1
|
Ueberham L, Schädlich J, Schramke K, Braun S, Selg C, Laube M, Lönnecke P, Pietzsch J, Hey-Hawkins E. Carborane-Based Analogs of Celecoxib and Flurbiprofen, their COX Inhibition Potential, and COX Selectivity Index. ChemMedChem 2025:e2500166. [PMID: 40128115 DOI: 10.1002/cmdc.202500166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
The cylcooxygenase isoforms COX-1 and COX-2 are involved in the production of prostaglandins in physiological and pathological processes. The overexpression of COX-2 under inflammatory conditions, its role in cancer and neurodegenerative diseases necessitates the need to develop and improve nonsteroidal anti-inflammatory drugs. These mainly unselective COX inhibitors, e.g. aspirin, are used to reduce the symptoms of inflammation. To reduce unwanted side effects connected with unselective inhibition, the development of novel COX-2 selective inhibitors is a major goal. Herein, the synthesis, characterization and in vitro biological evaluation of eight flurbiprofen- and celecoxib-based carborane analogs are described. Carboranes as hydrophobic surrogates are suitable substituents that can contribute to a selectivity increase toward COX-2 due to size exclusion. The inhibitory efficacy for COX-1 and COX-2 of the four ortho- and four nido-carborane derivatives has been tested. The nido compounds are much more potent than their closo-carborane analogs. The celecoxib-based nido-carborane compound 10 shows an IC50(COX-2) value in the sub-μM range and slight selectivity for COX-2. This is in contrast to its ortho-carborane counterpart 9, which shows an inhibition preference for COX-1. While none of these carborane derivatives outperforms their organic analogs, the flurbiprofen-based nido-carborane derivatives 14a and 14b surpass the known carborane-based flurbiprofen analogs.
Collapse
Affiliation(s)
- Lea Ueberham
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Kim Schramke
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Sebastian Braun
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christoph Selg
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Lönnecke
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
- Faculty of Chemistry and Chemical Engineering Department of Chemistry, Babeş-Bolyai University, Str. Arany Janos Nr. 11, RO-400028, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Sonam S, Jelača S, Laube M, Schädlich J, Pietzsch J, Maksimović‐Ivanić D, Mijatović S, Kaluđerović GN, Hey‐Hawkins E. Carborane Conjugates with Ibuprofen, Fenoprofen and Flurbiprofen: Synthesis, Characterization, COX Inhibition Potential and In Vitro Activity. ChemMedChem 2025; 20:e202400018. [PMID: 38844420 PMCID: PMC11694610 DOI: 10.1002/cmdc.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/03/2024] [Indexed: 11/10/2024]
Abstract
The most effective anticancer drugs currently entail substantial and formidable side effects, and resistance of tumors to chemotherapeutic agents is a further challenge. Thus, the search for new anticancer drugs as well as novel therapeutic methods is still extremely important. Non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit COX (cyclooxygenase), overexpressed in some tumors. Carboranes are emerging as promising pharmacophores. We have therefore combined both moieties in a single molecule to design drugs with a dual mode of action and enhanced effectiveness. The NSAIDs ibuprofen, flurbiprofen, and fenoprofen were connected with 1,2-dicarba-closo-dodecaborane(12) via methylene, ethylene or propylene spacers. Three sets of carborane-NSAID conjugates were synthesized and analyzed through multinuclear (1H, 11B, and 13C) NMR spectroscopy. Conjugates with methylene spacers exhibited the most potent COX inhibition potential, particularly conjugates with flurbiprofen and fenoprofen, displaying higher selectivity towards COX-1. Furthermore, conjugates with methylene and ethylene spacers were more efficient in suppressing the growth of human cancer cell lines than their propylene counterparts. The carborane-flurbiprofen conjugate with an ethylene spacer was the most efficient and selective toward the COX-2-negative cell line HCT116. Its mode of action was basically cytostatic with minor contribution of apoptotic cell death and dominance of cells trapped in the division process.
Collapse
Affiliation(s)
- Sonam Sonam
- Institute of Bioanalytical ChemistryCentre for Biotechnology and Biomedicine (BBZ)Faculty of Chemistry and MineralogyLeipzig UniversityDeutscher Platz 504103LeipzigGermany
- Department of Engineering and Natural SciencesUniversity of Applied Sciences MerseburgEberhard-Leibnitz-Str. 206217MerseburgGermany
| | - Sanja Jelača
- Institute for Biological Research “Siniša Stanković”National Institute of the Republic of SerbiaUniversity of Belgrade11108BelgradeSerbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical BiologyInstitute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Bautzner Landstrasse 40001328DresdenGermany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical BiologyInstitute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Bautzner Landstrasse 40001328DresdenGermany
- Technische Universität DresdenSchool of ScienceFaculty of Chemistry and Food ChemistryMommsenstrasse 401062DresdenGermany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical BiologyInstitute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Bautzner Landstrasse 40001328DresdenGermany
- Technische Universität DresdenSchool of ScienceFaculty of Chemistry and Food ChemistryMommsenstrasse 401062DresdenGermany
| | - Danijela Maksimović‐Ivanić
- Institute for Biological Research “Siniša Stanković”National Institute of the Republic of SerbiaUniversity of Belgrade11108BelgradeSerbia
| | - Sanja Mijatović
- Institute for Biological Research “Siniša Stanković”National Institute of the Republic of SerbiaUniversity of Belgrade11108BelgradeSerbia
| | - Goran N. Kaluđerović
- Department of Engineering and Natural SciencesUniversity of Applied Sciences MerseburgEberhard-Leibnitz-Str. 206217MerseburgGermany
| | - Evamarie Hey‐Hawkins
- Institute of Bioanalytical ChemistryCentre for Biotechnology and Biomedicine (BBZ)Faculty of Chemistry and MineralogyLeipzig UniversityDeutscher Platz 504103LeipzigGermany
| |
Collapse
|
3
|
Selg C, Gordić V, Krajnović T, Buzharevski A, Laube M, Kazimir A, Lönnecke P, Wolniewicz M, Sárosi MB, Schädlich J, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Re-design and evaluation of diclofenac-based carborane-substituted prodrugs and their anti-cancer potential. Sci Rep 2024; 14:30488. [PMID: 39681576 DOI: 10.1038/s41598-024-81414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29). The tests showed that diclofenac and the carborane-substituted oxindoles exhibited no cytotoxicity, the dichlorophenyl-substituted oxindole had moderate anti-cancer activity, while with the amidine this effect was strongly potentiated with activity mapping within low micromolar range. Compound 3 abolished the viability of selected colon cancer cell line MC38 preferentially through strong inhibition of cell division and moderate apoptosis accompanied by ROS/RNS depletion. Our findings suggest that carborane-based prodrugs could be a promising direction for new anti-cancer therapies. Inhibition assays for COX-1 and COX-2 revealed that while diclofenac had strong COX inhibition, the re-engineered carborane compounds demonstrated a varied range of anti-cancer effects, probably owing to both, COX inhibition and COX-independent pathways.
Collapse
Affiliation(s)
- Christoph Selg
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Vuk Gordić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Antonio Buzharevski
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Aleksandr Kazimir
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Peter Lönnecke
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Mara Wolniewicz
- Department of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Menyhárt B Sárosi
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Evamarie Hey-Hawkins
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Donarska B, Cytarska J, Kołodziej-Sobczak D, Studzińska R, Kupczyk D, Baranowska-Łączkowska A, Jaroch K, Szeliska P, Bojko B, Różycka D, Olejniczak AB, Płaziński W, Łączkowski KZ. Synthesis of Carborane-Thiazole Conjugates as Tyrosinase and 11β-Hydroxysteroid Dehydrogenase Inhibitors: Antiproliferative Activity and Molecular Docking Studies. Molecules 2024; 29:4716. [PMID: 39407644 PMCID: PMC11477717 DOI: 10.3390/molecules29194716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The presented study depicts the synthesis of 11 carborane-thiazole conjugates with anticancer activity, as well as an evaluation of their biological activity as inhibitors of two enzymes: tyrosinase and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The overexpression of tyrosinase results in the intracellular accumulation of melanin and can be observed in melanoma. The overexpression of 11β-HSD1 results in an elevation of glucocorticoid levels and has been associated with the aggravation of metabolic disorders such as type II diabetes mellitus and obesity. Recently, as the comorbidity of melanomas and metabolic disorders is being recognized as an important issue, the search for new therapeutic options has intensified. This study demonstrates that carborane-thiazole derivatives inhibit both enzymes, exerting beneficial effects. The antiproliferative action of all newly synthesized compounds was evaluated using three cancer cell lines, namely A172 (human brain glioblastoma), B16F10 (murine melanoma) and MDA-MB-231 (human breast adenocarcinoma), as well as a healthy control cell line of HUVEC (human umbilical vein endothelial cells). The results show that 9 out of 11 newly synthesized compounds demonstrated similar antiproliferative action against the B16F10 cell line to the reference drug, and three of these compounds surpassed it. To the best of our knowledge, this study is the first to demonstrate dual inhibitory action of carborane-thiazole derivatives against both tyrosinase and 11β-HSD1. Therefore, it represents the first step towards the simultaneous treatment of melanoma and comorbid diseases such as type II diabetes mellitus.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland;
| | | | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Paulina Szeliska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (K.J.); (P.S.); (B.B.)
| | - Daria Różycka
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (D.R.); (A.B.O.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland; (B.D.); (J.C.); (D.K.-S.)
| |
Collapse
|
5
|
Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di- tert-butylphenol Analogs. Molecules 2023; 28:molecules28114547. [PMID: 37299023 DOI: 10.3390/molecules28114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.
Collapse
Affiliation(s)
- Sebastian Braun
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, School of Science, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Charge-Compensated Derivatives of Nido-Carborane. INORGANICS 2023. [DOI: 10.3390/inorganics11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review summarizes data on the main types of charge-compensated nido-carborane derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased stability due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives are considered according to the type of heteroatom bonded to a boron atom.
Collapse
|
7
|
Useini L, Mojić M, Laube M, Lönnecke P, Dahme J, Sárosi MB, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Mefenamic Acid and Their Biological Evaluation. ACS OMEGA 2022; 7:24282-24291. [PMID: 35874202 PMCID: PMC9301635 DOI: 10.1021/acsomega.2c01523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mefenamic acid represents a widely used nonsteroidal anti-inflammatory drug (NSAID) to treat the pain of postoperative surgery and heavy menstrual bleeding. Like other NSAIDs, mefenamic acid inhibits the synthesis of prostaglandins by nonselectively blocking cyclooxygenase (COX) isoforms COX-1 and COX-2. For the improved selectivity of the drug and, therefore, reduced related side effects, the carborane analogues of mefenamic acid were evaluated. The ortho-, meta-, and para-carborane derivatives were synthesized in three steps: halogenation of the respective cluster, followed by a Pd-catalyzed B-N coupling and hydrolysis of the nitrile derivatives under acidic conditions. The COX inhibitory activity and cytotoxicity for different cancer cell lines revealed that the carborane analogues have stronger antitumor potential compared to their parent organic compound.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Marija Mojić
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department
of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Peter Lönnecke
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Jonas Dahme
- Wilhelm-Ostwald-Institute
for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Menyhárt B. Sárosi
- Wilhelm-Ostwald-Institute
for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Sanja Mijatović
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Jens Pietzsch
- Department
of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01069 Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
9
|
Erkmen T, Serdar BS, Ateş H, Korkmaz M, Koçtürk S. Borax Pentahydrate and Disodium Pentaborate Decahydrate Are Candidates as Anti-leukemic Drug Components by Inducing Apoptosis and Changing Bax/Bcl-2 Ratio in HL-60 Cell Line. Biol Trace Elem Res 2022; 200:1608-1616. [PMID: 34184213 DOI: 10.1007/s12011-021-02802-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia and has the lowest 5-year survival rates. Current treatment strategies do not meet the expectations also. Therefore, there is a need to improve therapeutic approaches still. Boron, which is a natural trace element in human diet, is gaining attention with its important roles in cellular processes for the development of new anti-cancer drug candidates. For instance, bortezomib, a dipeptidyl boronic acid, has encouraging results in the treatment of multiple myeloma and mantle cell lymphoma. However, severe toxic effects and resistance development are the limitations to its application for AML treatment. Hence, the development of alternative boron-derived anti-AML agents is unmet need. Therefore, we aimed to evaluate anti-leukemic effect of two promising boron compounds, borax pentahydrate (BP) and disodium pentaborate decahydrate (DPD), and comparison of each other in terms of the capacity to trigger apoptosis on acute promyelocytic leukemia cells (HL-60). Cell viability was assessed by MTT assay. Apoptotic effects of the boron compounds on HL-60 cells were evaluated by annexin V/propidium iodide dyes and caspase 3/7 activity assay by flow cytometry. In addition, Bax/Bcl-2 and cleaved PARP levels were detected by western blotting. Although BP showed greater apoptosis-inducing capacity, we observed that both DPD (6 mM) and BP (24 mM) treatment showed anti-leukemic effect by triggering apoptotic pathway through increasing Bax/Bcl-2 ratio for the first time. Our study suggests that BP and DPD are the promising candidates for anti-AML drug development research, which may be confirmed by further wide-spectrum studies.
Collapse
Affiliation(s)
- Tuğba Erkmen
- Department of Medical Biochemistry, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Belgin Sert Serdar
- Department of Medical Biochemistry, Health Science Institute, Dokuz Eylül University, Izmir, Turkey
| | - Halil Ateş
- Faculty of Medicine, Oncology Institute, Dokuz Eylül University, Izmir, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Semra Koçtürk
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| |
Collapse
|
10
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
11
|
Kuhnert R, Kuhnert L, Sárosi M, George S, Draca D, Paskas S, Hofmann B, Steinhilber D, Honscha W, Mijatović S, Maksimović‐Ivanić D, Hey‐Hawkins E. Borcalein: a Carborane-Based Analogue of Baicalein with 12-Lipoxygenase-Independent Toxicity. ChemMedChem 2022; 17:e202100588. [PMID: 34694057 PMCID: PMC9298951 DOI: 10.1002/cmdc.202100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Indexed: 11/11/2022]
Abstract
12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency. An emerging approach to enhance metabolic stability of carbon-based pharmaceuticals is the use of metabolically stable, non-toxic boron clusters, such as dicarba-closo-dodecaborane(12)s (carboranes) as phenyl mimetics. Therefore, the unsubstituted phenyl ring of baicalein was replaced by meta-carborane, resulting in borcalein, the carborane analogue of baicalein. This substitution resulted in a decreased inhibitory activity toward 12-lipoxygenase, but led to increased toxicity in melanoma (A375, B16, B16F10) and colon cancer cell lines (SW480, HCT116, CT26CL25) with decreased tumour selectivity in comparison to baicalein. Surprisingly, borcalein displays a different mechanism of cytotoxicity with increased intracellular production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO).
Collapse
Affiliation(s)
- Robert Kuhnert
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Menyhárt‐B. Sárosi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Sven George
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dijana Draca
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Svetlana Paskas
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Bettina Hofmann
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryUniversity of FrankfurtMax-von-Laue-Straße 960438FrankfurtGermany
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and ToxicologyFaculty of Veterinary MedicineLeipzig UniversityAn den Tierkliniken 1504103LeipzigGermany
| | - Sanja Mijatović
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Danijela Maksimović‐Ivanić
- Department of ImmunologyInstitute for Biological Research “Sinisa Stankovic”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
12
|
Comprehensive exploration of chemical space using trisubstituted carboranes. Sci Rep 2021; 11:24101. [PMID: 34916538 PMCID: PMC8677773 DOI: 10.1038/s41598-021-03459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 42 trisubstituted carboranes categorised into five scaffolds were systematically designed and synthesized by exploiting the different reactivities of the twelve vertices of o-, m-, and p-carboranes to cover all directions in chemical space. Significant inhibitors of hypoxia inducible factor transcriptional activitay were mainly observed among scaffold V compounds (e.g., Vi–m, and Vo), whereas anti-rabies virus activity was observed among scaffold V (Va–h), scaffold II (IIb–g), and scaffold IV (IVb) compounds. The pharmacophore model predicted from compounds with scaffold V, which exhibited significant anti-rabies virus activity, agreed well with compounds IIb–g with scaffold II and compound IVb with scaffold IV. Normalized principal moment of inertia analysis indicated that carboranes with scaffolds I–V cover all regions in the chemical space. Furthermore, the first compounds shown to stimulate the proliferation of the rabies virus were found among scaffold V carboranes.
Collapse
|
13
|
Asawa Y, Nishida K, Kawai K, Domae K, Ban HS, Kitazaki A, Asami H, Kohno JY, Okada S, Tokuma H, Sakano D, Kume S, Tanaka M, Nakamura H. Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjug Chem 2021; 32:2377-2385. [PMID: 34699716 DOI: 10.1021/acs.bioconjchem.1c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.
Collapse
Affiliation(s)
- Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kiyotaka Domae
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Akihiro Kitazaki
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroya Asami
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
14
|
Ham H, Shin S, Ko GH, Han SH, Han GU, Maeng C, Kim TH, Noh HC, Lee K, Kim H, Yang H, Lee PH. Direct and Regioselective Palladium(II)-Catalyzed B(4)-H Monoacyloxylation and B(4,5)-H Diacetoxylation of o-Carborane Acids with Phenyliodonium Dicarboxylates. J Org Chem 2021; 86:15153-15163. [PMID: 34592103 DOI: 10.1021/acs.joc.1c01804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A direct B(4)-H monoacyloxylation via a Pd-catalyzed regioselective B(4)-H activation of o-carborane acids with phenyliodonium dicarboxylates was developed, and a series of B(4)-H monoacyloxylated o-carboranes decorated with active groups were synthesized with moderate to good yields as well as excellent selectivity. In addition, a direct B(4,5)-H diacetoxylation from o-carborane acids with phenyliodonium diacetate was demonstrated.
Collapse
Affiliation(s)
- Hyeongcheol Ham
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seohyun Shin
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tae Hyeon Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hanjoong Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Heejin Yang
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Drača D, Marković M, Gozzi M, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Ruthenacarborane and Quinoline: A Promising Combination for the Treatment of Brain Tumors. Molecules 2021; 26:molecules26133801. [PMID: 34206482 PMCID: PMC8270330 DOI: 10.3390/molecules26133801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 μM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.
Collapse
Affiliation(s)
- Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Milan Marković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
| | - Marta Gozzi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Medical Faculty, Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (M.M.)
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany;
- Correspondence: (S.M.); (D.M.-I.); (E.H.-H.); Tel.: +381-11-2078-452 (S.M. & D.M.-I.); Tel.: +49-341-9736151 (E.H.-H.)
| |
Collapse
|
16
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
17
|
Saretz S, Basset G, Useini L, Laube M, Pietzsch J, Drača D, Maksimović-Ivanić D, Trambauer J, Steiner H, Hey-Hawkins E. Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules 2021; 26:2843. [PMID: 34064783 PMCID: PMC8151329 DOI: 10.3390/molecules26102843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer's disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood-brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood-brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.
Collapse
Affiliation(s)
- Stefan Saretz
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
- Chemische Biologie, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Gabriele Basset
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Liridona Useini
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Johannes Trambauer
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Harald Steiner
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
- German Center for Neurogenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, D-81377 München, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| |
Collapse
|
18
|
Różycka D, Korycka-Machała M, Żaczek A, Dziadek J, Gurda D, Orlicka-Płocka M, Wyszko E, Biniek-Antosiak K, Rypniewski W, Olejniczak AB. Novel Isoniazid-Carborane Hybrids Active in Vitro Against Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13:ph13120465. [PMID: 33333865 PMCID: PMC7765321 DOI: 10.3390/ph13120465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a severe infectious disease with high mortality and morbidity. The emergence of drug-resistant TB has increased the challenge to eliminate this disease. Isoniazid (INH) remains the key and effective component in the therapeutic regimen recommended by World Health Organization (WHO). A series of isoniazid-carborane derivatives containing 1,2-dicarba-closo-dodecaborane, 1,7-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, or 7,8-dicarba-nido-undecaborate anion were synthesized for the first time. The compounds were tested in vitro against the Mycobacterium tuberculosis (Mtb) H37Rv strain and its mutant (DkatG) defective in the synthesis of catalase-peroxidase (KatG). N'-((7,8-dicarba-nido-undecaboranyl)methylidene)isonicotinohydrazide (16) showed the highest activity against the wild-type Mtb strain. All hybrids could inhibit the growth of the ΔkatG mutant in lower concentrations than INH. N'-([(1,12-dicarba-closo-dodecaboran-1yl)ethyl)isonicotinohydrazide (25) exhibited more than 60-fold increase in activity against Mtb DkatG as compared to INH. This compound was also found to be noncytotoxic up to a concentration four times higher than the minimum inhibitory concentration 99% (MIC99) value.
Collapse
Affiliation(s)
- Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Małgorzata Korycka-Machała
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Anna Żaczek
- Institute of Medical Sciences, Medical College, University of Rzeszow, 2A Kopisto Avenue, 35-959 Rzeszow, Poland;
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
| | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Katarzyna Biniek-Antosiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14Z. Noskowskiego St., 61-704 Poznan, Poland; (D.G.); (M.O.-P.); (E.W.); (K.B.-A.); (W.R.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232 Lodz, Poland; (D.R.); (M.K.-M.); (J.D.)
- Correspondence: ; Tel.: +48-42-272-36-37
| |
Collapse
|
19
|
Lutz MR, Flieger S, Colorina A, Wozny J, Hosmane NS, Becker DP. Carborane-Containing Matrix Metalloprotease (MMP) Ligands as Candidates for Boron Neutron-Capture Therapy (BNCT). ChemMedChem 2020; 15:1897-1908. [PMID: 32720425 DOI: 10.1002/cmdc.202000470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Based on the previously reported potent and selective sulfone hydroxamate inhibitors SC-76276, SC-78080 (SD-2590), and SC-77964, potent MMP inhibitors have been designed and synthesized to append a boron-rich carborane cluster by employing click chemistry to target tumor cells that are known to upregulate gelatinases. Docking against MMP-2 suggests binding involving the hydroxamate zinc-binding group, key H-bonds by the sulfone moiety with the peptide backbone residues Leu82 and Leu83, and a hydrophobic interaction with the deep P1' pocket. The more potent of the two triazole regioisomers exhibits an IC50 of 3.7 nM versus MMP-2 and IC50 of 46 nM versus MMP-9.
Collapse
Affiliation(s)
- Marlon R Lutz
- Biosynthetic Technologies, 6320 Intech Way, Indianapolis, IN 46278, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andre Colorina
- Regis Technologies, Inc., 8210 Austin Ave., Morton Grove, Illinois 60053, USA
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
20
|
Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem Rev 2020; 120:7592-7641. [PMID: 32609495 PMCID: PMC8253488 DOI: 10.1021/acs.chemrev.0c00215] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.
Collapse
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
21
|
Kellert M, Sárosi I, Rajaratnam R, Meggers E, Lönnecke P, Hey-Hawkins E. Ruthenacarborane-Phenanthroline Derivatives as Potential Metallodrugs. Molecules 2020; 25:molecules25102322. [PMID: 32429279 PMCID: PMC7287719 DOI: 10.3390/molecules25102322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/28/2023] Open
Abstract
Ruthenium-based complexes have received much interest as potential metallodrugs. In this work, four RuII complexes bearing a dicarbollide moiety, a carbonyl ligand, and a phenanthroline-based ligand were synthesized and characterized, including single crystal diffraction analysis of compounds 2, 4, and 5 and an observed side product SP1. Complexes 2-5 are air and moisture stable under ambient conditions. They show excellent solubility in organic solvents, but low solubility in water.
Collapse
Affiliation(s)
- Martin Kellert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Imola Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
- Correspondence: ; Tel.: +49-341-97-36151
| |
Collapse
|
22
|
Buzharevski A, Paskaš S, Sárosi MB, Laube M, Lönnecke P, Neumann W, Murganić B, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carboranyl Derivatives of Rofecoxib with Cytostatic Activity against Human Melanoma and Colon Cancer Cells. Sci Rep 2020; 10:4827. [PMID: 32179835 PMCID: PMC7076013 DOI: 10.1038/s41598-020-59059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the involvement of cyclooxygenase-2 (COX-2) in carcinogenesis, COX-2-selective inhibitors are increasingly studied for their potential cytotoxic properties. Moreover, the incorporation of carboranes in structures of established anti-inflammatory drugs can improve the potency and metabolic stability of the inhibitors. Herein, we report the synthesis of carborane-containing derivatives of rofecoxib that display remarkable cytotoxic or cytostatic activity in the micromolar range with excellent selectivity for melanoma and colon cancer cell lines over normal cells. Furthermore, it was shown that the carborane-modified derivatives of rofecoxib showed different modes of action that were dependent on the cell type.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Menyhárt-Botond Sárosi
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Wilma Neumann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Danijelа Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstrasse 4, D-01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany.
| |
Collapse
|
23
|
Bakardjiev M, El Anwar S, Bavol D, Růžičková Z, Grűner B. Focus on Chemistry of the 10-Dioxane- nido-7,8-dicarba-undecahydrido Undecaborate Zwitterion; Exceptionally Easy Abstraction of Hydrogen Bridge and Double-Action Pathways Observed in Ring Cleavage Reactions with OH - as Nucleophile. Molecules 2020; 25:E814. [PMID: 32069968 PMCID: PMC7070711 DOI: 10.3390/molecules25040814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ring cleavage of cyclic ether substituents attached to a boron cage via an oxonium oxygen atom are amongst the most versatile methods for conjoining boron closo-cages with organic functional groups. Here we focus on much less tackled chemistry of the 11-vertex zwitterionic compound [10-(O-(CH2-CH2)2O)-nido-7,8-C2B9H11] (1), which is the only known representative of cyclic ether substitution at nido-cages, and explore the scope for the use of this zwitterion 1 in reactions with various types of nucleophiles including bifunctional ones. Most of the nitrogen, oxygen, halogen, and sulphur nucleophiles studied react via nucleophilic substitution at the C1 atom of the dioxane ring, followed by its cleavage that produces six atom chain between the cage and the respective organic moiety. We also report the differences in reactivity of this nido-cage system with the simplest oxygen nucleophile, i.e., OH-. With compound 1, reaction proceeds in two possible directions, either via typical ring cleavage, or by replacement of the whole dioxane ring with -OH at higher temperatures. Furthermore, an easy deprotonation of the hydrogen bridge in 1 was observed that proceeds even in diluted aqueous KOH. We believe this knowledge can be further applied in the design of functional molecules, materials, and drugs.
Collapse
Affiliation(s)
- Mário Bakardjiev
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53210 Pardubice, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| |
Collapse
|
24
|
Taher AT, Mostafa Sarg MT, El-Sayed Ali NR, Hilmy Elnagdi N. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Chem 2019; 89:103023. [DOI: 10.1016/j.bioorg.2019.103023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
|
25
|
Stockmann P, Gozzi M, Kuhnert R, Sárosi MB, Hey-Hawkins E. New keys for old locks: carborane-containing drugs as platforms for mechanism-based therapies. Chem Soc Rev 2019; 48:3497-3512. [PMID: 31214680 DOI: 10.1039/c9cs00197b] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Icosahedral carboranes in medicine are still an emerging class of compounds with potential beneficial applications in drug design. These highly hydrophobic clusters are potential "new keys for old locks" which open up an exciting field of research for well-known, but challenging important therapeutic substrates, as demonstrated by the numerous examples discussed in this review.
Collapse
Affiliation(s)
- Philipp Stockmann
- Universität Leipzig, Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
26
|
Buzharevski A, Paskas S, Laube M, Lönnecke P, Neumann W, Murganic B, Mijatovic S, Maksimovic-Ivanic D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Ketoprofen with Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ACS OMEGA 2019; 4:8824-8833. [PMID: 31459970 PMCID: PMC6648485 DOI: 10.1021/acsomega.9b00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 05/04/2023]
Abstract
Ketoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) that also exhibits cytotoxic activity against various cancers. This makes ketoprofen an attractive structural lead for the development of new NSAIDs and cytotoxic agents. Recently, the incorporation of carboranes as phenyl mimetics in structures of established drugs has emerged as an attractive strategy in drug design. Herein, we report the synthesis and evaluation of four novel carborane-containing derivatives of ketoprofen, two of which are prodrug esters with an nitric oxide-releasing moiety. One of these prodrug esters exhibited high cytostatic activity against melanoma and colon cancer cell lines. The most pronounced activity was found in cell lines that are sensitive to oxidative stress, which was apparently induced by the ketoprofen analogue.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Svetlana Paskas
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Markus Laube
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Peter Lönnecke
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Wilma Neumann
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Blagoje Murganic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Sanja Mijatovic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Danijela Maksimovic-Ivanic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Jens Pietzsch
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Mommsenstrasse 4, D-01062 Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
- E-mail: . Fax: (+49)341-9739319
| |
Collapse
|
27
|
Goswami LN, Olds TJ, Monk TG, Johnson QL, Dilger JP, Shanawaz MA, Jalisatgi SS, Hawthorne MF, Kracke GR. Isomeric Carborane Neuromuscular Blocking Agents. ChemMedChem 2019; 14:1108-1114. [DOI: 10.1002/cmdc.201800817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/06/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Lalit N. Goswami
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - Tyson J. Olds
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - Terri G. Monk
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - Quinn L. Johnson
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| | - James P. Dilger
- Stony Brook UniversityDepartment of Anesthesiology Stony Brook NY 11794 USA
| | | | - Satish S. Jalisatgi
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular MedicineUniversity of Missouri Columbia MO 65212 USA
| | - George R. Kracke
- Department of Anesthesiology and Perioperative MedicineUniversity of Missouri School of Medicine, Dalton Cardiovascular Research Center (GRK) Columbia MO 65212 USA
| |
Collapse
|
28
|
Gozzi M, Schwarze B, Hey-Hawkins E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-0806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Today, medicinal chemistry is still clearly dominated by organic chemistry, and commercially available boron-based drugs are rare. In contrast to hydrocarbons, boranes prefer the formation of polyhedral clusters via delocalized 3c2e bonds, such as polyhedral dicarba-closo-dodecaborane(12) (closo-C2B10H12). These clusters have remarkable biological stability, and the three isomers, 1,2- (ortho), 1,7- (meta), and 1,12-dicarba-closo-dodecaborane(12) (para), have attracted much interest due to their unique structural features. Furthermore, anionic nido clusters ([7,8-C2B9H11]2−), derived from the neutral icosahedral closo cluster 1,2-dicarba-closo-dodecaborane(12) by deboronation followed by deprotonation are suitable ligands for transition metals and offer the possibility to form metallacarboranes, for example via coordination through the upper pentagonal face of the cluster. The isolobal analogy between the cyclopentadienyl(–1) ligand (Cp−) and [C2B9H11]2− clusters (dicarbollide anion, Cb2−) is the motivation in using Cb2− as ligand for coordination to a metal center to design compounds for various applications. This review focuses on potential applications of half- and mixed-sandwich-type transition metal complexes in medicine.
Collapse
Affiliation(s)
- Marta Gozzi
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Benedikt Schwarze
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany
| | - Evamarie Hey-Hawkins
- Universität Leipzig, Institut für Anorganische Chemie , Johannisallee 29 , 04103 Leipzig , Germany , Phone: +49-341-9736151, Fax: +49-341-9739319
| |
Collapse
|
29
|
Moldovan RP, Wenzel B, Teodoro R, Neumann W, Dukic-Stefanovic S, Kraus W, Rong P, Deuther-Conrad W, Hey-Hawkins E, Krügel U, Brust P. Studies towards the development of a PET radiotracer for imaging of the P2Y 1 receptors in the brain: synthesis, 18F-labeling and preliminary biological evaluation. Eur J Med Chem 2019; 165:142-159. [PMID: 30665144 DOI: 10.1016/j.ejmech.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Purine nucleotides such as ATP and ADP are important extracellular signaling molecules in almost all tissues activating various subtypes of purinoreceptors. In the brain, the P2Y1 receptor (P2Y1R) subtype mediates trophic functions like differentiation and proliferation, and modulates fast synaptic transmission, both suggested to be affected in diseases of the central nervous system. Research on P2Y1R is limited because suitable brain-penetrating P2Y1R-selective tracers are not yet available. Here, we describe the first efforts to develop an 18F-labeled PET tracer based on the structure of the highly affine and selective, non-nucleotidic P2Y1R allosteric modulator 1-(2-[2-(tert-butyl)phenoxy]pyridin-3-yl)-3-[4-(trifluoromethoxy)phenyl]urea (7). A small series of fluorinated compounds was developed by systematic modification of the p-(trifluoromethoxy)phenyl, the urea and the 2-pyridyl subunits of the lead compound 7. Additionally, the p-(trifluoromethoxy)phenyl subunit was substituted by carborane, a boron-rich cluster with potential applicability in boron neutron capture therapy (BNCT). By functional assays, the new fluorinated derivative 1-{2-[2-(tert-butyl)phenoxy]pyridin-3-yl}-3-[4-(2-fluoroethyl)phenyl]urea (18) was identified with a high P2Y1R antagonistic potency (IC50 = 10 nM). Compound [18F]18 was radiosynthesized by using tetra-n-butyl ammonium [18F]fluoride with high radiochemical purity, radiochemical yield and molar activities. Investigation of brain homogenates using hydrophilic interaction chromatography (HILIC) revealed [18F]fluoride as major radiometabolite. Although [18F]18 showed fast in vivo metabolization, the high potency and unique allosteric binding mode makes this class of compounds interesting for further optimizations and investigation of the theranostic potential as PET tracer and BNCT agent.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Wilma Neumann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Sladjana Dukic-Stefanovic
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Werner Kraus
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
30
|
Messina MS, Graefe CT, Chong P, Ebrahim OM, Pathuri RS, Bernier NA, Mills HA, Rheingold AL, Frontiera RR, Maynard HD, Spokoyny AM. Carborane RAFT agents as tunable and functional molecular probes for polymer materials. Polym Chem 2019. [DOI: 10.1039/c9py00199a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carborane RAFT agents are introduced as tunable multi-purpose tools acting as 1H NMR spectroscopic handles, Raman probes, and recognition units.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | | | - Paul Chong
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
- Department of Chemistry
| | - Omar M. Ebrahim
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Ramya S. Pathuri
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Nicholas A. Bernier
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Harrison A. Mills
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | | | | | - Heather D. Maynard
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
- California NanoSystems Institute
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
- California NanoSystems Institute
| |
Collapse
|
31
|
Kuhnert R, Sárosi MB, George S, Lönnecke P, Hofmann B, Steinhilber D, Steinmann S, Schneider-Stock R, Murganić B, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Carborane-Based Analogues of 5-Lipoxygenase Inhibitors Co-inhibit Heat Shock Protein 90 in HCT116 Cells. ChemMedChem 2018; 14:255-261. [DOI: 10.1002/cmdc.201800651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/12/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Robert Kuhnert
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Menyhárt-Botond Sárosi
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Sven George
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| | - Bettina Hofmann
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Dieter Steinhilber
- Institut für Pharmazeutische Chemie; Johann-Wolfgang-Goethe-Universität Frankfurt; Max-von-Laue-Straße 9 60438 Frankfurt Germany
| | - Sara Steinmann
- Pathologisches Institut; Universität Erlangen; Universitätsstraße 22 91054 Erlangen Germany
| | - Regine Schneider-Stock
- Pathologisches Institut; Universität Erlangen; Universitätsstraße 22 91054 Erlangen Germany
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Sinisa Stankovic”; University of Belgrade; Bul. despota Stefana 142 11060 Belgrade Serbia
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy; Institute of Inorganic Chemistry; Universität Leipzig; Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
32
|
Smyshliaeva LA, Varaksin MV, Slepukhin PA, Chupakhin ON, Charushin VN. Transition metal-free oxidative and deoxygenative C-H/C-Li cross-couplings of 2 H-imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes. Beilstein J Org Chem 2018; 14:2618-2626. [PMID: 30410624 PMCID: PMC6204773 DOI: 10.3762/bjoc.14.240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
The direct C-H functionalization methodology has first been applied to perform transition metal-free C-H/C-Li cross-couplings of 2H-imidazole 1-oxides with carboranyllithium. This atom- and step-economical approach, based on one-pot reactions of nucleophilic substitution of hydrogen (SN H) in non-aromatic azaheterocycles, affords novel imidazolyl-modified carboranes of two types (N-oxides and their deoxygenative analogues), which are particularly of interest in the design of advanced materials.
Collapse
Affiliation(s)
| | - Mikhail V Varaksin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620041 Ekaterinburg, Russia
| | - Pavel A Slepukhin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620041 Ekaterinburg, Russia
| | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620041 Ekaterinburg, Russia
| | - Valery N Charushin
- Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620041 Ekaterinburg, Russia
| |
Collapse
|
33
|
Sárosi MB, Lybrand TP. Molecular Dynamics Simulation of Cyclooxygenase-2 Complexes with Indomethacin closo-Carborane Analogs. J Chem Inf Model 2018; 58:1990-1999. [PMID: 30067351 DOI: 10.1021/acs.jcim.8b00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular dynamics simulation of carborane-containing ligands in complex with target enzymes is a challenging task due to the unique structure and properties of the carborane substituents and relative lack of appropriate experimental data to help assess the quality of carborane force field parameters. Here, we report results from energy minimization calculations for a series of carborane-amino acid complexes using carborane force field parameters published previously in the literature and adapted for use with the AMBER ff99SB and ff14SB potential functions. These molecular mechanics results agree well with quantum mechanical geometry optimization calculations obtained using dispersion-corrected density functional theory methods, suggesting that the carborane force field parameters should be suitable for more detailed calculations. We then performed molecular dynamics simulations for the 1,2-, 1,7-, and 1,12-dicarba- closo-dodecaborane(12) derivatives of indomethacin methyl ester bound with cyclooxygenase-2. The simulation results suggest that only the ortho-carborane derivative forms a stable complex, in agreement with experimental findings, and provide insight into the possible molecular basis for isomer binding selectivity.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy , Leipzig University , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Terry P Lybrand
- Departments of Chemistry and Pharmacology, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37235-1822 , United States
| |
Collapse
|
34
|
Sárosi MB. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study. J Mol Model 2018; 24:150. [PMID: 29869728 DOI: 10.1007/s00894-018-3686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/21/2018] [Indexed: 01/24/2023]
Abstract
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
35
|
Dąbrowska A, Matuszewski M, Zwoliński K, Ignaczak A, Olejniczak AB. Insight into lipophilicity of deoxyribonucleoside‑boron cluster conjugates. Eur J Pharm Sci 2018; 111:226-237. [DOI: 10.1016/j.ejps.2017.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/14/2023]
|
36
|
Li CX, Zhang HY, Wong TY, Cao HJ, Yan H, Lu CS. Pyridyl-Directed Cp*Rh(III)-Catalyzed B(3)–H Acyloxylation of o-Carborane. Org Lett 2017; 19:5178-5181. [DOI: 10.1021/acs.orglett.7b02450] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hao-Yun Zhang
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Tsz-Yung Wong
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Hong Yan
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory
of Coordination
Chemistry, School of Chemistry and Chemical Engineering, and Jiangsu
Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
37
|
Gozzi M, Schwarze B, Sárosi MB, Lönnecke P, Drača D, Maksimović-Ivanić D, Mijatović S, Hey-Hawkins E. Antiproliferative activity of (η 6-arene)ruthenacarborane sandwich complexes against HCT116 and MCF7 cell lines. Dalton Trans 2017; 46:12067-12080. [PMID: 28799598 DOI: 10.1039/c7dt02027a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three [(η6-arene)RuC2B9H11] complexes (arene = p-cymene (2), biphenyl (3) and 1-Me-4-COOEt-C6H4 (4)) were synthesised according to modified literature procedures and fully characterised. 2-4 were found to be moderately active against two types of tumour cell lines (HCT116 and MCF7), with IC50 values in the low micromolar range. However, viability of normal, healthy cells (MRC-5 cell line, MLEC and mouse macrophages) was not affected by treatment with 2-4, indicating high selectivity of the metallacarborane complexes towards tumour cell lines, compared to the unselective antitumour agent cisplatin and other potential RuII drugs. Moreover, flow cytometric analysis suggested that 4 induces cell death via a caspase-dependent apoptotic mechanism. DFT calculations of the frontier molecular orbitals showed that the HOMO-LUMO gap in 2-4 is smaller than in the corresponding cyclopentadienyl complexes 2-Cp-4-Cp (e.g. 5.47 (2) vs. 6.31 eV (2-Cp)). In order to assess the stability of 2-4, particularly the ruthenium-dicarbollide bond, energy decomposition analysis (EDA) of 2-4, together with the respective cyclopentadienyl analogues 2-Cp-4-Cp, was performed. EDA suggests that the ruthenium(ii)-dicarbollide bond in the three complexes is mostly ionic and far stronger than the ruthenium(ii)-arene bond.
Collapse
Affiliation(s)
- Marta Gozzi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Benedikt Schwarze
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Menyhárt-Botond Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Dijana Drača
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- University of Belgrade, Institute of Biological Research "Siniša Stanković", Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
38
|
Sárosi MB, Neumann W, Lybrand TP, Hey-Hawkins E. Molecular Modeling of the Interactions between Carborane-Containing Analogs of Indomethacin and Cyclooxygenase-2. J Chem Inf Model 2017. [DOI: 10.1021/acs.jcim.7b00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Menyhárt-Botond Sárosi
- Institute
of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Wilma Neumann
- Institute
of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| | - Terry P. Lybrand
- Center
for Structural Biology, Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-8725, United States
| | - Evamarie Hey-Hawkins
- Institute
of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
39
|
Kuhnert R, Sárosi MB, George S, Lönnecke P, Hofmann B, Steinhilber D, Murganic B, Mijatovic S, Maksimovic-Ivanic D, Hey-Hawkins E. CarbORev-5901: The First Carborane-Based Inhibitor of the 5-Lipoxygenase Pathway. ChemMedChem 2017; 12:1081-1086. [PMID: 28569429 DOI: 10.1002/cmdc.201700309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 05/31/2017] [Indexed: 01/05/2023]
Abstract
The progression of cancer is accelerated by increased proliferation, angiogenesis, and inflammation. These processes are mediated by leukotrienes. Several cancer cell lines overexpress 5-lipoxygenase, an enzyme that converts arachidonic acid into leukotrienes. An early inhibitor of the 5-lipoxygenase pathway is Rev-5901, which, however, lacks in in vivo efficacy, as it is rapidly metabolized. We investigated the introduction of carboranes as highly hydrophobic and metabolically stable pharmacophores into lipoxygenase inhibitors. Carboranes are icosahedral boron clusters that are remarkably stable and used to increase the metabolic stability of unstable pharmaceutics without changing their biological activity. By introduction of meta-carborane into Rev-5901, the first carborane-based inhibitor of the 5-lipoxygenase pathway was obtained. We report the synthesis and inhibitory and cytotoxic behavior of these compounds toward several melanoma and colon cancer cell lines and their related anticancer mechanisms.
Collapse
Affiliation(s)
- Robert Kuhnert
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Menyhárt-Botond Sárosi
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Sven George
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Bettina Hofmann
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Dieter Steinhilber
- Institut für Pharmazeutische Chemie, Johann-Wolfgang-Goethe-Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Blagoje Murganic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11060, Belgrade, Serbia
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11060, Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
40
|
Ilie A, Crespo O, Gimeno MC, Holthausen MC, Laguna A, Diefenbach M, Silvestru C. (N,Se) and (Se,N,Se) Ligands Based on Carborane and Pyridine Fragments - Reactivity of 2,6-[(1′-Me-1′,2′-closo-C2B10H10)SeCH2]2C5H3N towards Copper and Silver. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adriana Ilie
- Departamentul de Chimie; Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM); Facultatea de Chimie şi Inginerie Chimică; Universitatea Babeş-Bolyai; 400028 Cluj-Napoca Romania
| | - Olga Crespo
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie; Goethe-Universität Frankfurt am Main; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Antonio Laguna
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Martin Diefenbach
- Institut für Anorganische und Analytische Chemie; Goethe-Universität Frankfurt am Main; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Cristian Silvestru
- Departamentul de Chimie; Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM); Facultatea de Chimie şi Inginerie Chimică; Universitatea Babeş-Bolyai; 400028 Cluj-Napoca Romania
| |
Collapse
|
41
|
Abstract
Amide bond formation is one of the most important chemical reactions. In peptide and organic chemistry, the application of amide coupling reagents is a routine strategy, but surprisingly not in carborane chemistry. Thus, we now report a fast, safe, and robust protocol to couple amines to m- and p-dicarba-closo-dodecaborane-1-carboxylic acids. The procedure comprises the activation of carboxylic acid with the coupling reagent (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)(dimethylamino)morpholinocarbenium hexafluorophosphate, extraction of the product using the hydrophobic nature of the cluster, and a straightforward chromatographic purification. The protocol allows access to a variety of carborane-organic hybrid molecules suitable for application in multiple areas.
Collapse
Affiliation(s)
- Matthias S Scholz
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| | - Lukas M Wingen
- Pharmaceutical Institute, University of Bonn , An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
42
|
Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: an overview (2009-2016). MEDCHEMCOMM 2017; 8:492-500. [PMID: 30108767 PMCID: PMC6072045 DOI: 10.1039/c6md00569a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Most drugs used to treat pain and inflammation act through inhibition of the enzymes prostaglandin G/H synthase, commonly known as cyclooxygenase (COX). Among these, the simultaneous inhibition of cyclooxygenase 1 (COX-1) would explain the unwanted side effects in the gastrointestinal tract and many adverse cardiovascular effects, such as high blood pressure, myocardial infarction and thrombosis. These side effects led in time to the development of NSAIDs that behave as selective COX-2 inhibitors. This manuscript highlights the structure-activity relationships which characterize the chemical scaffolds endowed with selective COX-2 inhibition. Additionally, the role of COX-2 inhibitors in the pain phenomenon and cancer is discussed.
Collapse
Affiliation(s)
- G Carullo
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Galligano
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Aiello
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| |
Collapse
|
43
|
Friedrich Löffler Prize: D. Segets / Toray Science and Technology Prize: S. Kobayashi / Inhoffen Medal: T. Carell / Leipzig Science Prize: A. G. Beck-Sickinger / Nenitzescu-Criegee Lectureship: E. Hey-Hawkins / Humboldt, Siemens, and Bessel Research Awards / New Members of German Academies of Sciences and Humanities. Angew Chem Int Ed Engl 2016; 55:9129-30. [PMID: 27355969 DOI: 10.1002/anie.201605626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Friedrich‐Löffler‐Preis: D. Segets / Toray Science and Technology Prize: S. Kobayashi / Inhoffen‐Medaille: T. Carell / Leipziger Wissenschaftspreis: A. G. Beck‐Sickinger / Nenitzescu‐Criegee‐Vorlesung: E. Hey‐Hawkins / Humboldt‐, Siemens‐ und Bessel‐Forschungspreise / Neue Mitglieder deutscher Wissenschaftsakademien. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Leśnikowski ZJ. Challenges and Opportunities for the Application of Boron Clusters in Drug Design. J Med Chem 2016; 59:7738-58. [PMID: 27124656 DOI: 10.1021/acs.jmedchem.5b01932] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are two branches in boron medicinal chemistry: the first focuses on single boron atom compounds, and the second utilizes boron clusters. Boron clusters and their heteroatom counterparts belong to the family of cage compounds. A subset of this extensive class of compounds includes dicarbadodecaboranes, which have the general formula C2B10H12, and their metal biscarboranyl complexes, metallacarboranes, with the formula [M(C2B10H12)2(-2)]. The unique properties of boron clusters have resulted in their utilization in applications such as in pharmacophores, as scaffolds in molecular construction, and as modulators of bioactive compounds. This Perspective presents an overview of the properties of boron clusters that are pertinent for drug discovery, recent applications in the design of various classes of drugs, and the potential use of boron clusters in the construction of new pharmaceuticals.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| |
Collapse
|
46
|
Abstract
INTRODUCTION After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. AREAS COVERED The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. EXPERT OPINION Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
Collapse
Affiliation(s)
- Zbigniew J Leśnikowski
- a Institute of Medical Biology, Polish Academy of Sciences , Laboratory of Molecular Virology and Biological Chemistry , Lodz , Poland
| |
Collapse
|
47
|
Laube M, Kniess T, Pietzsch J. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy-A Hypothesis-Driven Review. Antioxidants (Basel) 2016; 5:antiox5020014. [PMID: 27104573 PMCID: PMC4931535 DOI: 10.3390/antiox5020014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents.
Collapse
Affiliation(s)
- Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany.
| |
Collapse
|