li SY, Song WQ, Xiao ZP, Ouyang H, Zhu HL. Synthesis and Biological Evaluation of Dithiobisacetamides as Novel Urease Inhibitors. ChemMedChem 2021; 17:e202100618. [PMID: 34687265 DOI: 10.1002/cmdc.202100618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Thirty-eight disulfides containing N-arylacetamide were designed and synthesized in an effort to develop novel urease inhibitors. Biological evaluation revealed that some of the synthetic compounds exhibited strong inhibitory potency against both cell-free urease and urease in intact cell with low cytotoxicity to mammalian cells even at concentration up to 250 μM. Of note, 2,2'-dithiobis(N-(2-fluorophenyl)acetamide) (d7), 2,2'-dithiobis(N-(3,5-difluorophenyl)acetamide) (d24), and 2,2'-dithiobis(N-(3-fluorophenyl)acetamide) (d8) were here identified as the most active inhibitors with IC50 of 0.074, 0.44, and 0.81 μM, showing 32- to 355-fold higher potency than the positive control acetohydroxamic acid. These disulfides were confirmed to bind urease without covalent modification of the cysteine residue and to inhibit urease reversibly with a mixed inhibition mechanism. They also showed very good anti-Helicobacter pylori activities with d8 showing a comparable potency to the clinical used drug amoxicillin. The impressive in vitro biological profile indicated their immense potential as therapeutic agents to tackle H. pylori caused infections.
Collapse
Affiliation(s)
- Mei-Ling Liu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Wei-Yi Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Hai-Lian Fang
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Xianlin Road 163, Nanjing, China
| | - Su-Ya Li
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Wan-Qing Song
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Zhu-Ping Xiao
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Xianlin Road 163, Nanjing, China
| | - Hui Ouyang
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China
| | - Hai-Liang Zhu
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, National Demonstration Center for Experimental Chemistry Education, Jishou University, The South Section of Renmin Road 120, Jishou, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Xianlin Road 163, Nanjing, China
| |
Collapse
|
5
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Bala S, Yellamanda KV, Kadari A, Ravinuthala VSU, Kattula B, Singh OV, Gundla R, Addlagatta A. Selective inhibition of Helicobacter pylori methionine aminopeptidase by azaindole hydroxamic acid derivatives: Design, synthesis, in vitro biochemical and structural studies. Bioorg Chem 2021; 115:105185. [PMID: 34329997 DOI: 10.1016/j.bioorg.2021.105185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
Methionine aminopeptidases (MetAPs) are an important class of enzymes that work co-translationally for the removal of initiator methionine. Chemical inhibition or gene knockdown is lethal to the microbes suggesting that they can be used as antibiotic targets. However, sequence and structural similarity between the microbial and host MetAPs has been a challenge in the identification of selective inhibitors. In this study, we have analyzed several thousands of MetAP sequences and established a pattern of variation in the S1 pocket of the enzyme. Based on this knowledge, we have designed a library of 17 azaindole based hydroxamic acid derivatives which selectively inhibited the MetAP from H. pylori compared to the human counterpart. Structural studies provided the molecular basis for the selectivity.
Collapse
Affiliation(s)
- Sandeepchowdary Bala
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalisha Vali Yellamanda
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad 502 102, Telangana, India
| | - Anilkumar Kadari
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad 502 102, Telangana, India
| | - Venkata S U Ravinuthala
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
| | - Bhavita Kattula
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Om V Singh
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad 502 102, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad 502 102, Telangana, India.
| | - Anthony Addlagatta
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
7
|
Zhang R, Mo H, Ma YY, Zhao DG, Zhang K, Zhang T, Chen X, Zheng X. Synthesis and structure-activity relationships of 5-phenyloxazole-2-carboxylic acid derivatives as novel inhibitors of tubulin polymerization. Bioorg Med Chem Lett 2021; 40:127968. [PMID: 33753264 DOI: 10.1016/j.bmcl.2021.127968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
Abstract
A series of 5-phenyloxazole-2-carboxylic acid derivatives were synthesized, and their structure-activity relationships (SARs) were studied. N,5-diphenyloxazole-2-carboxamides 6, 7, and 9, which mimicked ABT751, showed improved cytotoxicity compared with ABT751. Compound 9 exhibited the highest antiproliferative activities against Hela A549, and HepG2 cancer cell lines, with IC50 values of 0.78, 1.08, and 1.27 μM, respectively. Furthermore, compound 9 showed selectivity for human cancer cells over normal cells, and this selectivity was greater than those of ABT751 and colchicine. Preliminary mechanism studies suggested that compound 9 inhibited tubulin polymerization and led to cell cycle arrest at G2/M phase. Molecular docking studies indicated that compound 9 bound to the colchicine binding site of tubulin. Our findings provided insights into useful SARs for further structural modification of inhibitors of tubulin polymerization.
Collapse
Affiliation(s)
- Ruiqiang Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Hualong Mo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Tingwen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xuecheng Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Mayer JCP, Acunha TV, Rodrigues OED, Back DF, Chaves OA, Dornelles L, Iglesias BA. Synthesis, spectroscopic characterization and DNA/HSA binding studies of (phenyl/naphthyl)ethenyl-substituted 1,3,4-oxadiazolyl-1,2,4-oxadiazoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj04530f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel 1,3,4-oxadiazolyl-1,2,4-oxadiazole derivatives with promising photophysical and DNA/HSA-binding properties are reported.
Collapse
Affiliation(s)
- João C. P. Mayer
- Departamento de Química
- LabSelen-NanoBio
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Thiago V. Acunha
- Departamento de Química
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Oscar E. D. Rodrigues
- Departamento de Química
- LabSelen-NanoBio
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos – Departamento de Química
- CCNE
- UFSM
- Santa Maria – RS
- Brazil
| | - Otávio A. Chaves
- Instituto SENAI de Inovação em Química Verde
- CEP 20271030, Rio de Janeiro
- Brazil
| | - Luciano Dornelles
- Departamento de Química
- LabSelen-NanoBio
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Bernardo A. Iglesias
- Departamento de Química
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| |
Collapse
|
9
|
Kwak SH, Cochrane CS, Ennis AF, Lim WY, Webster CG, Cho J, Fenton BA, Zhou P, Hong J. Synthesis and evaluation of sulfonyl piperazine LpxH inhibitors. Bioorg Chem 2020; 102:104055. [PMID: 32663666 DOI: 10.1016/j.bioorg.2020.104055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is essential in lipid A biosynthesis and has emerged as a promising target for the development of novel antibiotics against multidrug-resistant Gram-negative pathogens. Recently, we reported the crystal structure of Klebsiella pneumoniae LpxH in complex with 1 (AZ1), a sulfonyl piperazine LpxH inhibitor. The analysis of the LpxH-AZ1 co-crystal structure and ligand dynamics led to the design of 2 (JH-LPH-28) and 3 (JH-LPH-33) with enhanced LpxH inhibition. In order to harness our recent findings, we prepared and evaluated a series of sulfonyl piperazine analogs with modifications in the phenyl and N-acetyl groups of 3. Herein, we describe the synthesis and structure-activity relationship of sulfonyl piperazine LpxH inhibitors. We also report the structural analysis of an extended N-acyl chain analog 27b (JH-LPH-41) in complex with K. pneumoniae LpxH, revealing that 27b reaches an untapped polar pocket near the di-manganese cluster in the active site of K. pneumoniae LpxH. We expect that our findings will provide designing principles for new LpxH inhibitors and establish important frameworks for the future development of antibiotics against multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Seung-Hwa Kwak
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - C Skyler Cochrane
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Amanda F Ennis
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Caroline G Webster
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Jae Cho
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States
| | - Benjamin A Fenton
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States
| | - Pei Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, United States; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, United States.
| |
Collapse
|
10
|
Liu M, Liang Y, Zhu Z, Wang J, Cheng X, Cheng J, Xu B, Li R, Liu X, Wang Y. Discovery of Novel Aryl Carboxamide Derivatives as Hypoxia-Inducible Factor 1α Signaling Inhibitors with Potent Activities of Anticancer Metastasis. J Med Chem 2019; 62:9299-9314. [DOI: 10.1021/acs.jmedchem.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongzhen Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xingxing Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Binpeng Xu
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Segat GC, Moreira CG, Santos EC, Heller M, Schwanke RC, Aksenov AV, Aksenov NA, Aksenov DA, Kornienko A, Marcon R, Calixto JB. A new series of acetohydroxamates shows in vitro and in vivo anticancer activity against melanoma. Invest New Drugs 2019; 38:977-989. [DOI: 10.1007/s10637-019-00849-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
|
12
|
Synthesis, Structure Elucidation and Antimicrobial Properties of New Bis-1,3,4-Oxadiazole Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
14
|
Alam MA. Methods for Hydroxamic Acid Synthesis. CURR ORG CHEM 2019; 23:978-993. [PMID: 32565717 PMCID: PMC7304568 DOI: 10.2174/1385272823666190424142821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Substituted hydroxamic acid is one of the most extensively studied pharmacophores because of their ability to chelate biologically important metal ions to modulate various enzymes, such as HDACs, urease, metallopeptidase, and carbonic anhydrase. Syntheses and biological studies of various classes of hydroxamic acid derivatives have been reported in numerous research articles in recent years but this is the first review article dedicated to their synthetic methods and their application for the synthesis of these novel molecules. In this review article, commercially available reagents and preparation of hydroxylamine donating reagents have also been described.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
15
|
Yi W, Liu QY, Fang XX, Lou SC, Liu GQ. Preparation of oxazolines and oxazoles via a PhI(OAc) 2-promoted cyclization of N-propargylamides. Org Biomol Chem 2018; 16:7012-7018. [PMID: 30232498 DOI: 10.1039/c8ob01474d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A metal-free cyclization of N-propargylamides for the synthesis of various oxazolines and oxazoles via a 5-exo-dig process is presented. Using (diacetoxyiodo)benzene (PIDA) as a reaction promoter and lithium iodide (LiI) as an iodine source, intramolecular iodooxygenation of N-propargylamides proceeded readily, leading to the corresponding (E)-5-iodomethylene-2-oxazolines in good to excellent isolated yields. In addition, using the PhI(OAc)2/LiI system, N-propargylamides can be converted to the corresponding oxazole-5-carbaldehydes in the presence of oxygen under visible light irradiation. The resulting products can be further converted into various oxazoline and oxazole derivatives after simple derivatizations, and this method ultimately offers an efficient route to a variety of biologically active structures.
Collapse
Affiliation(s)
- Wei Yi
- College of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, People's Republic of China.
| | | | | | | | | |
Collapse
|
16
|
Helgren TR, Seven ES, Chen C, Edwards TE, Staker BL, Abendroth J, Myler PJ, Horn JR, Hagen TJ. The identification of inhibitory compounds of Rickettsia prowazekii methionine aminopeptidase for antibacterial applications. Bioorg Med Chem Lett 2018; 28:1376-1380. [PMID: 29551481 PMCID: PMC5908248 DOI: 10.1016/j.bmcl.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10 µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose-response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10 µM. Finally, compounds (1-5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Elif S Seven
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
17
|
Žalubovskis R, Winum JY. Inhibitors of Selected Bacterial Metalloenzymes. Curr Med Chem 2018; 26:2690-2714. [PMID: 29611472 DOI: 10.2174/0929867325666180403154018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
The utilization of bacterial metalloenzymes, especially ones not having mammalian (human) counterparts, has drawn attention to develop novel antibacterial agents to overcome drug resistance and especially multidrug resistance. In this review, we focus on the recent achievements on the development of inhibitors of bacterial enzymes peptide deformylase (PDF), metallo-β-lactamase (MBL), methionine aminopeptidase (MetAP) and UDP-3-O-acyl- N-acetylglucosamine deacetylase (LpxC). The state of the art of the design and investigation of inhibitors of bacterial metalloenzymes is presented, and challenges are outlined and discussed.
Collapse
Affiliation(s)
- Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia
| | - Jean-Yves Winum
- Institut des Biomolecules Max Mousseron, Universite de Montpellier, France
| |
Collapse
|
18
|
Gonda T, Bérdi P, Zupkó I, Fülöp F, Szakonyi Z. Stereoselective Synthesis, Synthetic and Pharmacological Application of Monoterpene-Based 1,2,4- and 1,3,4-Oxadiazoles. Int J Mol Sci 2017; 19:ijms19010081. [PMID: 29283373 PMCID: PMC5796031 DOI: 10.3390/ijms19010081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Stereoselective synthesis of monoterpene-based 1,2,4- and 1,3,4-oxadiazole derivatives was accomplished starting from α,β-unsaturated carboxylic acids, obtained by the oxidation of (−)-2-carene-3-aldehyde and commercially available (−)-myrtenal. 1,2,4-Oxadiazoles were prepared in two steps via the corresponding O-acylamidoxime intermediates, which then underwent cyclisation induced by tetrabutylammonium fluoride (TBAF) under mild reaction conditions. Stereoselective dihydroxylation in highly stereospecific reactions with the OsO4/NMO (N-methylmorpholine N-oxide) system produced α,β-dihydroxy 1,2,4-oxadiazoles. Pinane-based 1,3,4-oxadiazoles were obtained similarly from acids by coupling with acyl hydrazines followed by POCl3-mediated dehydrative ring closure. In the case of the arane counterpart, the rearrangement of the constrained carane system occurred with the loss of chirality under the same conditions. Stereoselective dihydroxylation with OsO4/NMO produced α,β-dihydroxy 1,3,4-oxadiazoles. The prepared diols were applied as chiral catalysts in the enantioselective addition of diethylzinc to aldehydes. All compounds were screened in vitro for their antiproliferative effects against four malignant human adherent cell lines by means of the MTT assay with the O-acylated amidoxime intermediates exerting remarkable antiproliferative action.
Collapse
Affiliation(s)
- Tímea Gonda
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
| | - Péter Bérdi
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
- Stereochemistry Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Eötvös utca 6, Hungary.
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Eötvös utca 6, Hungary.
| |
Collapse
|
19
|
Castaneda CA, Lopez JE, Joseph CG, Scholle MD, Mrksich M, Fierke CA. Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism. Biochemistry 2017; 56:5663-5670. [PMID: 28937750 DOI: 10.1021/acs.biochem.7b00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.
Collapse
Affiliation(s)
- Carol Ann Castaneda
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jeffrey E Lopez
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Caleb G Joseph
- Department of Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Michael D Scholle
- Department of Chemistry and Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Chemistry and Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Carol A Fierke
- Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.,Department of Chemistry and Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. PLoS One 2017; 12:e0183327. [PMID: 28837642 PMCID: PMC5570288 DOI: 10.1371/journal.pone.0183327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Chemically diverse fragments tend to collectively bind at localized sites on proteins, which is a cornerstone of fragment-based techniques. A central question is how general are these strategies for predicting a wide variety of molecular interactions such as small molecule-protein, protein-protein and protein-nucleic acid for both experimental and computational methods. To address this issue, we recently proposed three governing principles, (1) accurate prediction of fragment-macromolecule binding free energy, (2) accurate prediction of water-macromolecule binding free energy, and (3) locating sites on a macromolecule that have high affinity for a diversity of fragments and low affinity for water. To test the generality of these concepts we used the computational technique of Simulated Annealing of Chemical Potential to design one small fragment to break the RecA-RecA protein-protein interaction and three fragments that inhibit peptide-deformylase via water-mediated multi-body interactions. Experiments confirm the predictions that 6-hydroxydopamine potently inhibits RecA and that PDF inhibition quantitatively tracks the water-mediated binding predictions. Additionally, the principles correctly predict the essential bound waters in HIV Protease, the surprisingly extensive binding site of elastase, the pinpoint location of electron transfer in dihydrofolate reductase, the HIV TAT-TAR protein-RNA interactions, and the MDM2-MDM4 differential binding to p53. The experimental confirmations of highly non-obvious predictions combined with the precise characterization of a broad range of known phenomena lend strong support to the generality of fragment-based methods for characterizing molecular recognition.
Collapse
Affiliation(s)
- John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, Pennsylvania, United States of America
| | - Frank Guarnieri
- PAKA Pulmonary Pharmaceuticals, Acton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ferrocenylethenyl-substituted 1,3,4-oxadiazolyl-1,2,4-oxadiazoles: Synthesis, characterization and DNA-binding assays. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors. Eur J Med Chem 2017; 130:171-184. [DOI: 10.1016/j.ejmech.2017.02.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/06/2023]
|
23
|
Helgren TR, Chen C, Wangtrakuldee P, Edwards TE, Staker BL, Abendroth J, Sankaran B, Housley NA, Myler PJ, Audia JP, Horn JR, Hagen TJ. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem 2017; 25:813-824. [PMID: 28089350 PMCID: PMC5319851 DOI: 10.1016/j.bmc.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
Abstract
Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Phumvadee Wangtrakuldee
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicole A Housley
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - Peter J Myler
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Jonathon P Audia
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
24
|
A unique peptide deformylase platform to rationally design and challenge novel active compounds. Sci Rep 2016; 6:35429. [PMID: 27762275 PMCID: PMC5071857 DOI: 10.1038/srep35429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
Peptide deformylase (PDF) is considered an excellent target to develop antibiotics. We have performed an extensive characterization of a new PDF from the pathogen Streptococcus agalactiae, showing properties similar to other known PDFs. S. agalactiae PDF could be used as PDF prototype as it allowed to get complete sets of 3-dimensional, biophysical and kinetic data with virtually any inhibitor compound. Structure-activity relationship analysis with this single reference system allowed us to reveal distinct binding modes for different PDF inhibitors and the key role of a hydrogen bond in potentiating the interaction between ligand and target. We propose this protein as an irreplaceable tool, allowing easy and relevant fine comparisons between series, to design, challenge and validate novel series of inhibitors. As proof-of-concept, we report here the design and synthesis of effective specific bacterial PDF inhibitors of an oxadiazole series with potent antimicrobial activity against a multidrug resistant clinical isolate.
Collapse
|
25
|
Senger J, Melesina J, Marek M, Romier C, Oehme I, Witt O, Sippl W, Jung M. Synthesis and Biological Investigation of Oxazole Hydroxamates as Highly Selective Histone Deacetylase 6 (HDAC6) Inhibitors. J Med Chem 2015; 59:1545-55. [PMID: 26653328 DOI: 10.1021/acs.jmedchem.5b01493] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylase 6 (HDAC6) catalyzes the removal of an acetyl group from lysine residues of several non-histone proteins. Here we report the preparation of thiazole-, oxazole-, and oxadiazole-containing biarylhydroxamic acids by a short synthetic procedure. We identified them as selective HDAC6 inhibitors by investigating the inhibition of recombinant HDAC enzymes and the protein acetylation in cells by Western blotting (tubulin vs histone acetylation). The most active compounds exhibited nanomolar potency and high selectivity for HDAC6. For example, an oxazole hydroxamate inhibits HDAC6 with an IC50 of 59 nM and has a selectivity index of >200 against HDAC1 and HDAC8. This is the first report showing that the nature of a heterocycle directly connected to a zinc binding group (ZBG) can be used to modulate subtype selectivity and potency for HDAC6 inhibitors to such an extent. We rationalize the high potency and selectivity of the oxazoles by molecular modeling and docking.
Collapse
Affiliation(s)
- Johanna Senger
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg , Albertstraße 25, 79104 Freiburg, Germany
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Centre (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Centre (DKFZ) , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg , Albertstraße 25, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Xiang DF, Bigley AN, Ren Z, Xue H, Hull KG, Romo D, Raushel FM. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Biochemistry 2015; 54:7539-49. [DOI: 10.1021/acs.biochem.5b01144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew N. Bigley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhongjie Ren
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Haoran Xue
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kenneth G. Hull
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel Romo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
27
|
Marschner A, Klein CD. Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Biochimie 2015; 115:35-43. [PMID: 25921435 DOI: 10.1016/j.biochi.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Methionine aminopeptidases play a major role in posttranslational protein processing and are therefore promising targets for the discovery of novel therapeutical agents. We here describe the heterologous expression, purification, and characterization of recombinant Trypanosoma brucei methionine aminopeptidase, type 1 (TbMetAP1). We investigated the dependency of TbMetAP1 activity on pH and metal cofactor (type and concentration) using in particular the substrates Met-Gly-Met-Met and Met-AMC along with related compounds, and determined kinetic values (Km, vmax, kcat). The optimal pH for TbMetAP1 activity is between 7.0 and 8.0. Surprisingly, the two substrates have different cofactor requirements: Both substrates are processed by the cobalt-activated TbMetAP1, but only the Met-Gly-Met-Met substrate is processed with nearly identical catalytical properties by the zinc-activated enzyme. Depending on the substrate, various other metal ions (iron(II), manganese, nickel) were also accepted as cofactors. Two aspects of this work are relevant for the biochemistry of MetAPs and further drug discovery efforts: 1. Zinc, and not cobalt ions are probably the physiological cofactor of TbMetAP1 and possibly other MetAPs. 2. In MetAP assays for compound screening, the combination of the Met-AMC substrate with cobalt, manganese or iron ions may not represent the physiological reality, thereby leading to results that can not be extrapolated towards a phenotypic effect.
Collapse
Affiliation(s)
- Aline Marschner
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Pace A, Buscemi S, Piccionello AP, Pibiri I. Recent Advances in the Chemistry of 1,2,4-OxadiazolesaaDedicated to Professor Nicolò Vivona on the occasion of his 75th birthday. ADVANCES IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1016/bs.aihch.2015.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Uda NR, Upert G, Angelici G, Nicolet S, Schmidt T, Schwede T, Creus M. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibioticdrug design. Metallomics 2014; 6:88-95. [DOI: 10.1039/c3mt00125c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Zender M, Klein T, Henn C, Kirsch B, Maurer CK, Kail D, Ritter C, Dolezal O, Steinbach A, Hartmann RW. Discovery and Biophysical Characterization of 2-Amino-oxadiazoles as Novel Antagonists of PqsR, an Important Regulator of Pseudomonas aeruginosa Virulence. J Med Chem 2013; 56:6761-74. [DOI: 10.1021/jm400830r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Zender
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Tobias Klein
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Claudia Henn
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Benjamin Kirsch
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Christine K. Maurer
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Dagmar Kail
- PharmBioTec GmbH, Campus C2.2, 66123 Saarbrücken, Germany
| | - Christiane Ritter
- Department of Macromolecular Interactions, Helmholtz Centre for Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - Olan Dolezal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), 343 Royal
Parade, Parkville 3052, Victoria, Australia
| | - Anke Steinbach
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
| | - Rolf W. Hartmann
- Department of Drug Design and
Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123 Saarbrücken,
Germany
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
31
|
|