1
|
Tomassi S, Dimmito MP, Cai M, D’Aniello A, Del Bene A, Messere A, Liu Z, Zhu T, Hruby VJ, Stefanucci A, Cosconati S, Mollica A, Di Maro S. CLIPSing Melanotan-II to Discover Multiple Functionally Selective hMCR Agonists. J Med Chem 2022; 65:4007-4017. [DOI: 10.1021/acs.jmedchem.1c01848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, Naples 80131, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Antonia D’Aniello
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Del Bene
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Tingyi Zhu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, Chieti 66100, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
2
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2021; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
3
|
Dotter H, Boll M, Eder M, Eder AC. Library and post-translational modifications of peptide-based display systems. Biotechnol Adv 2021; 47:107699. [PMID: 33513435 DOI: 10.1016/j.biotechadv.2021.107699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Innovative biotechnological methods empower the successful identification of new drug candidates. Phage, ribosome and mRNA display represent high throughput screenings, allowing fast and efficient progress in the field of targeted drug discovery. The identification range comprises low molecular weight peptides up to whole antibodies. However, a major challenge poses the stability and affinity in particular of peptides. Chemical modifications e.g. the introduction of unnatural amino acids or cyclization, have been proven to be essential tools to overcome these limitations. This review article particularly focuses on available methods for the targeted chemical modification of peptides and peptide libraries in selected display approaches.
Collapse
Affiliation(s)
- Hanna Dotter
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie Boll
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Structure-based design of small bicyclic peptide inhibitors of Cripto-1 activity. Biochem J 2020; 477:1391-1407. [PMID: 32215602 DOI: 10.1042/bcj20190953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Bicyclic peptides assembled around small organic scaffolds are gaining an increasing interest as new potent, stable and highly selective therapeutics because of their uncommon ability to specifically recognize protein targets, of their small size that favor tissue penetration and of the versatility and easiness of the synthesis. We have here rationally designed bicyclic peptides assembled around a common tri-bromo-methylbenzene moiety in order to mimic the structure of the CFC domain of the oncogene Cripto-1 and, more specifically, to orient in the most fruitful way the hot spot residues H120 and W123. Through the CFC domain, Cripto-1 binds the ALK4 receptor and other protein partners supporting uncontrolled cell growth and proliferation. Soluble variants of CFC have the potential to inhibit these interactions suppressing the protein activity. A CFC analog named B3 binds ALK4 in vitro with an affinity in the nanomolar range. Structural analyses in solution via NMR and CD show that B3 has rather flexible conformations, like the parent CFC domain. The functional effects of B3 on the Cripto-1-positive NTERA cancer cell line have been evaluated showing that both CFC and B3 are cytotoxic for the cells and block the Cripto-1 intracellular signaling. Altogether, the data suggest that the administration of the soluble CFC and of the structurally related analog has the potential to inhibit tumor growth.
Collapse
|
5
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
6
|
Choi JS, Joo SH. Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol Ther (Seoul) 2020; 28:18-24. [PMID: 31597413 PMCID: PMC6939695 DOI: 10.4062/biomolther.2019.082] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
Notable progress has been made in the therapeutic and research applications of cyclic peptides since our previous review. New drugs based on cyclic peptides are entering the market, such as plecanatide, a cyclic peptide approved by the United States Food and Drug Administration in 2017 for the treatment of chronic idiopathic constipation. In this review, we discuss recent developments in stapled peptides, prepared with the use of chemical linkers, and bicyclic/tricyclic peptides with more than two rings. These have widespread applications for clinical and research purposes: imaging, diagnostics, improvement of oral absorption, enzyme inhibition, development of receptor agonist/antagonist, and the modulation of protein-protein interaction or protein-RNA interaction. Many cyclic peptides are expected to emerge as therapeutics and biochemical tools.
Collapse
Affiliation(s)
- Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
7
|
Adaligil E, Patil K, Rodenstein M, Kumar K. Discovery of Peptide Antibiotics Composed of d-Amino Acids. ACS Chem Biol 2019; 14:1498-1506. [PMID: 31243959 DOI: 10.1021/acschembio.9b00234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A paucity of viable programs and pipelines for the discovery of new antibiotics poses a significant public health threat. The emergence of resistant strains against vancomycin is particularly dangerous in hospital settings. Here, we report the design of enantiomeric targets based on bacterial cell wall biosynthesis precursors that allow for selection and identification of short linear, cyclic and bicyclic peptides that are composed of d-amino acids. These compounds are active against Staphylococcus aureus, Methicillin-resistant S. aureus, and vancomycin-resistant Enterococci that possess moderately high antibacterial activity and furthermore display no toxicity to both human red blood cells and mammalian cells at these concentrations. This 'mirror image phage display' approach yielded templates that can serve as scaffolds for further improvements in activity-based structural modifications. This strategy has the potential to provide a new class of antimicrobials that are metabolically stable and have the promise for oral delivery. The use of this platform combined with traditional medicinal chemistry approaches could rapidly yield large numbers of new therapeutic lead compounds.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Kalyani Patil
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Marissa Rodenstein
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Cancer Center, Tufts Medical Center, Boston, Massachusetts 02110, United States
| |
Collapse
|
8
|
Ahangarzadeh S, Kanafi MM, Hosseinzadeh S, Mokhtarzadeh A, Barati M, Ranjbari J, Tayebi L. Bicyclic peptides: types, synthesis and applications. Drug Discov Today 2019; 24:1311-1319. [PMID: 31102732 DOI: 10.1016/j.drudis.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
Bicyclic peptides form one of the most promising platforms for drug development owing to their biocompatibility, similarity and chemical diversity to proteins, and they are considered as a possible practical tool in various therapeutic and diagnostic applications. Bicyclic peptides are known to have the capability of being employed as an effective alternative to complex molecules, such as antibodies, or small molecules. This review provides a summary of the recent progress on the types, synthesis and applications of bicyclic peptides. More specifically, natural and synthetic bicyclic peptides are introduced with their different production methods and relevant applications, including drug targeting, imaging and diagnosis. Their uses as antimicrobial agents, as well as the therapeutic functions of different bicyclic peptides, are also discussed.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad M Kanafi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA.
| |
Collapse
|
9
|
Ottl J, Leder L, Schaefer JV, Dumelin CE. Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules 2019; 24:E1629. [PMID: 31027189 PMCID: PMC6514559 DOI: 10.3390/molecules24081629] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/22/2023] Open
Abstract
The scope of targets investigated in pharmaceutical research is continuously moving into uncharted territory. Consequently, finding suitable chemical matter with current compound collections is proving increasingly difficult. Encoded library technologies enable the rapid exploration of large chemical space for the identification of ligands for such targets. These binders facilitate drug discovery projects both as tools for target validation, structural elucidation and assay development as well as starting points for medicinal chemistry. Novartis internalized two complementing encoded library platforms to accelerate the initiation of its drug discovery programs. For the identification of low-molecular weight ligands, we apply DNA-encoded libraries. In addition, encoded peptide libraries are employed to identify cyclic peptides. This review discusses how we apply these two platforms in our research and why we consider it beneficial to run both pipelines in-house.
Collapse
Affiliation(s)
- Johannes Ottl
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Lukas Leder
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Jonas V Schaefer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | | |
Collapse
|
10
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
11
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
13
|
Richelle GJJ, Ori S, Hiemstra H, van Maarseveen JH, Timmerman P. General and Facile Route to Isomerically Pure Tricyclic Peptides Based on Templated Tandem CLIPS/CuAAC Cyclizations. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaston J. J. Richelle
- Bioinspired Organic Synthesis; Van't Hoff Institute for Molecular Sciences (HIMS); Science Park 904 1098 XH Amsterdam The Netherlands
| | - Sumeet Ori
- Bioinspired Organic Synthesis; Van't Hoff Institute for Molecular Sciences (HIMS); Science Park 904 1098 XH Amsterdam The Netherlands
| | - Henk Hiemstra
- Bioinspired Organic Synthesis; Van't Hoff Institute for Molecular Sciences (HIMS); Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jan H. van Maarseveen
- Bioinspired Organic Synthesis; Van't Hoff Institute for Molecular Sciences (HIMS); Science Park 904 1098 XH Amsterdam The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics; Zuidersluisweg 2 8243 RC Lelystad The Netherlands
| |
Collapse
|
14
|
Richelle GJJ, Ori S, Hiemstra H, van Maarseveen JH, Timmerman P. General and Facile Route to Isomerically Pure Tricyclic Peptides Based on Templated Tandem CLIPS/CuAAC Cyclizations. Angew Chem Int Ed Engl 2017; 57:501-505. [PMID: 29193727 DOI: 10.1002/anie.201709127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/17/2017] [Indexed: 11/06/2022]
Abstract
We report a one-pot ligation/cyclization technology for the rapid and clean conversion of linear peptides into tricyclic peptides that is based on using tetravalent scaffolds containing two benzyl bromide and two alkyne moieties. These react via CLIPS/CuAAC reactions with cysteines and azides in the peptide. Flexibility in the scaffolds is key to the formation of isomerically pure products as the flexible scaffolds T41 and T42 mostly promote the formation of single isomeric tricycles while the rigid scaffolds T43 and T44 do not yield clean products. There seems to be no limitation to the number and types of amino acids present as 18 canonical amino acids were successfully implemented. We also observed that azides at the peptide termini and cysteine residues in the center gave better results than compounds with the functional groups placed the other way round.
Collapse
Affiliation(s)
- Gaston J J Richelle
- Bioinspired Organic Synthesis, Van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Sumeet Ori
- Bioinspired Organic Synthesis, Van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Henk Hiemstra
- Bioinspired Organic Synthesis, Van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan H van Maarseveen
- Bioinspired Organic Synthesis, Van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC, Lelystad, The Netherlands
| |
Collapse
|
15
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
16
|
Deyle K, Kong XD, Heinis C. Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc Chem Res 2017; 50:1866-1874. [PMID: 28719188 DOI: 10.1021/acs.accounts.7b00184] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic peptides can bind to protein targets with high affinities and selectivities, which makes them an attractive modality for the development of research reagents and therapeutics. Additional properties, including low inherent toxicity, efficient chemical synthesis, and facile modification with labels or immobilization reagents, increase their attractiveness. Cyclic peptide ligands against a wide range of protein targets have been isolated from natural sources such as bacteria, fungi, plants, and animals. Many of them are currently used as research tools, and several have found application as therapeutics, such as the peptide hormones oxytocin and vasopressin and the antibiotics vancomycin and daptomycin, proving the utility of cyclic peptides in research and medicine. With the advent of phage display and other in vitro evolution techniques, it has become possible to generate cyclic peptide binders to diverse protein targets for which no natural peptides have been discovered. A highly robust and widely applied approach is based on the cyclization of peptides displayed on phage via a disulfide bridge. Disulfide-cyclized peptide ligands to more than a hundred different proteins have been reported in the literature. Technology advances achieved over the last three decades, including methods for generating larger phage display libraries, improved phage panning protocols, new cyclic peptide formats, and high-throughput sequencing, have enabled the generation of cyclic peptides with ever better binding affinities to more challenging targets. A relatively new cyclic peptide format developed using phage display involves bicyclic peptides. These molecules consist of two macrocyclic peptide rings cyclized through a chemical linker. Compared to monocyclic peptides of comparable molecular mass, bicyclic peptides are more constrained in their conformation. As a result, they can bind to their targets with a higher affinity and are more resistant to proteolytic degradation. Phage-encoded bicyclic peptides are generated by chemically cyclizing random peptide libraries on phage. Binders are identified by conventional phage panning and DNA sequencing. Next-generation sequencing and new sequence alignment tools have enabled the rapid identification of bicyclic peptides. Bicyclic peptide ligands were developed against a range of diverse target classes including enzymes, receptors, and cytokines. Most ligands bind with nanomolar affinities, with some reaching the picomolar range. To date, several bicyclic peptides have been positively evaluated in preclinical studies, and the first clinical tests are in sight. While bicyclic peptide phage display was developed with therapeutic applications in mind, these peptides are increasingly used as research tools for target evaluation or as basic research probes as well. Given the efficient development method, the ease of synthesis and handling, and the favorable binding and biophysical properties, bicyclic peptides are being developed against more and more targets, ever increasing their potential applications in research and medicine.
Collapse
Affiliation(s)
- Kaycie Deyle
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Rhodes CA, Pei D. Bicyclic Peptides as Next-Generation Therapeutics. Chemistry 2017; 23:12690-12703. [PMID: 28590540 DOI: 10.1002/chem.201702117] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.
Collapse
Affiliation(s)
- Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
18
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
19
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
20
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
21
|
Peraro L, Siegert TR, Kritzer JA. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation. Methods Enzymol 2016; 580:303-32. [PMID: 27586339 DOI: 10.1016/bs.mie.2016.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- L Peraro
- Tufts University, Medford, MA, United States
| | - T R Siegert
- Tufts University, Medford, MA, United States
| | - J A Kritzer
- Tufts University, Medford, MA, United States.
| |
Collapse
|
22
|
Cardote TAF, Ciulli A. Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Surfaces and Probe Protein-Protein Interactions. ChemMedChem 2015; 11:787-94. [PMID: 26563831 PMCID: PMC4848765 DOI: 10.1002/cmdc.201500450] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/25/2023]
Abstract
Targeting protein surfaces and protein-protein interactions (PPIs) with small molecules is a frontier goal of chemical biology and provides attractive therapeutic opportunities in drug discovery. The molecular properties of protein surfaces, including their shallow features and lack of deep binding pockets, pose significant challenges, and as a result have proved difficult to target. Peptides are ideal candidates for this mission due to their ability to closely mimic many structural features of protein interfaces. However, their inherently low intracellular stability and permeability and high in vivo clearance have thus far limited their biological applications. One way to improve these properties is to constrain the secondary structure of linear peptides by cyclisation. Herein we review various classes of cyclic and macrocyclic peptides as chemical probes of protein surfaces and modulators of PPIs. The growing interest in this area and recent advances provide evidence of the potential of developing peptide-like molecules that specifically target these interactions.
Collapse
Affiliation(s)
- Teresa A F Cardote
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|