1
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Małecki JG. Exploring the cytotoxicity of dinuclear Ru(II) p-cymene complexes appended N, N'-bis(4-substituted benzoyl)hydrazines: insights into the mechanism of apoptotic cell death. Dalton Trans 2024; 53:5167-5179. [PMID: 38380977 DOI: 10.1039/d3dt04234k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
2
|
Impact of Hydrophobic Chains in Five-Coordinate Glucoconjugate Pt(II) Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032369. [PMID: 36768690 PMCID: PMC9916762 DOI: 10.3390/ijms24032369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.
Collapse
|
3
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Morales K, Rodríguez-Calado S, Hernando J, Lorenzo J, Rodríguez-Diéguez A, Jaime C, Nolis P, Capdevila M, Palacios Ò, Figueredo M, Bayón P. Synthesis and In Vitro Studies of Photoactivatable Semisquaraine-type Pt(II) Complexes. Inorg Chem 2022; 61:7729-7745. [PMID: 35522899 PMCID: PMC9131461 DOI: 10.1021/acs.inorgchem.1c03957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The synthesis, full
characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. The synthesis
of eight semisquaraine-type ligands has been carried out by means
of an innovative, straightforward methodology. A thorough structural
NMR and X-ray diffraction analysis of the new ligands and complexes
has been done. Density functional theory calculations have allowed
to assign the trans configuration of the platinum
center. Through the structural modification of the ligands, it has
been possible to synthesize some complexes, which have turned out
to be photoactive at wavelengths that allow their activation in cell
cultures and, importantly, two of them show remarkable solubility
in biological media. Photodegradation processes have been studied
in depth, including the structural identification of photoproducts,
thus justifying the changes observed after irradiation. From biological
assessment, complexes C7 and C8 have been
demonstrated to behave as promising photoactivatable compounds in
the assayed cancer cell lines. Upon photoactivation, both complexes
are capable of inducing a higher cytotoxic effect on the tested cells
compared with nonphotoactivated compounds. Among the observed results,
it is remarkable to note that C7 showed a PI > 50
in
HeLa cells, and C8 showed a PI > 40 in A2780 cells,
being
also effective over cisplatin-resistant A2780cis cells (PI = 7 and
PI = 4, respectively). The mechanism of action of these complexes
has been studied, revealing that these photoactivated platinum complexes
would actually present a combined mode of action, a therapeutically
potential advantage. The
synthesis, full characterization, photochemical properties,
and cytotoxic activity toward cisplatin-resistant cancer cell lines
of new semisquaraine-type Pt(II) complexes are presented. Eight semisquaraine-type
ligands and their corresponding Pt(II) complexes have been studied.
These complexes have turned out to be photoactive at wavelengths that
allow their activation in cell cultures. Two of them display remarkable
solubility in biological media showing a promising behavior as photoactivatable
compounds against several cancer cell lines.
Collapse
Affiliation(s)
- Kevin Morales
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Sergi Rodríguez-Calado
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av/Severo Ochoa s/n, 18071 Granada, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Nolis
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marta Figueredo
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pau Bayón
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Mu M, Gao H. DFT Study on the Substituent Effect of Anticancer Picoline-Diazido-Pt(IV) Compounds. Front Oncol 2022; 11:749178. [PMID: 35083137 PMCID: PMC8784384 DOI: 10.3389/fonc.2021.749178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
The geometric structure of azido Pt(IV) compounds containing picoline was calculated by using density functional theory(DFT) at the LSDA/SDD level. The ESP distribution shows the possible reaction sites of the compounds. In addition, the frequency calculation results assigned the infrared spectra of these compounds, and specified important stretching and bending vibrations. The HOMO-LUMO energy gaps of these compounds are also calculated to explain the charge transfer of the molecules. The distribution of Mulliken charges and natural atomic charges of these atoms is also calculated. Natural bond orbital(NBO) analysis explains the intramolecular interactions and their electron density.
Collapse
Affiliation(s)
- Meilin Mu
- School of Life Science, Ludong University, Yantai, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, China
| |
Collapse
|
7
|
Upadhyay A, Kundu P, Ramu V, Kondaiah P, Chakravarty AR. BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorg Chem 2022; 61:1335-1348. [PMID: 34990135 DOI: 10.1021/acs.inorgchem.1c02745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Pt(RB)(Cur)]NO3 (RBC), [Pt(IRB)(Cur)]NO3 (IRBC), and [Pt(L)(Cur)]NO3 (PBC), where HCur is curcumin, L is 1-benzyl-2-(2-pyridyl)benzimidazole, and RB and IRB are red-light-active non-iodo and diiodo-BODIPY tagged to L, respectively, were synthesized and characterized, and their anticancer activities were studied (BODIPY, boron-dipyrromethene). RBC and IRBC displayed BODIPY-centered absorption bands within 615-635 nm along with the respective curcumin bands at 445 and 492 nm in 10% dimethyl sulfoxide (DMSO)-Dulbecco's phosphate-buffered saline (DPBS). Emission bands were observed at 723 and 845 nm for RBC and IRBC, respectively, in 10% DMSO-DPBS. RBC (ΦΔ, 0.27) and IRBC (ΦΔ, 0.40) generated singlet oxygen in red light (λ = 642 nm) as evidenced from 1,3-diphenylisobenzofuran (DPBF) titrations. The formation of 1O2 from BODIPY and HO• from the curcumin was evidenced from the mechanistic pUC19 DNA photocleavage studies. The BODIPY complexes showed photocytotoxicity in A549, HeLa, and MDA-MB-231 cells while being less toxic in the dark [IC50: 1.3-6.9 μM, red light; 7.2-12.8 μM, 400-700 nm visible light]. The emissive RBC displayed localization in the endoplasmic reticulum (ER). Apoptotic cell death was evidenced from the Annexin-V/fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay and green fluorescence in red light in the Fluo-4 AM assay due to ER stress, and mitochondrial dysfunction was evidenced from the 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) assay in A549 cells.
Collapse
|
8
|
Mu M, Gao H. Density functional study of trans,trans,trans-[Pt(N 3) 2(OH) 2(Py) 2] on molecular structure and vibrational spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120022. [PMID: 34116418 DOI: 10.1016/j.saa.2021.120022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
This study records the selection of the best combination of geometric optimization and frequency calculation methods of the trans,trans,trans-[Pt(N3)2(OH)2(py)2](FM-190) by using different density functional calculation methods and basis sets. The results show that the CAM-B3LYP/SDD method has the best fit to the experimental data for geometric optimization, while the LSDA/SDD method has better performance in frequency calculation, and the infrared vibration peak is assigned. In addition, the calculated HOMO and LUMO show the energy gap and the internal charge transfer of this complex. The hyperconjugation of the pyridine ring have been explained by NBO analysis.
Collapse
Affiliation(s)
- Meilin Mu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
9
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
10
|
Xu Z, Wang Z, Deng Z, Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Upadhyay A, Gautam S, Ramu V, Kondaiah P, Chakravarty AR. Photocytotoxic cancer cell-targeting platinum(ii) complexes of glucose-appended curcumin and biotinylated 1,10-phenanthroline. Dalton Trans 2020; 48:17556-17565. [PMID: 31748772 DOI: 10.1039/c9dt03490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mixed-ligand platinum(ii) complexes, [Pt(phen)(pacac)](NO3) (1), [Pt(phen)(cur)](NO3) (2), [Pt(bt-phen)(cur)](NO3) (3) and [Pt(phen)(scur)](NO3) (4), where phen is 1,10-phenanthroline, bt-phen is 5-biotin-1,10-phenanthroline, pacac is 1,3-diphenyl-1,3-propanedioate anion, Hcur is curcumin and Hscur is diglucosylcurcumin, were prepared, characterized and their anticancer activity studied. Complexes 2-4 showed absorption bands within 410-430 nm (ε, 2.1 × 104 to 2.8 × 104 M-1 cm-1) in 10% DMSO-DPBS (Dulbecco's phosphate-buffered saline) and emission bands near 530 nm (λex = 410-430 nm) with a fluorescence quantum yield (ΦF) value of ∼0.02. The curcumin complexes showed stability over a study period of 48 h. The photocytotoxicity was studied using human cervical HeLa, human liver HepG2, human breast cancer MDA-MB 231 and human lung adenocarcinoma A549 cancer cells along with human immortalized lung epithelial HPL1D as normal cells. Complexes 2-4 showed apoptotic photo-induced cell death in light of wavelength 400-700 nm (IC50, half maximal inhibitory concentration: 6-28 μM) by reactive oxygen species (ROS), while remaining inactive in the dark (IC50: 43-95 μM). The selectivity of the complexes 3 and 4 was enhanced significantly towards the cancer cells than towards the normal cells, thus making them targeted photochemotherapeutic agents. The ROS formation and mode of cell death were studied from 2',7'-dichlorofluorescein diacetate (DCFDA) and annexin-V/FITC (fluorescein isothiocyanate)-PI assays, respectively. Preferential nuclear and mitochondrial localization was evidenced from inductively coupled plasma mass spectrometry (ICP-MS) studies.
Collapse
Affiliation(s)
- Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
12
|
Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed Engl 2020; 59:61-73. [PMID: 31310436 PMCID: PMC6973108 DOI: 10.1002/anie.201905171] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Indexed: 12/17/2022]
Abstract
In this Minireview, we highlight recent advances in the design of transition metal complexes for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT), and discuss the challenges and opportunities for the translation of such agents into clinical use. New designs for light-activated transition metal complexes offer photoactivatable prodrugs with novel targeted mechanisms of action. Light irradiation can provide spatial and temporal control of drug activation, increasing selectivity and reducing side-effects. The photophysical and photochemical properties of transition metal complexes can be controlled by the appropriate choice of the metal, its oxidation state, the number and types of ligands, and the coordination geometry.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
13
|
Novohradsky V, Pracharova J, Kasparkova J, Imberti C, Bridgewater HE, Sadler PJ, Brabec V. Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg Chem Front 2020; 7:4150-4159. [PMID: 34540235 DOI: 10.1039/d0qi00991a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The platinum(IV) prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (1) is stable and non-toxic in the dark, but potently cytotoxic to cancer cells when irradiated by visible light, including cisplatin-resistant cells. On irradiation with visible light, it generates reactive Pt(II) species which can attack DNA, and produces reactive oxygen species (ROS) and reactive nitrogen species (RNS) which exert unusual effects on biochemical pathways. We now show that its novel mechanism of action includes induction of immunogenic cell death (ICD). Treatment of cancer cells with 1 followed by photoirradiation with visible light induces calreticulin (CRT) expression at the surface of dying cancer cells. This is accompanied by release of high mobility group protein-1B (HMGB1) and the secretion of ATP. Autophagy appears to play a key role in this chemotherapeutically-stimulated ICD. The observed uneven distribution of ecto-CRT promotes phagocytosis, confirmed by the observation of engulfment of photoirradiated CT26 colorectal cancer cells treated with 1 by J774.A1 macrophages. The photoactivatable prodrug 1 has a unique mechanism of action which distinguishes it from other platinum drugs due to its immunomodulating properties, which may enhance its anticancer efficacy.
Collapse
Affiliation(s)
- Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jitka Pracharova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Cinzia Imberti
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hannah E Bridgewater
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J Sadler
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
14
|
Shaili E, Salassa L, Woods JA, Clarkson G, Sadler PJ, Farrer NJ. Platinum(iv) dihydroxido diazido N-(heterocyclic)imine complexes are potently photocytotoxic when irradiated with visible light. Chem Sci 2019; 10:8610-8617. [PMID: 31803436 PMCID: PMC6844273 DOI: 10.1039/c9sc02644d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of trans-di-(N-heterocyclic)imine dihydroxido diazido PtIV complexes of the form trans,trans,trans-[Pt(N3)2(OH)2(L1)(L2)] where L = pyridine, 2-picoline, 3-picoline, 4-picoline, thiazole and 1-methylimidazole have been synthesised and characterised, and their photochemical and photobiological activity evaluated. Notably, complexes 19 (L1 = py, L2 = 3-pic) and 26 (L1 = L2 = 4-pic) were potently phototoxic following irradiation with visible light (420 nm), with IC50 values of 4.0 μM and 2.1 μM respectively (A2780 cancer cell line), demonstrating greater potency than the previously reported complex 1 (L1 = L2 = py; 6.7 μM); whilst also being minimally toxic in the absence of irradiation. Complexes with mixed N-(heterocyclic)imine ligands 19 and 20 (L1 = py, L2 = 4-pic) were particularly photocytotoxic towards cisplatin resistant (A2780cis) cell lines. Complex 18 (L1 = py, L2 = 2-pic) was comparatively less photocytotoxic (IC50 value 14.5 μM) than the other complexes, despite demonstrating the greatest absorbance at the irradiation wavelength and the fastest half-life for loss of the N3 → Pt LMCT transition upon irradiation (λ irr = 463 nm) in aqueous solution. Complex 29 (X1 = X2 = thiazole) although potently phototoxic (2.4 μM), was also toxic towards cells in the absence of irradiation.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Luca Salassa
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Julie A Woods
- Photobiology Unit , Department of Dermatology and Photobiology , Ninewells Hospital , Dundee , DD1 9SY , UK
| | - Guy Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Nicola J Farrer
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 285131
| |
Collapse
|
15
|
Kritchenkov AS, Stanishevskii YM, Skorik YA. Design and Antitumor Activity of Platinum Complexes. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01947-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc Natl Acad Sci U S A 2019; 116:1968-1973. [PMID: 30670648 DOI: 10.1073/pnas.1817021116] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fluorescent theranostics probes at the second near-IR region (NIR-II; 1.0-1.7 µm) are in high demand for precise theranostics that minimize autofluorescence, reduce photon scattering, and improve the penetration depth. Herein, we designed and synthesized an NIR-II theranostic nanoprobe 1 that incorporates a Pt(II) metallacycle 2 and an organic molecular dye 3 into DSPE-mPEG5000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000]). This design endows 1 with good photostability and passive targeting ability. Our studies show that 1 accurately diagnoses cancer with high resolution and selectively delivers the Pt(II) metallacycle to tumor regions via an enhanced permeability and retention effect. In vivo studies reveal that 1 efficiently inhibits the growth of tumor with minimal side effects. At the same time, improved fluorescent imaging quality and signal-to-noise ratios are shown due to the long emission wavelengths. These studies demonstrate that 1 is a potential theranostic platform for tumor diagnosis and treatment in the NIR-II region.
Collapse
|
17
|
Shi H, Imberti C, Sadler PJ. Diazido platinum(iv) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00288j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diazido Pt(iv) complexes with a general formula [Pt(N3)2(L)(L′)(OR)(OR′)] are a new generation of anticancer prodrugs designed for use in photoactivated chemotherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
18
|
Kong D, Guo L, Tian M, Zhang S, Tian Z, Yang H, Tian Y, Liu Z. Lysosome-targeted potent half-sandwich iridium(III) α-diimine antitumor complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Deliang Kong
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Lihua Guo
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Meng Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Shumiao Zhang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhenzhen Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Huayun Yang
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Ye Tian
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 China
| |
Collapse
|
19
|
Gabano E, Ravera M, Zanellato I, Tinello S, Gallina A, Rangone B, Gandin V, Marzano C, Bottone MG, Osella D. An unsymmetric cisplatin-based Pt(iv) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Trans 2018; 46:14174-14185. [PMID: 28984330 DOI: 10.1039/c7dt02928d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design, synthesis, characterization and biological properties of a Pt(iv) complex containing the very active inhibitor of histone deacetylase (2-propynyl)octanoic acid, POA, as an axial ligand are reported here. The title complex, namely (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(iv), 1, containing POA in racemic or in enantiomeric forms, was one/two orders of magnitude more active than cisplatin, depending on the chemo-sensitivity of the cancer cell lines. Moreover, 1 exhibited similar or even better antiproliferative activity than (OC-6-33)-diamminedichloridobis(2-propylpentanoato)platinum(iv), 2, containing two molecules of the well-known histone deacetylase inhibitor 2-propylpentanoic (valproic) acid. The high potency of 1 is likely due to its high cellular accumulation and to the synergism between the DNA-damaging cisplatin and the histone deacetylase inhibitor POA, both released upon the intracellular reduction of 1. Prodrug 1, after oral administration, caused an impressive reduction of the tumor mass (94%) in a model of solid tumor (murine Lewis lung carcinoma), compared to that of the control, whereas (intraperitoneal) cisplatin induced a tumor regression of 75% only. A good accumulation of 1 was observed in the tumor mass. The time course of the body weight attested that cisplatin induced elevated anorexia, whereas treatment with 1 did not induce significant body weight loss throughout the therapeutic experiment.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen F, Moat J, McFeely D, Clarkson G, Hands-Portman IJ, Furner-Pardoe JP, Harrison F, Dowson CG, Sadler PJ. Biguanide Iridium(III) Complexes with Potent Antimicrobial Activity. J Med Chem 2018; 61:7330-7344. [PMID: 30070838 DOI: 10.1021/acs.jmedchem.8b00906] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have synthesized novel organoiridium(III) antimicrobial complexes containing a chelated biguanide, including the antidiabetic drug metformin. These 16- and 18-electron complexes were characterized by NMR, ESI-MS, elemental analysis, and X-ray crystallography. Several of these complexes exhibit potent activity against Gram-negative bacteria and Gram-positive bacteria (including methicillin-resistant Staphylococcus aureus (MRSA)) and high antifungal potency toward C. albicans and C. neoformans, with minimum inhibitory concentrations (MICs) in the nanomolar range. Importantly, the complexes exhibit low cytotoxicity toward mammalian cells, indicating high selectivity. They are highly stable in broth medium, with a low tendency to generate resistance mutations. On coadministration, they can restore the activity of vancomycin against vancomycin-resistant Enterococci (VRE). Also the complexes can disrupt and eradicate bacteria in mature biofilms. Investigations of reactions with biomolecules suggest that these organometallic complexes deliver active biguanides into microorganisms, whereas the biguanides themselves are inactive when administered alone.
Collapse
|
21
|
Ma L, Wang N, Ma R, Li C, Xu Z, Tse MK, Zhu G. Monochalcoplatin: An Actively Transported, Quickly Reducible, and Highly Potent PtIV
Anticancer Prodrug. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Lili Ma
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P. R. China
| | - Rong Ma
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
| | - Cai Li
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P. R. China
| | - Zoufeng Xu
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P. R. China
| | - Man-Kit Tse
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
| | - Guangyu Zhu
- Department of Chemistry; City University of Hong Kong; 83 Tat Chee Ave. Kowloon Tong Hong Kong SAR P. R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P. R. China
| |
Collapse
|
22
|
Ma L, Wang N, Ma R, Li C, Xu Z, Tse MK, Zhu G. Monochalcoplatin: An Actively Transported, Quickly Reducible, and Highly Potent Pt IV Anticancer Prodrug. Angew Chem Int Ed Engl 2018; 57:9098-9102. [PMID: 29806087 DOI: 10.1002/anie.201804314] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, PtIV prodrugs have attracted much attention as the next generation of platinum-based antineoplastic drug candidates. Here we report the discovery and evaluation of monochalcoplatin, a monocarboxylated PtIV prodrug that is among the most cytotoxic PtIV prodrugs to date. Compared with its dicarboxylated counterpart chalcoplatin, monochalcoplatin accumulates astonishingly effectively and rapidly in cancer cells, which is not ascribed to its lipophilicity. The prodrug is quickly reduced, causes DNA damage, and induces apoptosis, resulting in superior cytotoxicity with IC50 values in the nanomolar range in both cisplatin-sensitive and -resistant cells; these IC50 values are up to 422-fold higher than that of cisplatin. A detailed mechanistic study reveals that monochalcoplatin actively enters cells through a transporter-mediated process. Moreover, monochalcoplatin shows significant antitumor activity in an in vivo colorectal tumor model. Our study implies a practical strategy for the design of more effective PtIV prodrugs to conquer drug resistance by tuning both cellular uptake pathways and activation processes.
Collapse
Affiliation(s)
- Lili Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P. R. China
| | - Na Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P. R. China
| | - Rong Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China
| | - Cai Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P. R. China
| | - Zoufeng Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P. R. China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave., Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P. R. China
| |
Collapse
|
23
|
Kong D, Tian M, Guo L, Liu X, Zhang S, Song Y, Meng X, Wu S, Zhang L, Liu Z. Novel iridium(III) iminopyridine complexes: synthetic, catalytic, and in vitro anticancer activity studies. J Biol Inorg Chem 2018; 23:819-832. [PMID: 29934699 DOI: 10.1007/s00775-018-1578-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Organometallic half-sandwich IrIII complexes of the type [(η5-Cpx)Ir(N^N)Cl]PF6 1-6, where Cpx = C5Me5 (Cp*), C5Me4C6H5 (Cpxph), C5Me4C6H4C6H5 (Cpxbiph), N^N is imionopyridine chelating ligand, were prepared and characterized. The X-ray crystal structure of complex 1 has been determined. Four compounds displayed higher anticancer potency than clinically used anticancer drug cisplatin against A549 cancer cells, especially complex 3 which is 8 times more active than cisplatin. No hydrolysis was observed by NMR and UV-Vis for complexes 3 and 6; however, these complexes show big differences in nucleobase binding, mainly decided by the imionopyridine chelating ligand. Complex 3 is stable in the presence of glutathione, but 6 reacted rapidly with glutathione. The octanol/water partition coefficients (log P) of 3 and 6 have been determined. In addition, these complexes display effective catalytic activity in converting coenzyme NADH to NAD+ by accepting hydride to form an Ir hydride adduct. The mechanism of actions of these complexes involves apoptosis induction, cell cycles arrest, and significant increase of reactive oxygen species levels in A549 cancer cells.
Collapse
Affiliation(s)
- Deliang Kong
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Meng Tian
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Xicheng Liu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Shumiao Zhang
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Yameng Song
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Xin Meng
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Shu Wu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Lingzi Zhang
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
24
|
Ramu V, Gautam S, Garai A, Kondaiah P, Chakravarty AR. Glucose-Appended Platinum(II)-BODIPY Conjugates for Targeted Photodynamic Therapy in Red Light. Inorg Chem 2018; 57:1717-1726. [PMID: 29400953 DOI: 10.1021/acs.inorgchem.7b02249] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum(II) complexes [Pt(L1)(R-BODIPY)]Cl (1) and [Pt(L2)(R-BODIPY)]Cl (2), where R-BODIPY is 8-(4-ethynylphenyl)-distyryl-4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3, L1 is 4'-phenyl-2,2':6',2″-terpyridine, and L2 is (2,2':6',2″-terpyridin-4'-oxy)ethyl-β-d-glucopyranoside, were synthesized and characterized, and their photocytotoxicity was studied. The phenylacetylide complex [Pt(L1)(C≡CPh)]Cl (3) was prepared and used as a control. Complexes 1 and 2 showed near-IR absorption bands at 713 nm (ε = 3.47 × 104 M-1 cm-1) and 715 nm (3.2 × 104 M-1 cm-1) in 10% dimethyl sulfoxide (DMSO)-Dulbecco's Modified Eagle's Medium (DMEM) (pH 7.2). The BODIPY complexes are emissive in 10% DMSO-DMEM at pH 7.2 with λem (λex, Φf) = 822 nm (710 nm, 0.022) for complex 1 and λem (λex, Φf) = 825 nm (710 nm, 0.026) for complex 2. They generated singlet oxygen (1O2) in red light as evidenced from 1,3-diphenylisobenzofuran (DPBF) titration experiments. The singlet oxygen quantum yield (ΦΔ) values for 1 and 2 were ∼0.6 signifying their photosensitizing ability. They were remarkably photodynamic therapy (PDT) active in red light showing significant red light-induced cytotoxicity in cervical HeLa, lung cancer A549, and breast cancer MCF-7 cells (IC50: 2.3-24.7 μM in light) with negligible dark toxicity (IC50 > 100 μM). A significant enhancement in cellular uptake was observed for 2 having glucose-appended terpyridine ligand compared to 1. The confocal microscopy showed significant mitochondrial localization of the complexes as evidenced from the JC-1 assay. The complexes released the photoactive R-BODIPY ligand upon red light-irradiation as evidenced from the mass and 1H NMR spectral studies. Complex 2 is remarkable in satisfying the essential requirements of targeted PDT in red light.
Collapse
Affiliation(s)
- Vanitha Ramu
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Srishti Gautam
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
25
|
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans 2018; 45:19157-19171. [PMID: 27883129 DOI: 10.1039/c6dt03665a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-specific delivery and amenable activation of prodrugs are indispensible criteria for designing novel anticancer agents. Platinum based drugs vanguard the chemotherapeutic regimes and over the years significant attention has been paid to achieve more efficacious drugs with fewer adverse effects. The switch from platinum(ii) drugs to the inert platinum(iv) analogues proved advantageous but the new prodrugs still suffered from unspecific cytotoxic actions. Thus the photoactivation of an inert platinum prodrug specifically within neoplastic cells provided the desired spatio-temporal control over drug activation by means of illumination, thereby limiting the cytotoxic events to only at the targeted tumors. This article collates research on platinum complexes which exhibit potential light mediated anticancer effects and provides insights into the underlying mechanisms of activation. Fine tuning of the coordination sphere results in dramatic alteration of the redox and spectral properties of both ground and excited states and the cellular properties of the molecules. This concise article highlights the various light promoted strategies employed to attain a controlled release of active platinum(ii) and/or reactive oxygen species such as photoreduction, photocaging, photodissociation and photosensitization. Such dual action photoactive metal complexes with improved aqueous solubility and versatility are promising candidates for combination therapy which is likely to be the future of anticancer research.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560-012, India.
| |
Collapse
|
26
|
Baistrocchi SR, Lee MJ, Lehoux M, Ralph B, Snarr BD, Robitaille R, Sheppard DC. Posaconazole-Loaded Leukocytes as a Novel Treatment Strategy Targeting Invasive Pulmonary Aspergillosis. J Infect Dis 2017; 215:1734-1741. [PMID: 27799353 DOI: 10.1093/infdis/jiw513] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Impaired delivery of antifungals to hyphae within necrotic lesions is thought to contribute to therapeutic failure in invasive pulmonary aspergillosis (IPA). We hypothesized that transfusion of leukocytes loaded ex vivo with the lipophilic antifungal posaconazole could improve delivery of antifungals to the sites of established infection and improve outcome in experimental IPA. Methods The HL-60 leukemia cell line was differentiated to a neutrophil-like phenotype (differentiated HL-60 [dHL-60] cells) and then exposed to a range of posaconazole concentrations. The functional capacity and antifungal activity of these cells were assessed in vitro and in a mouse model of IPA. Results Posaconazole levels in dHL-60 cells were 265-fold greater than the exposure concentration. Posaconazole-loaded cells were viable and maintained their capacity to undergo active chemotaxis. Contact-dependent transfer of posaconazole from dHL-60 cells to hyphae was observed in vitro, resulting in decreased fungal viability. In a neutropenic mouse model of IPA, treatment with posaconazole-loaded dHL-60 cells resulted in significantly reduced fungal burden in comparison to treatment with dHL-60 cells alone. Conclusions Posaconazole accumulates at high concentrations in dHL-60 cells and increases their antifungal activity in vitro and in vivo. These findings suggest that posaconazole-loading of leukocytes may hold promise for the therapy of IPA.
Collapse
Affiliation(s)
- Shane R Baistrocchi
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Mark J Lee
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Melanie Lehoux
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Benjamin Ralph
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Robert Robitaille
- Biochemistry Division, Hôpital Maisonneuve-Rosemont, CIUSSS Est-de-l'Île-de-Montréal, Montréal, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| |
Collapse
|
27
|
Vernooij R, Joshi T, Shaili E, Kubeil M, Appadoo DT, Izgorodina EI, Graham B, Sadler PJ, Wood BR, Spiccia L. Comprehensive Vibrational Spectroscopic Investigation of trans,trans,trans-[Pt(N3)2(OH)2(py)2], a Pt(IV) Diazido Anticancer Prodrug Candidate. Inorg Chem 2016; 55:5983-92. [PMID: 27257848 PMCID: PMC4916484 DOI: 10.1021/acs.inorgchem.6b00476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/13/2022]
Abstract
We report a detailed study of a promising photoactivatable metal-based anticancer prodrug candidate, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (C1; py = pyridine), using vibrational spectroscopic techniques. Attenuated total reflection Fourier transform infrared (ATR-FTIR), Raman, and synchrotron radiation far-IR (SR-FIR) spectroscopies were applied to obtain highly resolved ligand and Pt-ligand vibrations for C1 and its precursors (trans-[Pt(N3)2(py)2] (C2) and trans-[PtCl2(py)2] (C3)). Distinct IR- and Raman-active vibrational modes were assigned with the aid of density functional theory calculations, and trends in the frequency shifts as a function of changing Pt coordination environment were determined and detailed for the first time. The data provide the ligand and Pt-ligand (azide, hydroxide, pyridine) vibrational signatures for C1 in the mid- and far-IR region, which will provide a basis for the better understanding of the interaction of C1 with biomolecules.
Collapse
Affiliation(s)
- Robbin
R. Vernooij
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Tanmaya Joshi
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
| | - Evyenia Shaili
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Manja Kubeil
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
| | | | - Ekaterina I. Izgorodina
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
| | - Bim Graham
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Melbourne, 3052 VIC, Australia
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Bayden R. Wood
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
| | - Leone Spiccia
- School of Chemistry and Centre for Biospectroscopy, Monash University, Melbourne, 3800 VIC, Australia
| |
Collapse
|
28
|
Mitra K, Shettar A, Kondaiah P, Chakravarty AR. Biotinylated Platinum(II) Ferrocenylterpyridine Complexes for Targeted Photoinduced Cytotoxicity. Inorg Chem 2016; 55:5612-22. [DOI: 10.1021/acs.inorgchem.6b00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Koushambi Mitra
- Department
of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction,
Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Abhijith Shettar
- Department
of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction,
Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department
of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction,
Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R. Chakravarty
- Department
of Inorganic and Physical Chemistry and ‡Department of Molecular Reproduction,
Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
29
|
Gandioso A, Shaili E, Massaguer A, Artigas G, González-Cantó A, Woods JA, Sadler PJ, Marchán V. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem Commun (Camb) 2016; 51:9169-72. [PMID: 25947177 DOI: 10.1039/c5cc03180j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new anticancer agent based on the conjugation of a photoactivatable Pt(IV) pro-drug to a cyclic RGD-containing peptide is described. Upon visible light irradiation, phototoxicity was induced preferentially in SK-MEL-28 melanoma cancer cells overexpressing αVβ3 integrin compared to control DU-145 human prostate carcinoma cells.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Raza MK, Mitra K, Shettar A, Basu U, Kondaiah P, Chakravarty AR. Photoactive platinum(ii) β-diketonates as dual action anticancer agents. Dalton Trans 2016; 45:13234-43. [DOI: 10.1039/c6dt02590k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclometallated platinum(ii) β-diketonates show significant photocytotoxicity in skin-keratinocyte HaCaT cells [IC50: ∼10 μM (visible light, 400–700 nm), ≥60 μM (dark)].
Collapse
Affiliation(s)
- Md Kausar Raza
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Koushambi Mitra
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Abhijith Shettar
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Uttara Basu
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Paturu Kondaiah
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
31
|
Pracharova J, Radosova Muchova T, Dvorak Tomastikova E, Intini FP, Pacifico C, Natile G, Kasparkova J, Brabec V. Anticancer potential of a photoactivated transplatin derivative containing the methylazaindole ligand mediated by ROS generation and DNA cleavage. Dalton Trans 2016; 45:13179-86. [DOI: 10.1039/c6dt01467d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photoinduced DNA damage by trans-[PtCl2(NH3)(1-methyl-7-azaindole)] is related to its photocytotoxic activity.
Collapse
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics
- Centre of the Region Haná for Biotechnological and Agricultural Research
- Palacký University
- 783 41 Olomouc
- Czech Republic
| | | | - Eva Dvorak Tomastikova
- Institute of Experimental Botany
- Centre of the Region Haná for Biotechnological and Agricultural Research
- 78371 Olomouc
- Czech Republic
| | | | - Concetta Pacifico
- Department of Chemistry
- University of Bari “Aldo Moro”
- 70125 Bari
- Italy
| | - Giovanni Natile
- Department of Chemistry
- University of Bari “Aldo Moro”
- 70125 Bari
- Italy
| | - Jana Kasparkova
- Department of Biophysics
- Faculty of Science
- Palacký University
- CZ-78371 Olomouc
- Czech Republic
| | - Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
32
|
Shaili E, Fernández-Giménez M, Rodríguez-Astor S, Gandioso A, Sandín L, García-Vélez C, Massaguer A, Clarkson GJ, Woods JA, Sadler PJ, Marchán V. A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin. Chemistry 2015; 21:18474-86. [PMID: 26616265 DOI: 10.1002/chem.201502373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/07/2022]
Abstract
A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Marta Fernández-Giménez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Savina Rodríguez-Astor
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Lluís Sandín
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Carlos García-Vélez
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain)
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Campus Montilivi, 17071, Girona (Spain)
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK)
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology, Ninewells Hospital, Dundee, DD1 9SY (UK)
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Warwick, CV4 7AL, Coventry (UK).
| | - Vicente Marchán
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona (Spain).
| |
Collapse
|
33
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Kasparkova J, Kostrhunova H, Novakova O, Křikavová R, Vančo J, Trávníček Z, Brabec V. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. Angew Chem Int Ed Engl 2015; 54:14478-82. [PMID: 26458068 DOI: 10.1002/anie.201506533] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Indexed: 11/07/2022]
Abstract
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radka Křikavová
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Department of Inorganic Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno (Czech Republic).,Department of Biophysics, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 77146 Olomouc (Czech Republic)
| |
Collapse
|
35
|
Target-selective delivery and activation of platinum-based anticancer agents. Future Med Chem 2015; 7:911-27. [DOI: 10.4155/fmc.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Chellan P, Sadler PJ. The elements of life and medicines. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140182. [PMID: 25666066 PMCID: PMC4342972 DOI: 10.1098/rsta.2014.0182] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
37
|
Holbrook RJ, Weinberg DJ, Peterson MD, Weiss EA, Meade TJ. Light-activated protein inhibition through photoinduced electron transfer of a ruthenium(II)-cobalt(III) bimetallic complex. J Am Chem Soc 2015; 137:3379-85. [PMID: 25671465 DOI: 10.1021/jacs.5b00342] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers.
Collapse
Affiliation(s)
- Robert J Holbrook
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | |
Collapse
|