1
|
Li X, Zhi Y, Duan X, Chen X, Cui M, Zheng S. Synergistic antifungal effects and mechanisms of amantadine hydrochloride combined with azole antifungal drugs on drug-resistant Candida albicans. Front Cell Infect Microbiol 2025; 15:1455123. [PMID: 40078874 PMCID: PMC11897512 DOI: 10.3389/fcimb.2025.1455123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The increasing resistance of Candida albicans (C. albicans) to conventional antifungal drugs poses a great challenge to the clinical treatment of infections caused by this yeast. Drug combinations are a potential therapeutic approach to overcome the drug- resistance of C. albicans. This study explored the synergistic effects of amantadine hydrochloride (AMH) combined with azole antifungal drugs against drug-resistant C. albicans in vitro and in vivo. Methods The in vitro sensitivity of Candida spp. to drugs was determined by the microdilution method. The effect of drugs on the efflux pump activity of C. albicans was determined by the rhodamine 6G tracer method. The egg yolk agar plate method was used to determine the activity of extracellular phospholipase, a C. albicans virulence factor. The Galleria mellonella model of C. albicans infection was used to test the in vivo efficacy of the combination therapy. Results In vitro experiments showed that combinations of AMH with azole antifungal drugs had synergistic antifungal effects on planktonic cells of drug-resistant C. albicans, with fractional inhibitory concentration index values of <0.5. The in vivo synergistic effects and mechanism of drug combinations with AMH were further studied using fluconazole (FLC) as a representative azole antifungal drug. In vivo, G. mellonella larvae were used to evaluate the antifungal efficacy of AMH +FLC. AMH + FLC treatment increased the survival rate of larvae infected with drug-resistant C. albicans and reduced tissue invasion. Studies of the mechanism of synergy showed that AMH inhibited drug efflux pump activity in drug-resistant C. albicans, and that AMH + FLC synergistically inhibited early biofilms and the extracellular phospholipase activity of drug-resistant C. albicans. Conclusion This study provides strong evidence that combinations of non-antifungal drugs and antifungal drugs can effectively overcome drug-resistant C. albicans infection. Both AMH and FLC are FDA-approved drugs, eliminating concerns about safety. Our findings provide a foundation for further clinical antifungal research.
Collapse
Affiliation(s)
- Xiuyun Li
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Yuanyuan Zhi
- Gynecology Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Ximeng Duan
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Xu Chen
- Pharmacy Department, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Min Cui
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Shicun Zheng
- Infection and Microbiology Research Laboratory for Women and Children, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
2
|
Deng S, Wang L, Tian S, Wu J, Lin Y, Wang H, Guo X, Han C, Ren W, Han YL, Zhou J, Bu M. Thiazolidinedione-based structure modification of ergosterol peroxide provides thiazolidinedione-conjugated derivatives as potent agents against breast cancer cells through a PI3K/AKT/mTOR pathway. Bioorg Med Chem 2025; 117:118007. [PMID: 39577295 DOI: 10.1016/j.bmc.2024.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Ergosterol peroxide (EP) is a steroidal compound isolated from the traditional Chinese medicine Ganoderma lucidum. However, EP is limited by its solubility and moderate potency in antitumor studies. In the present study, a series of novel ergosterol peroxide-3-thiazolidinedione derivatives were designed and synthesized, by changing the linker between ergosterol peroxide and thiazolidinedione, it is expected to obtain compounds with better antitumor activity. The cytotoxicity screening showed that compound 13o is the most active derivative against the MCF-7 cell line with an IC50 of 3.06 μM, and exhibited stronger antitumor activity compared to the parent EP. Further in vitro and vivo studies showed that compound 13o may reduced the mitochondrial membrane potential, increased the reactive oxygen species level and blocked the cell cycle in G0/G1 phase, and induced apoptosis of tumor cells by inhibiting the PI3K/Akt/mTOR pathway. In vivo 4T1 mouse model of breast cancer showed that 13o not only continued to inhibit tumor proliferation but also had a stronger effect than the marketed drug 5-fluorouracil, compound 13o had a good safety profile in vivo. The results suggest that compound 13o may represent a novel, highly potent and low-toxicity structural lead for the development of new breast cancer chemotherapies.
Collapse
Affiliation(s)
- Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ying Long Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
3
|
Deng S, Zhao Y, Guo X, Hong X, Li G, Wang Y, Li Q, Bu M, Wang M. Thiazolidinedione-Conjugated Lupeol Derivatives as Potent Anticancer Agents Through a Mitochondria-Mediated Apoptotic Pathway. Molecules 2024; 29:4957. [PMID: 39459325 PMCID: PMC11510666 DOI: 10.3390/molecules29204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (6a-i, 9a-i, and 12a-i) were prepared. The target compounds were evaluated for their cytotoxic activities against human lung cancer A549, human breast cancer MCF-7, human hepatocarcinoma HepG2, and human hepatic LO2 cell lines, and the results revealed that most of the compounds displayed improved potency over lupeol. Compound 12i exhibited significant activity against the HepG2 cell line, with an IC50 value of 4.40 μM, which is 9.9-fold more potent than lupeol (IC50 = 43.62 μM). Mechanistic studies suggested that 12i could induce HepG2 cell apoptosis, as evidenced by AO/EB staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 12i can upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Collectively, compound 12i is worthy of further investigation to support the discovery of effective agents against cancer.
Collapse
Affiliation(s)
- Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Yinxu Zhao
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Xian Hong
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (X.H.); (G.L.)
| | - Gang Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (X.H.); (G.L.)
| | - Yuchun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Qingyi Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| | - Ming Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (S.D.); (Y.Z.); (X.G.); (Y.W.); (Q.L.)
| |
Collapse
|
4
|
Levshin IB, Simonov AY, Panov AA, Grammatikova NE, Alexandrov AI, Ghazy ESMO, Ivlev VA, Agaphonov MO, Mantsyzov AB, Polshakov VI. Synthesis and Biological Evaluation of a Series of New Hybrid Amide Derivatives of Triazole and Thiazolidine-2,4-dione. Pharmaceuticals (Basel) 2024; 17:723. [PMID: 38931390 PMCID: PMC11206592 DOI: 10.3390/ph17060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
A series of hybrid compounds with triazole and thiazolidine nuclei connected by a linker has been synthesized and extensively studied. Various synthetic methods for the target compounds have been tested. A microbiological assessment of the obtained compounds was carried out on strains of pathogenic fungi C. albicans, C. non-albicans, multidrug-resistant C. auris, Rhizopus arrhizus, Aspergillus spp. and some dermatophytes and other yeasts. The lowest obtained MIC values for target compounds lie between 0.003 µg/mL and 0.5 µg/mL and therefore the compounds are not inferior or several times better than commercial azole drugs. The length of the acylpiperazine linker has a limited effect on antifungal activity. Some bioisosteric analogues were tested in microbiological analysis, but turned out to be weaker than the leader in activity. The highest activity was demonstrated by a compound with para-chlorobenzylidene substituent in the thiazolidine fragment. Molecular modelling was used to predict binding modes of synthesized molecules and rationalize experimentally observed SAR. The leader compound is twice more effective in inhibiting the formation of germ tubes by Candida albicans yeast cells compared to voriconazole. An increased level of Pdr5, an azoles drug efflux pump was observed, but the increase is lower than that caused by azoles. The results can be useful for further development of more powerful and safe antifungal agents.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander Yu. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander I. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vasiliy A. Ivlev
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Michael O. Agaphonov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
| | - Alexey B. Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| |
Collapse
|
5
|
Lima-Neto RG, Neta MS, Valeriano CA, Neves RP, Lacerda AM, Ferraz CE, Inácio CP, Le Pape P, Ourliac-Garnier I, Faria AR, Silva TG, Pereira VR, Marchand P. Antifungal efficacy of imidazo[1,2- a]pyrazine-based thiosemicarbazones and thiazolidinediones against Sporothrix species. Future Microbiol 2023; 18:1225-1233. [PMID: 37882752 DOI: 10.2217/fmb-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To evaluate antifungal potential of 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine hybrids based on thiosemicarbazones and thiazolidinediones against pathogenic Sporothrix species. Methods: Antifungal activity of nine compounds were assessed by broth microdilution. Interactions between active compounds and itraconazole were evaluated by the checkerboard assay using non-wild-type isolates. Cytotoxicity of the compounds was determined. Results: Four C-3 substituted analogs showed antifungal activity, unrelated to thiosemicarbazone or thiazolidinedione functions. Synergistic interactions between the four compounds and itraconazole, and low toxicity on mouse fibroblast cells were observed. Activity of 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine hybrids against Sporothrix depended on the substitution on the imidazopyrazine ring. Conclusion: Antifungal potential, overcoming itraconazole resistance and low toxicity indicate the possible use of that series of compounds in a therapeutic alternative for treatment of sporotrichosis.
Collapse
Affiliation(s)
- Reginaldo G Lima-Neto
- Laboratory for Research & Diagnosis in Tropical Diseases, Department of Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco (UFPE), Avenida Prof Moraes Rego s/n, Recife, Pernambuco, 50670-901, Brazil
| | - Marlene Sa Neta
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
- Department of Pharmaceutical Sciences, Center for Health Sciences, UFPE, Brazil
| | - Carlos At Valeriano
- Laboratory for Research & Diagnosis in Tropical Diseases, Department of Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco (UFPE), Avenida Prof Moraes Rego s/n, Recife, Pernambuco, 50670-901, Brazil
| | - Rejane P Neves
- Departament of Mycology, Center for Biosciences, UFPE, Brazil
| | | | - Claudia E Ferraz
- Laboratory for Research & Diagnosis in Tropical Diseases, Department of Tropical Medicine, Center for Medical Sciences, Federal University of Pernambuco (UFPE), Avenida Prof Moraes Rego s/n, Recife, Pernambuco, 50670-901, Brazil
| | - Cícero P Inácio
- Departament of Mycology, Center for Biosciences, UFPE, Brazil
| | - Patrice Le Pape
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Isabelle Ourliac-Garnier
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| | - Antônio R Faria
- Department of Pharmaceutical Sciences, Center for Health Sciences, UFPE, Brazil
| | | | - Valéria Ra Pereira
- Aggeu Magalhães Institute, Oswaldo Cruz Fundation, Recife, PE, 50740-465, Brazil
| | - Pascal Marchand
- Nantes Université, Cibles et médicaments des infections et de l'immunité, IICiMed, UR 1155, F-44000 Nantes, France
| |
Collapse
|
6
|
Li-Zhulanov NS, Zaikova NP, Sari S, Gülmez D, Sabuncuoğlu S, Ozadali-Sari K, Arikan-Akdagli S, Nefedov AA, Rybalova TV, Volcho KP, Salakhutdinov NF. Rational Design of New Monoterpene-Containing Azoles and Their Antifungal Activity. Antibiotics (Basel) 2023; 12:antibiotics12050818. [PMID: 37237723 DOI: 10.3390/antibiotics12050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Azole antifungals, including fluconazole, have long been the first-line antifungal agents in the fight against fungal infections. The emergence of drug-resistant strains and the associated increase in mortality from systemic mycoses has prompted the development of new agents based on azoles. We reported a synthesis of novel monoterpene-containing azoles with high antifungal activity and low cytotoxicity. These hybrids demonstrated broad-spectrum activity against all tested fungal strains, with excellent minimum inhibitory concentration (MIC) values against both fluconazole-susceptible and fluconazole-resistant strains of Candida spp. Compounds 10a and 10c with cuminyl and pinenyl fragments demonstrated up to 100 times lower MICs than fluconazole against clinical isolates. The results indicated that the monoterpene-containing azoles had much lower MICs against fluconazole-resistant clinical isolates of Candida parapsilosis than their phenyl-containing counterpart. In addition, the compounds did not exhibit cytotoxicity at active concentrations in the MTT assay, indicating potential for further development as antifungal agents.
Collapse
Affiliation(s)
- Nikolai S Li-Zhulanov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| | - Nadezhda P Zaikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Sihhiye, Ankara 06100, Turkey
| | - Dolunay Gülmez
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara 06100, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Sihhiye, Ankara 06100, Turkey
| | - Keriman Ozadali-Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Sihhiye, Ankara 06100, Turkey
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara 06100, Turkey
| | - Andrey A Nefedov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| | - Tatyana V Rybalova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| | - Konstantin P Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Teixeira MM, Carvalho DT, Sousa E, Pinto E. New Antifungal Agents with Azole Moieties. Pharmaceuticals (Basel) 2022; 15:1427. [PMID: 36422557 PMCID: PMC9698508 DOI: 10.3390/ph15111427] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 09/22/2023] Open
Abstract
Fungal conditions affect a multitude of people worldwide, leading to increased hospitalization and mortality rates, and the need for novel antifungals is emerging with the rise of resistance and immunocompromised patients. Continuous use of azole drugs, which act by inhibiting the fungal CYP51, involved in the synthesis of ergosterol, essential to the fungal cell membrane, has enhanced the resistance and tolerance of some fungal strains to treatment, thereby limiting the arsenal of available drugs. The goal of this review is to gather literature information on new promising azole developments in clinical trials, with in vitro and in vivo results against fungal strains, and complementary assays, such as toxicity, susceptibility assays, docking studies, among others. Several molecules are reviewed as novel azole structures in clinical trials and with recent/imminent approvals, as well as other innovative molecules with promising antifungal activity. Structure-activity relationship (SAR) studies are displayed whenever possible. The azole moiety is brought over as a privileged structure, with multiple different compounds emerging with distinct pharmacophores and SAR. Particularly, 1,2,3-triazole natural product conjugates emerged in the last years, presenting promising antifungal activity and a broad spectrum against various fungi.
Collapse
Affiliation(s)
- Melissa Martins Teixeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Diogo Teixeira Carvalho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Research in Pharmaceutical Chemistry, Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37137-001, Brazil
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Shaikh MH, Subhedar DD, Akolkar SV, Nagargoje AA, Asrondkar A, Khedkar VM, Shingate BB. New 1,2,3‐Triazole‐Tethered Thiazolidinedione Derivatives: Synthesis, Bioevaluation and Molecular Docking Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2069132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mubarak H. Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Dnyaneshwar D. Subhedar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Satish V. Akolkar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Amol A. Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Ashish Asrondkar
- Haffkine Institute for Training, Research and Testing, Mumbai, Maharashtra, India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune Maharashtra, India
| | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
9
|
Fu X, Mao Q, Zhang B, Lv J, Ping K, Zhang P, Lin F, Zhao J, Feng Y, Yang J, Wang H, Zhang L, Mou Y, Wang S. Thiazolidinedione-Based Structure Modification of Celastrol Provides Thiazolidinedione-Conjugated Derivatives as Potent Agents against Non-Small-Cell Lung Cancer Cells through a Mitochondria-Mediated Apoptotic Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:1147-1156. [PMID: 35255689 DOI: 10.1021/acs.jnatprod.2c00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In order to improve the potential of celastrol against non-small-cell lung cancer cells, the privileged structure, thiazolidinedione, was introduced into its C-20 carboxylic group with acetylpiperazine as a linker, and the thiazolidinedione-conjugated compounds 10a-10t were prepared. The target compounds were evaluated for their cytotoxic activities against the A549 cell line, and the results showed that most of the compounds 10a-10t displayed improved potency over celastrol, and compound 10b exhibited significant activity against the A549 cell line, with an IC50 value of 0.08 μM, which was 13.8-fold more potent than celastrol (IC50 = 1.10 μM). The mechanistic studies suggested that 10b could induce A549 cell apoptosis, as evidenced by Hoechst 33342 staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 10b could upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Furthermore, compound 10b could effectively inhibit tumor growth when tested in an A549 cell xenograft mouse model. Collectively, compound 10b is worthy of further investigation to support the discovery of effective agents against non-small-cell lung cancer.
Collapse
Affiliation(s)
- Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Jialun Lv
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
- Ningxia Kangya Pharmaceutical Co., Ltd., Yinchuan 750000, China
| | - Jincheng Yang
- Ningxia Kangya Pharmaceutical Co., Ltd., Yinchuan 750000, China
| | - Huiyu Wang
- Ningxia Kangya Pharmaceutical Co., Ltd., Yinchuan 750000, China
| | - Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
10
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
11
|
Sethi NS, Prasad DN, Singh RK. An Insight into the Synthesis and SAR of 2,4-Thiazolidinediones (2,4-TZD) as Multifunctional Scaffold: A Review. Mini Rev Med Chem 2020; 20:308-330. [PMID: 31660809 DOI: 10.2174/1389557519666191029102838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 01/18/2023]
Abstract
2,4-Thiazolidinedione (2,4-TZD) is a versatile pharmacophore, a privileged scaffold, and a remarkable sulphur-containing heterocyclic compound with diverse pharmacological activities. The multifarious biological activities, due to different mechanisms of action, low cost, and easy availability of 2,4-TZD impressed medicinal chemists to integrate this moiety to develop various lead compounds with diverse therapeutic actions. This resulted in the swift development in the last decade for generating different new potential molecules bearing 2,4-TZD. In this review, the authors attempt to shape and present the latest investigations (2012 onwards) going on in generating promising 2,4-TZD containing lead compounds. The data has been collected and analyzed to develop the structure-activity relationship (SAR). The SAR and active pharmacophores of various leads accountable for antidiabetic, anticancer, antimicrobial, and antioxidant activities have also been illustrated. This review also highlighted some of the important chemical synthetic routes for the preparation of various 2,4-TZD derivatives. This review will definitely serve as a useful source of structural information to medicinal chemists and may be utilized for the strategic design of potent 2,4-TZD derivatives in the future.
Collapse
Affiliation(s)
- Navjot Singh Sethi
- School of Pharmacy, Maharaja Agrasen University, Baddi, Dist Solan, 160022, Himachal Pradesh, India.,Faculty of Pharmacy, I.K. Gujral Punjab Technical University, Jalandhar, India
| | - Deo Nandan Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| |
Collapse
|
12
|
History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104:104240. [DOI: 10.1016/j.bioorg.2020.104240] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 01/12/2023]
|
13
|
Roosta A, Alizadeh A, Rezaiyehraad R, Khanpour M. Efficient and Chemoselective Procedure for Conversion of Rhodanine Derivatives into 1,3‐Thiazolidine‐2,4‐diones via 1,3‐Dipolar Cycloaddition Reaction and Rearrangement Sequences. ChemistrySelect 2020. [DOI: 10.1002/slct.202003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atefeh Roosta
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Abdolali Alizadeh
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Reze Rezaiyehraad
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Mojtaba Khanpour
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
14
|
Sethi NS, Prasad DN, Singh RK. Synthesis, Anticancer, and Antibacterial Studies of Benzylidene Bearing 5-substituted and 3,5-disubstituted-2,4-Thiazolidinedione Derivatives. Med Chem 2020; 17:369-379. [PMID: 32394843 DOI: 10.2174/1573406416666200512073640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/07/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
AIM To develop novel compounds having potent anticancer and antibacterial activities. BACKGROUND Several studies have proved that benzylidene analogues of clinical 2,4-TZDs, such as troglitazone and ciglitazone, have more potent antiproliferative activity than their parent compounds. Literature studies also revealed that the attachment of more heterocyclic rings, containing nitrogen on 5th position of 2,4-TZD, can enhance the antimicrobial activity. Hence, attachment of various moieties on the benzylidene ring may produce safe and effective compounds in the future. OBJECTIVE The objective of the present study was to synthesize a set of novel benzylidene ring containing 5- and 3-substituted-2,4-thiazolidinedione derivatives and evaluate them for their anticancer and antibacterial activity. METHODS The synthesized compounds were characterized by IR, NMR, mass, and elemental studies. The in vitro cytotoxicity studies were performed for human breast cancer (MCF-7) and human lung cancer (A549) cells and HepG2 cell-line and compared to standard drug doxorubicin by MTT assay. Antimicrobial activity of the synthesized 2,4-thiazolidinediones derivatives was carried out using the cup plate method with slight modification. RESULTS The results obtained showed that TZ-5 and TZ-13 exhibited good antiproliferative activity against A549 cancer cell-line, whereas TZ-10 exhibited moderate antiproliferative activity against HepG2 cell-line when compared to standard drug doxorubicin. TZ-5 also exhibited reasonable activity against the MCF-7 cell-line with doxorubicin as standard. TZ-4, TZ-5, TZ-6, TZ-7, and TZ- 16 exhibited remarkable antibacterial activity against Gram positive and moderate activity against Gram negative bacteria with the standard drug ciprofloxacin. CONCLUSION Attachment of heterocyclic rings containing nitrogen as the hetero atom improves the anticancer and antimicrobial potential. Attachment of electronegative elements like halogens can also enhance the antimicrobial activity. Further structure modifications may lead to the development of more potent 2,4-TZD leads that can be evaluated for further advanced studies.
Collapse
Affiliation(s)
- Navjot S Sethi
- School of Pharmacy, Maharaja Agrasen University, Atal Shiksha Kunj, Kalujhanda, Dist. Solan, 174103, Himachal Pradesh, India
| | - Deo N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| |
Collapse
|
15
|
Han G, Liu N, Li C, Tu J, Li Z, Sheng C. Discovery of Novel Fungal Lanosterol 14α-Demethylase (CYP51)/Histone Deacetylase Dual Inhibitors to Treat Azole-Resistant Candidiasis. J Med Chem 2020; 63:5341-5359. [PMID: 32347094 DOI: 10.1021/acs.jmedchem.0c00102] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Invasive fungal infections (particularly candidiasis) are emerging as severe infectious diseases worldwide. Because of serious antifungal drug resistance, therapeutic efficacy of the current treatment for candidiasis is limited and associated with high mortality. However, it is highly challenging to develop novel strategies and effective therapeutic agents to combat drug resistance. Herein, the first generation of lanosterol 14α-demethylase (CYP51)-histone deacetylase (HDAC) dual inhibitors was designed, which exhibited potent antifungal activity against azole-resistant clinical isolates. In particular, compounds 12h and 15j were highly active both in vitro and in vivo to treat azole-resistant candidiasis. Antifungal mechanism studies revealed that they acted by blocking ergosterol biosynthesis and HDAC catalytic activity in fungus, suppressing the function of efflux pump, yeast-to-hypha morphological transition, and biofilm formation. Therefore, CYP51-HDAC dual inhibitors represent a promising strategy to develop novel antifungal agents against azole-resistant candidiasis.
Collapse
Affiliation(s)
- Guiyan Han
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chenglan Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhuang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
16
|
Emami S, Ghobadi E, Saednia S, Hashemi SM. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur J Med Chem 2019; 170:173-194. [DOI: 10.1016/j.ejmech.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/13/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
|
17
|
Nicola AM, Albuquerque P, Paes HC, Fernandes L, Costa FF, Kioshima ES, Abadio AKR, Bocca AL, Felipe MS. Antifungal drugs: New insights in research & development. Pharmacol Ther 2018; 195:21-38. [PMID: 30347212 DOI: 10.1016/j.pharmthera.2018.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for better antifungal therapy is commonly accepted in view of the high mortality rates associated with systemic infections, the low number of available antifungal classes, their associated toxicity and the increasing number of infections caused by strains with natural or acquired resistance. The urgency to expand the range of therapeutic options for the treatment of fungal infections has led researchers in recent decades to seek alternative antifungal targets when compared to the conventional ones currently used. Although new potential targets are reported, translating the discoveries from bench to bedside is a long process and most of these drugs fail to reach the patients. In this review, we discuss the development of antifungal drugs focusing on the approach of drug repurposing and the search for novel drugs for classical targets, the most recently described gene targets for drug development, the possibilities of immunotherapy using antibodies, cytokines, therapeutic vaccines and antimicrobial peptides.
Collapse
Affiliation(s)
| | - Patrícia Albuquerque
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Hugo Costa Paes
- Division of Clinical Medicine, University of Brasília Medical School, Brazil
| | - Larissa Fernandes
- Faculty of Ceilândia, University of Brasília, Brazil; Graduate Programme in Microbial Biology, University of Brasília, Brazil
| | - Fabricio F Costa
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; MATTER, Chicago, IL, USA; Cancer Biology and Epigenomics Program, Ann & Robert Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Paraná, Brazil
| | - Ana Karina Rodrigues Abadio
- School for Applied Social and Agricultural Sciences, State University of Mato Grosso, Nova Mutum Campus, Mato Grosso, Brazil
| | | | - Maria Sueli Felipe
- Graduate Programme in Genomic Science and Biotechnology, Catholic University of Brasília, Brazil; Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brazil.
| |
Collapse
|
18
|
Marc G, Stana A, Pîrnău A, Vlase L, Vodnar DC, Duma M, Tiperciuc B, Oniga O. 3,5-Disubstituted Thiazolidine-2,4-Diones: Design, Microwave-Assisted Synthesis, Antifungal Activity, and ADMET Screening. SLAS DISCOVERY 2018; 23:807-814. [PMID: 29437525 DOI: 10.1177/2472555218759035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of 12 new thiazolidine-2,4-dione derivatives were obtained by microwave-assisted synthesis. All compounds were physicochemically characterized by quantitative elemental C, H, N, S analysis and spectral data (mass spectrometry [MS], infrared [IR], and nuclear magnetic resonance [NMR]), with the results being in agreement with the expected data. An in vitro screening performed on Candida albicans ATCC 10231 showed their moderate antifungal activity, which was further investigated by determining the minimum inhibitory concentration and minimum fungicidal concentration values for the most active compounds on four strains of Candida. The molecular docking studies, performed against a fungal lanosterol 14α-demethylase, emphasized the importance of different molecular fragments in the compounds' structures for their antifungal activity. The synthesized compounds were subjected to in silico screening for the prediction of their absorption, distribution, metabolism, excretion, and toxicity (ADMET) and molecular properties. The results of the antifungal activity assays, docking study, and ADMET predictions revealed that the synthesized compounds are potential anti- Candida agents that might act by interacting with the fungal lanosterol 14α-demethylase and could be further optimized and developed as antifungal agents.
Collapse
Affiliation(s)
- Gabriel Marc
- 1 "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Cluj-Napoca, Romania
| | - Anca Stana
- 1 "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Cluj-Napoca, Romania
| | - Adrian Pîrnău
- 2 National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Laurian Vlase
- 3 "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca, Romania
| | - Dan C Vodnar
- 4 University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, Cluj-Napoca, Romania
| | - Mihaela Duma
- 5 State Veterinary Laboratory for Animal Health and Food Safety, Cluj-Napoca, Romania
| | - Brînduşa Tiperciuc
- 1 "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Cluj-Napoca, Romania
| | - Ovidiu Oniga
- 1 "Iuliu Haţieganu" University of Medicine and Pharmacy, Department of Pharmaceutical Chemistry, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Chen HJ, Jiang YJ, Zhang YQ, Jing QW, Liu N, Wang Y, Zhang WN, Sheng CQ. New triazole derivatives containing substituted 1,2,3-triazole side chains: Design, synthesis and antifungal activity. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Naim MJ, Alam MJ, Ahmad S, Nawaz F, Shrivastava N, Sahu M, Alam O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur J Med Chem 2017; 129:218-250. [DOI: 10.1016/j.ejmech.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
|
21
|
Abstract
There has been a global upsurge in fungal infections due to rise in immunodeficiencies, debilitation and situations of violated anatomical barriers. The available antifungal repertoire has limited activity and is fraught with toxicity concerns. Drug resistance has also shown a rapid upward trend. This has resulted in increased treatment failures, mortality and health care costs. Novel effective and safe antimycotics are needed. Analogues of existing antifungal compounds and new molecules are being developed. New targets are being explored for their putative role in curtailing fungal infections. Newer antigens as vaccine candidates are being researched into. Focused efforts in this direction have yielded encouraging results. This review illuminates the various antifungal strategies which hold promise for the future.
Collapse
|
22
|
In Vivo Anti-Candida Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:247382. [PMID: 26380266 PMCID: PMC4561301 DOI: 10.1155/2015/247382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
Candida species have increasingly deserved a special attention among the medical community. In spite of the presence of Candida species as a human commensal, alarming rates of local and systemic infections have been observed, varying from moderate to severe impact. Currently available antifungal drugs have progressively lost their effectiveness, pointing urgently the problem of the microorganisms with acquired-resistance. Natural matrices are secularly used for numerous purposes, being inclusive and highly effective as antimicrobials. Increasing evidence gives a particular emphasis to the contribution of phenolic extracts and related individual compounds. In vitro studies clearly confirm their prominent effects, but the confirmation through in vivo studies, including the involved mechanisms of action, is not so much deepened. Therefore, the present report aims to provide extensive knowledge about all these aspects, highlighting the most efficient phytochemical formulations, including therapeutic doses. Further studies need to be incited to deepen knowledge on this area, namely, focused on clinical trials to provide safer and more effective antimicrobials than the current ones.
Collapse
|
23
|
He X, Jiang Y, Zhang Y, Wu S, Dong G, Liu N, Liu Y, Yao J, Miao Z, Wang Y, Zhang W, Sheng C. Discovery of highly potent triazoleantifungal agents with piperidine-oxadiazole side chains. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00505h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel triazole antifungal agents containing piperidine-oxadiazole side chains were designed and synthesized. Compound 11b was highly active against Candida albicans with a MIC value of 0.016 μg mL−1.
Collapse
|