1
|
Monroe HJC, Bello DJ, Duff BJ, Elsegood MRJ, Watanabe K, Pritchard GJ, Kimber MC. Nucleophilic Substitution of 1,3-Diiodobicyclo[1.1.1]pentane: Synthesis of Bicyclo[1.1.1]pentylpyridinium, Quinolinium, Isoquinolinium, and Pyrazolium Salts. J Org Chem 2025; 90:7712-7722. [PMID: 40425508 DOI: 10.1021/acs.joc.5c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
In this study, we describe the synthesis of bicyclo[1.1.1]pentane salts by the nucleophilic reaction of 1,3-diodobicyclo[1.1.1]pentane (DIBCP) with several classes of nucleophiles. The bicyclo[1.1.1]pentane fragments are established isosteres for tbutyl, alkynyl, and 1,4-diaryl structural units, whose synthesis is typically achieved by addition to the unstable, cryogenically stored, [1.1.1]propellane precursor. In contrast, DIBCP is a stable crystalline solid, with the potential to be a feedstock in the synthesis of BCP fragments. This work provides a straightforward, practical synthetic route to bicyclo[1.1.1]pentylpyridinium, quinolinium, isoquinolinium and pyrazolium salts. This transformation displays a broad substrate scope, good yield profile, with several of the BCP products being fully characterized by single-crystal X-ray crystallography. The reaction proceeds by nucleophilic substitution on 1,3-diodobicyclo[1.1.1]pentane (DIBCP), and we provide detailed computational analysis, showing the role of two nucleophiles in stabilizing a key carbocation intermediate. The synthesized salts are isosteres of existing arylpyridinium and arylquinolinium salts used within pharmaceuticals and high-value commodity chemicals within the industrial chemical sector. Finally, the synthetic utility of these salts is examined, providing practical synthetic routes to N-pyridin-4-one and N-quinolin-4-one substituted bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
- Harvey J C Monroe
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| | - Dolapo J Bello
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| | - Bradley J Duff
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| | - Mark R J Elsegood
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| | - Kohei Watanabe
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Gareth J Pritchard
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| | - Marc C Kimber
- Department of Chemistry, School of Science, Loughborough University, Ashby Road, Loughborough LE11 3TU, U.K
| |
Collapse
|
2
|
Ning X, Zhao T, Zhu Y, Liu B, Yan X, Xia Y. Enantioselective Synthesis of Axially Chiral Alkylidenecyclobutanes via Palladium-Catalyzed N-Tosylhydrazone-Based Carbene Coupling. J Am Chem Soc 2025; 147:16773-16780. [PMID: 40350605 DOI: 10.1021/jacs.5c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The synthesis of axially chiral alkylidenecyclobutanes remains challenging due to the requirement of both an efficient asymmetric catalytic system and preservation of its inherent strained ring structure. We herein disclose an enantioselective carbene cross-coupling reaction of cyclobutanecarbaldehyde-derived N-tosylhydrazones with aryl bromides, enabled by palladium catalysis in combination with an elaborately modified sulfinamide phosphine ligand (Sadphos). This method demonstrates the feasibility of constructing axial chirality on a strained metal carbene intermediate precisely through a sequential process of enantiodetermined migratory insertion followed by central-to-axial-chirality-transfer β-H elimination. The reaction provides access to diverse alkylidenecyclobutanes featuring a heteroatom-substituted, tertiary and all-carbon quaternary stereocenter with excellent yields (up to 95%) and high enantioselectivities (up to 95% ee). Moreover, both enantiomers can be selectively obtained by choosing either cis- or trans-cyclobutane substrates in a stereospecific manner.
Collapse
Affiliation(s)
- Xiaoqin Ning
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tonglin Zhao
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Knyazev DA, George M, Werz DB. (3 + 2)-Cycloaddition of bicyclobutanes and thioketones: access to 2-thiabicyclo[2.1.1]hexanes without the use of catalysts or light. Chem Sci 2025; 16:8588-8593. [PMID: 40321184 PMCID: PMC12046421 DOI: 10.1039/d5sc00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
A novel approach to the synthesis of a 2-thiabicyclo[2.1.1]hexane scaffold has been described. This method utilizes two highly reactive species: bicyclo[1.1.0]butanes (BCBs) and thioketones. Their high reactivity enabled the formation of the desired product to occur under ambient conditions, without the need for catalysts, additives or light irradiation. To the best of our knowledge, this is the first rational synthesis of this specific skeleton. A variety of carbonyl-substituted BCBs, with or without a substituent at the other bridgehead, and thioketones were examined.
Collapse
Affiliation(s)
- Daniil A Knyazev
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry Albertstr. 21 79104 Freiburg Germany http://www.werzlab.de/
| | - Malini George
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry Albertstr. 21 79104 Freiburg Germany http://www.werzlab.de/
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry Albertstr. 21 79104 Freiburg Germany http://www.werzlab.de/
| |
Collapse
|
4
|
Natho P, Colella M, Vicenti A, Romanazzi G, Ullah F, Sheikh NS, White AJP, Pasca F, Luisi R. Shifting Lithium Amide Reactivity to the Radical Domain: Regioselective Radical C-H Functionalization of 3-Iodooxetane for the Synthesis of 1,5-Dioxaspiro[2.3]hexanes. Angew Chem Int Ed Engl 2025; 64:e202424346. [PMID: 39869059 DOI: 10.1002/anie.202424346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Strained spiro-heterocycles (SSHs) have gained significant attention within the medicinal chemistry community as promising sp3-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle-1,5-dioxaspiro[2.3]hexane. Our synthetic approach leverages a lithium-amide induced single-electron transfer to benzophenones generating an N-centered radical and a ketyl radical anion-reminiscent of a frustrated radical pair. This pair works synergistically to selectively abstract the β-hydrogen from 3-iodooxetane, initiating an exergonic radical-radical coupling reaction. This process enables the formation of the desired bond between the oxetane core and benzophenone derivatives, ultimately yielding the novel 1,5-dioxaspiro[2.3]hexane core. The stability and synthetic utility of the novel 1,5-dioxaspiro[2.3]hexane motif are showcased. An in-depth mechanistic investigation is presented, including cyclic voltammetry studies, as well as computational calculations and experiments to support the mechanism of this new single electron synthetic tactic.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Annarita Vicenti
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | | | - Faizan Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, 22060, Pakistan
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Francesco Pasca
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
5
|
Chen S, Xu Z, Yuan B, Gou XY, Ackermann L. Difunctionalization of bicyclo[1.1.0]butanes enabled by merging C-C cleavage and ruthenium-catalysed remote C-H activation. NATURE SYNTHESIS 2025; 4:655-663. [PMID: 40375955 PMCID: PMC12075002 DOI: 10.1038/s44160-025-00745-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/22/2025] [Indexed: 05/18/2025]
Abstract
The high fraction of sp 3-hybridized carbon atom (Fsp 3) character of cyclobutane derivatives renders them as highly promising bioisosteres for otherwise typically flat arenes. Here, to address the current needs in medicinal chemistry for Fsp 3-rich molecules, we disclose a distinct strategy that exploits the merger of C-C scission in bicyclo[1.1.0]butanes (BCBs) with ruthenium-catalysed remote C-H functionalization of heteroarenes, affording densely substituted cyclobutanes in a chemo-controlled manner. This approach enabled the rapid and efficient synthesis of versatile tri- and tetrasubstituted cyclobutanes by coupling a wide range of mono- or disubstituted BCBs with heteroarenes and alkyl halides under mild reaction conditions, featuring ample substrate scope. The C-C/C-H functionalization was ensured by a multifunctional ruthenium(II) catalyst that enabled ruthenacycle-mediated halogen-atom transfer (Ru-XAT), as well as the selective functionalization of BCBs by strain release. Experimental and computational mechanistic studies unravelled a multi-catalysis manifold, while the C-H/C-C functionalization strategy allowed for telescoping late-stage modification.
Collapse
Affiliation(s)
- Shan Chen
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Zhimin Xu
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xue-Ya Gou
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Jin J, Yang H, Xiang H, Lu Y, Ye Y. Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP). Top Curr Chem (Cham) 2025; 383:6. [PMID: 39826019 DOI: 10.1007/s41061-025-00490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed. As a novel building block, BCP could be directly involved in a variety of synthetic methods and widely used in the last-stage modification of drugs, attracting much attention from organic chemists and pharmacists. Radical-type cross-coupling reactions involving BCP enable the simultaneous formation of multiple chemical bonds (e.g., C-C, C-N, C-B, C-S, and C-Si) through metal catalysis, photocatalysis, metal-photo synergistic catalysis, and other catalytic systems. Various radical precursors have been explored, facilitating cross-coupling reactions that directly incorporate BCP. This review highlights these state-of-the-art radical couplings of BCP since 2017, organized by reaction components with emphasis on the scope of substrates, reaction mechanisms, and synthetic applications.
Collapse
Affiliation(s)
- Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yue Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Silvi E, Wei WJ, Johansson MJ, Himo F, Mendoza A. Uncatalyzed Diboron Activation by a Strained Hydrocarbon: Experimental and Theoretical Study of [1.1.1]Propellane Diborylation. Chemistry 2024; 30:e202402152. [PMID: 38940291 DOI: 10.1002/chem.202402152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The synthesis of strained carbocyclic building blocks is relevant for Medicinal Chemistry, and methylenecyclobutanes are particularly challenging with current synthetic technology. Careful inspection of the reactivity of [1.1.1]propellane and diboron reagents has revealed that bis(catecholato)diboron (B2cat2) can produce a bis(borylated) methylenecyclobutane in a few minutes at room temperature. This reaction constitutes the first example of B-B bond activation by a special apolar hydrocarbon and also the first time that propellane is electrophilically activated by boron. Mechanistic studies including in situ NMR kinetics and DFT calculations demonstrate that the diboron moiety can be directly activated through coordination with the inverted sigma bond of propellane, and reveal that DMF is involved in the stabilization of diboronate ylide intermediates rather than the activation of the B-B bond. These results enable new possibilities for both diboron and propellane chemistry, and for further developments in the synthesis of methylenecyclobutanes based on propellane strain release.
Collapse
Affiliation(s)
- Emanuele Silvi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (eCVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Wen-Jie Wei
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Magnus J Johansson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (eCVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Abraham Mendoza
- Institute of Molecular Science (ICMol), University of Valencia, Calle Catedrático José Beltrán, 2, 46980, Paterna, Spain
| |
Collapse
|
8
|
Ripenko V, Sham V, Levchenko V, Holovchuk S, Vysochyn D, Klymov I, Kyslyi D, Veselovych S, Zhersh S, Dmytriv Y, Tolmachev A, Sadkova I, Pishel I, Horbatok K, Kosach V, Nikandrova Y, Mykhailiuk PK. Light-enabled scalable synthesis of bicyclo[1.1.1]pentane halides and their functionalizations. NATURE SYNTHESIS 2024; 3:1538-1549. [PMID: 39664797 PMCID: PMC11628397 DOI: 10.1038/s44160-024-00637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/02/2024] [Indexed: 12/13/2024]
Abstract
In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring. Here, we report a general scalable reaction between alkyl iodides and propellane that provides bicyclo[1.1.1]pentane iodides in milligram, gram and even kilogram quantities. The reaction is performed in flow and requires just light; no catalysts, initiators or additives are needed. The reaction is clean enough that, in many cases, evaporation of the reaction mixture provides products in around 90% purity that can be directly used in further transformations without any purification. Combined with the subsequent functionalization, >300 bicyclo[1.1.1]pentanes for medicinal chemistry have been prepared. So far, this is the most general and scalable approach towards functionalized bicyclo[1.1.1]pentanes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yurii Dmytriv
- Enamine Ltd., Kyiv, Ukraine
- National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang M, Chapman M, Sarode BR, Xiong B, Liang H, Chen JK, Weerapana E, Morken JP. Catalytic asymmetric synthesis of meta benzene isosteres. Nature 2024; 633:90-95. [PMID: 39169193 PMCID: PMC11878547 DOI: 10.1038/s41586-024-07865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Matthew Chapman
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Bhagyesh R Sarode
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Bingcong Xiong
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hao Liang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | | | - James P Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
10
|
Li L, Pang Q, Chen B, Liu Y, Zhao Y, Wu J, Ge K, Shen J, Zhang P. A General Approach for the Synthesis of Cyanoisopropyl Bicyclo[1.1.1]pentane (BCP) Motifs by Energy Transfer Process. Org Lett 2024; 26:7060-7065. [PMID: 39137307 DOI: 10.1021/acs.orglett.4c02674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bicyclo[1.1.1]pentane (BCP) heteroaryls make up an important class of BCP derivatives in drug discovery. Herein, we report the visible-light-mediated synthesis of cyanoisopropyl BCP-heteroaryls motifs from N-containing heterocycles, [1.1.1]propellane, and AIBN (2,2'-azobis(isobutyronitrile)) through three-component cascade reaction. Importantly, this protocol is compatible with pyrazinones, quinoxaline-2(1H)-one, azauracils, quinoline derivatives, and imidazo[1,2-b]pyridazine, as well as various phenyl disulfide derivatives; thus, this operationally simple and general methodology could enable rapid library generation of sought-after BCP derivatives for drug development.
Collapse
Affiliation(s)
- Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Qing Pang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Binbin Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yumiao Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yuxuan Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jirong Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Kai Ge
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Jiabin Shen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
11
|
Guin A, Deswal S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective formal ene reaction of thioindolinones/thiolactams with bicyclobutanes. Chem Sci 2024; 15:12473-12479. [PMID: 39118603 PMCID: PMC11304820 DOI: 10.1039/d4sc02194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Bicyclo[1.1.0]butanes (BCBs), featuring two fused cyclopropane rings, have found widespread application in organic synthesis. Their versatile reactivity towards radicals, nucleophiles, cations, and carbenes makes them suitable for various reactions, including ring-opening and annulation strategies. Despite this versatility, their potential as enophiles in an ene reaction remains underexplored. Considering this and given the challenges of achieving diastereoselectivity in ring-opening reactions of BCBs, herein, we present a unique method utilizing BCBs as enophiles in a mild and diastereoselective Sc(OTf)3-catalyzed formal ene reaction with thioindolinones/thiolactams, delivering 1,3-disubstituted cyclobutane derivatives in high yields and excellent regio- and diastereoselectivity. Notably, structurally different thiolactam derivatives underwent diastereoselective addition to BCBs, affording the corresponding cyclobutanes. The synthesized thioindole-substituted cyclobutanes could serve as a versatile tool for subsequent functional group manipulations.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| |
Collapse
|
12
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Yuan F, Qi X, Zhao Y, Jia J, Yan X, Hu F, Xia Y. Diversified Synthesis of Chiral Fluorinated Cyclobutane Derivatives Enabled by Regio- and Enantioselective Hydroboration. Angew Chem Int Ed Engl 2024; 63:e202401451. [PMID: 38563752 DOI: 10.1002/anie.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
The diversified synthesis of chiral fluorinated cyclobutane derivatives has remained a difficult task in synthetic chemistry. Herein, we present an approach for asymmetric hydroboration and formal hydrodefluorination of gem-difluorinated cyclobutenes through rhodium catalysis, providing chiral gem-difluorinated α-boryl cyclobutanes and monofluorinated cyclobutenes with excellent regio- and enantioselectivity, respectively. The key to the success of the two transformations relies on an efficient, mild and highly selective rhodium-catalyzed asymmetric hydroboration with HBPin (pinacolborane), in which the subsequent addition of a base, and a catalytic amount of palladium in some cases, results in the formation of formal hydrodefluorination products with the four-membered ring retained. The obtained chiral gem-difluorinated α-boryl cyclobutanes are versatile building blocks that provide a platform for the synthesis of enantioenriched fluorinated cyclobutane derivatives to a great diversity.
Collapse
Affiliation(s)
- Fushan Yuan
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Xingyu Qi
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Yuanyue Zhao
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
14
|
Abe M, Coleman JS, Presley CC, Schley ND, Lindsley CW. Rapid sp 3-Enriched Scaffold Generation via a Selective Aziridine Amide Ring-Opening Reaction. J Org Chem 2024; 89:3500-3508. [PMID: 38340064 PMCID: PMC10913065 DOI: 10.1021/acs.joc.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Sp3-enriched small molecules play a critical role in developing drug candidates. While designing analogues with greater sp3 character, a methodology utilizing a less explored cyclic-aziridine amide ring-opening reaction to generate sp3-enriched scaffolds has been developed and reported. This methodology enables rapid access to substructures with higher fsp3 values, attracting greater attention within the past few decades. The reaction exhibits a wide reaction scope, featuring a highly sterically hindered phenolic ether, thiophenolic ethers, protected aniline formations, and aliphatic/heteroaromatic ring-containing aziridine amides as substrates. Additionally, this reaction provides access to congested tertiary ether formations through regioselective transformation, applicable to an extensive range of drug discovery targets, construction of complex small molecules, and natural product syntheses. The scaffolds developed show improved physicochemical properties.
Collapse
Affiliation(s)
- Masahito Abe
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Jeremy S. Coleman
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Christopher C. Presley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Nathan D. Schley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
15
|
Anderson JM, Poole DL, Cook GC, Murphy JA, Measom ND. Organometallic Bridge Diversification of Bicyclo[1.1.1]pentanes. Chemistry 2024; 30:e202304070. [PMID: 38117748 DOI: 10.1002/chem.202304070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Darren L Poole
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - Gemma C Cook
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Nicholas D Measom
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| |
Collapse
|
16
|
Zhao P, Xin BS, Ye L, Ma ZT, Yao GD, Shi R, He XH, Lin B, Huang XX, Song SJ. Structurally diverse rearranged sesquiterpenoids, including a pair of rare tautomers, from the aerial parts of Daphne penicillata. PHYTOCHEMISTRY 2024; 218:113950. [PMID: 38101591 DOI: 10.1016/j.phytochem.2023.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Eight structurally diverse rearranged sesquiterpenoids, including seven undescribed sesquiterpenoids (1a/1b and 3-8) were obtained from the aerial parts of Daphne penicillata. 1a/1b, 3, 5 and 6 possess rare rearranged guaiane skeletons and 4 represents the first example of rearranged carotene sesquiterpenoids. Their structures and absolute configurations were determined by extensive spectroscopic analyses, NMR and ECD calculations. Interestingly, 1a and 1b were a pair of magical interconverting epimers that may interconvert by retro-aldol condensation. The mechanism of interconversion has been demonstrated indirectly by 9-OH derivatization of 1a/1b and a hypothetical biogenetic pathway was proposed. All compounds were evaluated for anti-inflammatory and cytotoxic activities. Among them, 1a/1b and 2 exhibited potential inhibitory activities on the production of NO against LPS-induced BV2 microglial cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ben-Song Xin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Li Ye
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhen-Tao Ma
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan Kunming, 650224, China
| | - Xia-Hong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Foresty Research Center of Kunming, Horticulture and Landscape Architecture, Southwest Forestry University, Yunnan Kunming, 650224, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Basic Science Research Center Base (Pharmaceutical Science), Shandong Province, Yantai University, Yantai, 264005, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
17
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
18
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
19
|
Yasukawa T, Håheim KS, Cossy J. Synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes by cross-coupling induced by transition metals - formation of C-C bonds. Org Biomol Chem 2023; 21:7666-7680. [PMID: 37702418 DOI: 10.1039/d3ob01036h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The synthesis of 1,3-disubstituted bicyclo[1.1.1]pentanes (BCPs), by forming a C-C bond, can be achieved by cross-coupling reactions using transition metal catalysts. Two main strategies are described to access these 1,3-disubstituted BCPs, either from nucleophilic BCPs or electrophilic BCPs. Mechanisms are included where relevant.
Collapse
Affiliation(s)
- Tomohiro Yasukawa
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| | - Katja S Håheim
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 75005 Paris, France.
| |
Collapse
|
20
|
Levterov VV, Panasiuk Y, Sahun K, Stashkevych O, Badlo V, Shablykin O, Sadkova I, Bortnichuk L, Klymenko-Ulianov O, Holota Y, Lachmann L, Borysko P, Horbatok K, Bodenchuk I, Bas Y, Dudenko D, Mykhailiuk PK. 2-Oxabicyclo[2.2.2]octane as a new bioisostere of the phenyl ring. Nat Commun 2023; 14:5608. [PMID: 37783681 PMCID: PMC10545790 DOI: 10.1038/s41467-023-41298-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
The phenyl ring is a basic structural element in chemistry. Here, we show the design, synthesis, and validation of its new saturated bioisostere with improved physicochemical properties - 2-oxabicyclo[2.2.2]octane. The design of the structure is based on the analysis of the advantages and disadvantages of the previously used bioisosteres: bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, and cubane. The key synthesis step is the iodocyclization of cyclohexane-containing alkenyl alcohols with molecular iodine in acetonitrile. 2-Oxabicyclo[2.2.2]octane core is incorporated into the structure of Imatinib and Vorinostat (SAHA) drugs instead of the phenyl ring. In Imatinib, such replacement leads to improvement of physicochemical properties: increased water solubility, enhanced metabolic stability, and reduced lipophilicity. In Vorinostat, such replacement results in a new bioactive analog of the drug. This study enhances the repertoire of available saturated bioisosteres of (hetero)aromatic rings for the use in drug discovery projects.
Collapse
Affiliation(s)
| | | | - Kateryna Sahun
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Valentyn Badlo
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Oleh Shablykin
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
- V. P. Kukhar IBOPC of the NASciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Iryna Sadkova
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Lina Bortnichuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Petro Borysko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Iryna Bodenchuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Yuliia Bas
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | |
Collapse
|
21
|
Shire B, Anderson EA. Conquering the Synthesis and Functionalization of Bicyclo[1.1.1]pentanes. JACS AU 2023; 3:1539-1553. [PMID: 37388694 PMCID: PMC10301682 DOI: 10.1021/jacsau.3c00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/01/2023]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have become established as attractive bioisosteres for para-substituted benzene rings in drug design. Conferring various beneficial properties compared with their aromatic "parents," BCPs featuring a wide array of bridgehead substituents can now be accessed by an equivalent variety of methods. In this perspective, we discuss the evolution of this field and focus on the most enabling and general methods for BCPs synthesis, considering both scope and limitation. Recent breakthroughs on the synthesis of bridge-substituted BCPs are described, as well as methodologies for postsynthesis functionalization. We further explore new challenges and directions for the field, such as the emergence of other rigid small ring hydrocarbons and heterocycles possessing unique substituent exit vectors.
Collapse
|
22
|
Guin A, Bhattacharjee S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective carbofunctionalization of bicyclobutanes employing naphthols. Chem Sci 2023; 14:6585-6591. [PMID: 37350821 PMCID: PMC10284142 DOI: 10.1039/d3sc01373a] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Traditional radical-mediated ring-opening of bicyclo[1.1.0]butanes (BCBs) for cyclobutane synthesis suffers from poor diastereoselectivity. Although few reports on BCB ring-opening via polar mechanisms are available, the Lewis acid-catalyzed diastereoselective ring-opening of BCBs using carbon nucleophiles is still underdeveloped. Herein, we report a mild and diastereoselective Bi(OTf)3-catalyzed ring-opening of BCBs employing 2-naphthols. The anticipated carbofunctionalized trisubstituted cyclobutanes were obtained via a bicoordinated bismuth complex and the products are formed in good to excellent yields with high regio- and diastereoselectivity. The scope of the reaction was further extended using electron-rich phenols and naphthylamine. The functionalization of the synthesized trisubstituted cyclobutanes shows the synthetic utility of the present method.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| |
Collapse
|
23
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
24
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
25
|
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
26
|
Wölfl B, Winter N, Li J, Noble A, Aggarwal VK. Strain-Release Driven Epoxidation and Aziridination of Bicyclo[1.1.0]butanes via Palladium Catalyzed σ-Bond Nucleopalladation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202217064. [PMID: 38516047 PMCID: PMC10952369 DOI: 10.1002/ange.202217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 12/14/2022]
Abstract
The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziridines containing a cyclobutane motif. In a two-step one-pot process, a bicyclo[1.1.0]butyl sulfoxide is lithiated and added to a ketone, aldehyde or imine, and the resulting intermediate is cross-coupled with an aryl triflate through C-C σ-bond alkoxy- or aminopalladation with concomitant epoxide or aziridine formation. After careful optimization, a remarkably efficient reaction was conceived that tolerated a broad variety of both aromatic and aliphatic substrates. Lastly, through several high yielding ring-opening reactions, we demonstrated the excellent applicability of the products as modular building blocks for the introduction of three-dimensional structures into target molecules.
Collapse
Affiliation(s)
- Bernhard Wölfl
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Nils Winter
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jiajing Li
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
27
|
Wölfl B, Winter N, Li J, Noble A, Aggarwal VK. Strain-Release Driven Epoxidation and Aziridination of Bicyclo[1.1.0]butanes via Palladium Catalyzed σ-Bond Nucleopalladation. Angew Chem Int Ed Engl 2023; 62:e202217064. [PMID: 36507714 PMCID: PMC10107310 DOI: 10.1002/anie.202217064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziridines containing a cyclobutane motif. In a two-step one-pot process, a bicyclo[1.1.0]butyl sulfoxide is lithiated and added to a ketone, aldehyde or imine, and the resulting intermediate is cross-coupled with an aryl triflate through C-C σ-bond alkoxy- or aminopalladation with concomitant epoxide or aziridine formation. After careful optimization, a remarkably efficient reaction was conceived that tolerated a broad variety of both aromatic and aliphatic substrates. Lastly, through several high yielding ring-opening reactions, we demonstrated the excellent applicability of the products as modular building blocks for the introduction of three-dimensional structures into target molecules.
Collapse
Affiliation(s)
- Bernhard Wölfl
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Nils Winter
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jiajing Li
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
28
|
McDonald TR, Rousseaux SAL. Synthesis of 3-borylated cyclobutanols from epihalohydrins or epoxy alcohol derivatives. Chem Sci 2023; 14:963-969. [PMID: 36755731 PMCID: PMC9890513 DOI: 10.1039/d2sc06088d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is an increasing interest in cyclobutanes within the medicinal chemistry community. Therefore, methods to prepare cyclobutanes that contain synthetic handles for further elaboration are of interest. Herein, we report a new approach for the synthesis of 3-borylated cyclobutanols via a formal [3 + 1]-cycloaddition using readily accessible 1,1-diborylalkanes and epihalohydrins or epoxy alcohol derivatives. 1-Substituted epibromohydrin starting materials provide access to borylated cyclobutanols containing substituents at three of the four positions on the cyclobutane core, and enantioenriched epibromohydrins lead to enantioenriched cyclobutanols with high levels of enantiospecificity (>98%). Finally, derivatization studies demonstrate the synthetic utility of both the OH and Bpin handles.
Collapse
Affiliation(s)
- Tyler R. McDonald
- Department of Chemistry, University of Toronto. 80 St. George StreetTorontoONCanada
| | | |
Collapse
|
29
|
Rentería-Gómez A, Lee W, Yin S, Davis M, Gogoi AR, Gutierrez O. General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction. ACS Catal 2022; 12:11547-11556. [PMID: 39524306 PMCID: PMC11546105 DOI: 10.1021/acscatal.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are of great interest to the agrochemical, materials, and pharmaceutical industries. In particular, synthetic methods to access 1,3-dicarbosubsituted BCP-aryls have recently been developed, but most protocols rely on the stepwise C-C bond formation via the initial manipulation of BCP core to make the BCP electrophile or nucleophile followed by a second step (e.g., transition-metal-mediated cross-coupling step) to form the second key BCP-aryl bond. Moreover, despite the prevalence of C-F bonds in bioactive compounds, one-pot, multicomponent cross-coupling methods to directly functionalize [1.1.1]propellane to the corresponding fluoroalkyl BCP-aryl scaffolds are lacking. In this work, we describe a conceptually different approach to access diverse (fluoro)alkyl BCP-aryls at low temperatures and fast reaction times enabled by an iron-catalyzed multicomponent radical cross-coupling reaction from readily available (fluoro)alkyl halides, [1.1.1]propellane, and Grignard reagents. Further, experimental and computational mechanistic studies provide insights into the mechanism and ligand effects on the nature of C-C bond formation. Finally, these studies are used to develop a method to rapidly access synthetic versatile (difluoro)alkyl BCP halides via bisphosphine-iron catalysis.
Collapse
Affiliation(s)
- Angel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuai Yin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
30
|
Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes. Angew Chem Int Ed Engl 2022; 61:e202204719. [PMID: 35442565 DOI: 10.1002/anie.202204719] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 12/15/2022]
Abstract
The development of two divergent and complementary Lewis acid catalyzed additions of bicyclobutanes to imines is described. Microscale high-throughput experimentation was integral to the discovery and optimization of both reactions. N-arylimines undergo formal (3+2) cycloaddition with bicyclobutanes to yield azabicyclo[2.1.1]hexanes in a single step; in contrast, N-alkylimines undergo an addition/elimination sequence to generate cyclobutenyl methanamine products with high diastereoselectivity. These new products contain a variety of synthetic handles for further elaboration, including many functional groups relevant to pharmaceutical synthesis. The divergent reactivity observed is attributed to differences in basicity and nucleophilicity of the nitrogen atom in a common carbocation intermediate, leading to either nucleophilic attack (N-aryl) or E1 elimination (N-alkyl).
Collapse
Affiliation(s)
- Kushal Dhake
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Kyla J Woelk
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Joseph Becica
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Andy Un
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Sarah E Jenny
- Department of Chemistry, Temple University, 1901N. Broad St, Philadelphia, PA 19122, USA
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| |
Collapse
|
31
|
Fortuna A, Gonçalves-Pereira R, Costa PJ, Jorda R, Vojáčková V, Gonzalez G, Heise NV, Csuk R, Oliveira MC, Xavier NM. Synthesis and Exploitation of the Biological Profile of Novel Guanidino Xylofuranose Derivatives. ChemMedChem 2022; 17:e202200180. [PMID: 35576106 DOI: 10.1002/cmdc.202200180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Indexed: 11/07/2022]
Abstract
The synthesis and biological evaluation of novel guanidino sugars as isonucleoside analogs is described. 5-Guanidino xylofuranoses containing 3- O -saturated/unsaturated hydrocarbon or aromatic-containing moieties were accessed from 5-azido xylofuranoses via reduction followed by guanidinylation with N , N '-bis( tert -butoxycarbonyl)- N ''-triflylguanidine. Molecules comprising novel types of isonucleosidic structures including 5-guanidino 3- O -methyl-branched N -benzyltriazole isonucleosides and a guanidinomethyltriazole 3'- O -dodecyl xylofuranos-5'-yl isonucleoside were accessed. The guanidinomethyltriazole derivative and a 3- O -dodecyl ( N -Boc)guanidino xylofuranose were revealed as selective inhibitors of acetylcholinesterase ( K i = 22.87 and 7.49 µM, respectively). The latter also showed moderate antiproliferative effects in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells. An aminomethyltriazole 5'-isonucleoside was the most potent molecule with low micromolar GI 50 values in both cells (GI 50 = 6.33 μM, 8.45 μM), similar to that of the drug 5-fluorouracil in MCF-7 cells. Moreover, the most bioactive compounds showed low toxicity in human fibroblasts, further indicating their interest as promising lead molecules.
Collapse
Affiliation(s)
- Andreia Fortuna
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rita Gonçalves-Pereira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| | - Paulo J Costa
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radek Jorda
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Niels V Heise
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120, Halle (Saale), Germany
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Nuno M Xavier
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
32
|
Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kushal Dhake
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| | - Kyla J. Woelk
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| | - Joseph Becica
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| | - Andy Un
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| | - Sarah E. Jenny
- Department of Chemistry Temple University 1901N. Broad St Philadelphia PA 19122 USA
| | - David C. Leitch
- Department of Chemistry University of Victoria 3800 Finnerty Rd. Victoria BC V8P 5C2 Canada
| |
Collapse
|
33
|
Lasányi D, Máth D, Tolnai GL. Synthesis and Use of Bicyclo[1.1.1]pentylaldehyde Building Blocks. J Org Chem 2022; 87:2393-2401. [DOI: 10.1021/acs.joc.1c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dániel Lasányi
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Dániel Máth
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Gergely L. Tolnai
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| |
Collapse
|
34
|
Michalland J, Casaretto N, Zard SZ. A Modular Access to 1,2‐ and 1,3‐Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jean Michalland
- Laboratoire de Synthèse Organique CNRS UMR 7652 Ecole polytechnique 91128 Palaiseau Cedex France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moleculaire CNRS UMR 9168 Ecole polytechnique 91128 Palaiseau Cedex France
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique CNRS UMR 7652 Ecole polytechnique 91128 Palaiseau Cedex France
| |
Collapse
|
35
|
Livesley S, Sterling AJ, Robertson CM, Goundry WRF, Morris JA, Duarte F, Aïssa C. Electrophilic Activation of [1.1.1]Propellane for the Synthesis of Nitrogen-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202111291. [PMID: 34705316 PMCID: PMC9299141 DOI: 10.1002/anie.202111291] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 01/22/2023]
Abstract
Strategies commonly used for the synthesis of functionalised bicyclo[1.1.1]pentanes (BCP) rely on the reaction of [1.1.1]propellane with anionic or radical intermediates. In contrast, electrophilic activation has remained a considerable challenge due to the facile decomposition of BCP cations, which has severely limited the applications of this strategy. Herein, we report the electrophilic activation of [1.1.1]propellane in a halogen bond complex, which enables its reaction with electron-neutral nucleophiles such as anilines and azoles to give nitrogen-substituted BCPs that are prominent motifs in drug discovery. A detailed computational analysis indicates that the key halogen bonding interaction promotes nucleophilic attack without sacrificing cage stabilisation. Overall, our work rehabilitates electrophilic activation of [1.1.1]propellane as a valuable strategy for accessing functionalised BCPs.
Collapse
Affiliation(s)
- Sarah Livesley
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Alistair J. Sterling
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Craig M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - William R. F. Goundry
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaMacclesfieldSK10 2NAUK
| | - James A. Morris
- SyngentaInternational Research CentreBracknellBerkshireRG42 6EYUK
| | - Fernanda Duarte
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christophe Aïssa
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
36
|
Livesley S, Sterling AJ, Robertson CM, Goundry WRF, Morris JA, Duarte F, Aïssa C. Electrophilic Activation of [1.1.1]Propellane for the Synthesis of Nitrogen‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sarah Livesley
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Alistair J. Sterling
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Craig M. Robertson
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - William R. F. Goundry
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Macclesfield SK10 2NA UK
| | - James A. Morris
- Syngenta International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Fernanda Duarte
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christophe Aïssa
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
37
|
Koike T, Honda S, Iwamoto T. An Isolable 2,4-Diaminotetrasilabicyclo[1.1.0]but-1(3)-ene: Effects of Amino Groups at the Bridge Positions. CHEM LETT 2022. [DOI: 10.1246/cl.210595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taichi Koike
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
38
|
Mousseau JJ, Perry MA, Bundesmann MW, Chinigo GM, Choi C, Gallego G, Hicklin RW, Hoy S, Limburg DC, Sach NW, Zhang Y. Automated Nanomole-Scale Reaction Screening toward Benzoate Bioisosteres: A Photocatalyzed Approach to Highly Elaborated Bicyclo[1.1.1]Pentanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James J. Mousseau
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Matthew A. Perry
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Mark W. Bundesmann
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gary M. Chinigo
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Chulho Choi
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gary Gallego
- Pfizer La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Robert W. Hicklin
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Susan Hoy
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - David C. Limburg
- Pfizer Medicine Design, 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Neal W. Sach
- Pfizer La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Yuan Zhang
- Pfizer Medicine Design, 610 Main St., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
40
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021; 60:24754-24769. [PMID: 34151501 PMCID: PMC9291545 DOI: 10.1002/anie.202106352] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/30/2022]
Abstract
"Escaping from flatland", by increasing the saturation level and three-dimensionality of drug-like compounds, can enhance their potency, selectivity and pharmacokinetic profile. One approach that has attracted considerable recent attention is the bioisosteric replacement of aromatic rings, internal alkynes and tert-butyl groups with bicyclo[1.1.1]pentane (BCP) units. While functionalisation of the tertiary bridgehead positions of BCP derivatives is well-documented, functionalisation of the three concyclic secondary bridge positions remains an emerging field. The unique properties of the BCP core present considerable synthetic challenges to the development of such transformations. However, the bridge positions provide novel vectors for drug discovery and applications in materials science, providing entry to novel chemical and intellectual property space. This Minireview aims to consolidate the major advances in the field, serving as a useful reference to guide further work that is expected in the coming years.
Collapse
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - John A. Murphy
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| |
Collapse
|
41
|
Michalland J, Casaretto N, Zard SZ. A Modular Access to 1,2- and 1,3-Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions. Angew Chem Int Ed Engl 2021; 61:e202113333. [PMID: 34716652 DOI: 10.1002/anie.202113333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 01/22/2023]
Abstract
A modular approach to substituted cyclobutylboronic esters is described. It proceeds by successive intermolecular radical additions of xanthates to pinacolato 1-cyclobutenylboronate and to pinacolato bicyclo[1.1.0]but-1-ylboronate. Success hinges on tuning the stability of the α-boryl radical by exploiting the stabilizing influence of the trivalent boronic ester and the slightly destabilizing cyclobutane, which increases the σ-character of the radical. Reductive removal of the xanthate group finally provides a range of 1,2- and 1,3-disubstituted cyclobutylboronic esters. The contrast with cyclopropylboronic esters is striking, since the strong destabilization by the highly strained cyclopropane ring allows the first radical addition to take place but not the second. Furthermore, the first adducts are geminal xanthyl boronic esters that can be converted into cyclobutanones. This chemistry furnishes cyclobutylboronic esters that would be quite difficult to obtain otherwise and thus complements existing methods.
Collapse
Affiliation(s)
- Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moleculaire, CNRS UMR 9168, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
42
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
43
|
Bauer MR, Di Fruscia P, Lucas SCC, Michaelides IN, Nelson JE, Storer RI, Whitehurst BC. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med Chem 2021; 12:448-471. [PMID: 33937776 PMCID: PMC8083977 DOI: 10.1039/d0md00370k] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Aliphatic three- and four-membered rings including cyclopropanes, cyclobutanes, oxetanes, azetidines and bicyclo[1.1.1]pentanes have been increasingly exploited in medicinal chemistry for their beneficial physicochemical properties and applications as functional group bioisosteres. This review provides a historical perspective and comparative up to date overview of commonly applied small rings, exemplifying key principles with recent literature examples. In addition to describing the merits and advantages of each ring system, potential hazards and liabilities are also illustrated and explained, including any significant chemical or metabolic stability and toxicity risks.
Collapse
Affiliation(s)
- Matthias R Bauer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Paolo Di Fruscia
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - Simon C C Lucas
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | | - Jennifer E Nelson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | - R Ian Storer
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Cambridge UK
| | | |
Collapse
|
44
|
Arzi RS, Kay A, Raychman Y, Sosnik A. Excipient-Free Pure Drug Nanoparticles Fabricated by Microfluidic Hydrodynamic Focusing. Pharmaceutics 2021; 13:529. [PMID: 33920184 PMCID: PMC8069523 DOI: 10.3390/pharmaceutics13040529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023] Open
Abstract
Nanoprecipitation is one of the most versatile methods to produce pure drug nanoparticles (PDNPs) owing to the ability to optimize the properties of the product. Nevertheless, nanoprecipitation may result in broad particle size distribution, low physical stability, and batch-to-batch variability. Microfluidics has emerged as a powerful tool to produce PDNPs in a simple, reproducible, and cost-effective manner with excellent control over the nanoparticle size. In this work, we designed and fabricated T- and Y-shaped Si-made microfluidic devices and used them to produce PDNPs of three kinase inhibitors of different lipophilicity and water-solubility, namely imatinib, dasatinib and tofacitinib, without the use of colloidal stabilizers. PDNPs display hydrodynamic diameter in the 90-350 nm range as measured by dynamic light scattering and a rounded shape as visualized by high-resolution scanning electron microscopy. Powder X-ray diffraction and differential scanning calorimetry confirmed that this method results in highly amorphous nanoparticles. In addition, we show that the flow rate of solvent, the anti-solvent, and the channel geometry of the device play a key role governing the nanoparticle size.
Collapse
Affiliation(s)
- Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| | - Asaf Kay
- Laboratory of Electrochemical Materials and Devices, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel;
| | - Yulia Raychman
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel; (R.S.A.); (Y.R.)
| |
Collapse
|
45
|
Sitte E, Twamley B, Grover N, Senge MO. Investigation of the Reactivity of 1-Azido-3-iodobicyclo[1.1.1]pentane under "Click" Reaction Conditions. J Org Chem 2021; 86:1238-1245. [PMID: 33283512 DOI: 10.1021/acs.joc.0c02432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bicyclo[1.1.1]pentane (BCP) unit is under scrutiny as a bioisostere in drug molecules. We employed methodologies for the synthesis of different BCP triazole building blocks from one precursor, 1-azido-3-iodobicyclo[1.1.1]pentane, by "click" reactions and integrated cycloaddition-Sonogashira coupling reactions. Thereby, we accessed 1,4-disubstituted triazoles, 5-iodo-1,4,5-trisubstituted triazoles, and 5-alkynylated 1,4,5-trisubstituted triazoles. This gives entry to the synthesis of multiply substituted BCP triazoles on either a modular or a one-pot basis. These methodologies were further utilized for appending porphyrin moieties onto the BCP core.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, 152-160 Pearse Street, Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Dublin, Ireland
| | - Nitika Grover
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, 152-160 Pearse Street, Dublin, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin 2, 152-160 Pearse Street, Dublin, Ireland
| |
Collapse
|
46
|
Nguyen K, Clement HA, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Catalytic Enantioselective Synthesis of a cis-β-Boronyl Cyclobutylcarboxyester Scaffold and Its Highly Diastereoselective Nickel/Photoredox Dual-Catalyzed Csp3–Csp2 Cross-Coupling to Access Elusive trans-β-Aryl/Heteroaryl Cyclobutylcarboxyesters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04520] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kevin Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Helen A. Clement
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Louise Bernier
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jotham W. Coe
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - William Farrell
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew R. Reese
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Neal W. Sach
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Jack C. Lee
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis G. Hall
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
47
|
He FS, Xie S, Yao Y, Wu J. Recent advances in the applications of [1.1.1]propellane in organic synthesis. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Otog N, Inoue H, Trinh DTT, Batgerel Z, Langendorf NM, Fujisawa I, Iwasa S. Ru(II)‐Pheox Catalyzed Highly Stereoselective Cyclopropanation of Allyl‐ and Vinylsilanes with Diazoesters and Their Synthetic Applications. ChemCatChem 2020. [DOI: 10.1002/cctc.202001427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nansalmaa Otog
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Hayato Inoue
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Doan Thi Thuy Trinh
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Zolzaya Batgerel
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Niklas Maximilian Langendorf
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Ikuhide Fujisawa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Seiji Iwasa
- Department of Applied Chemistry and Life Science Toyohashi University of Technology 1-1 Tempaku-cho Toyohashi Aichi 441-8580 Japan
| |
Collapse
|
49
|
Linclau B, Collin DE, Jackman EH, Jouandon N, Sun W, Light ME, Harrowven DC. Decagram Synthesis of Dimethyl 1,4-Cubanedicarboxylate Using Continuous-Flow Photochemistry. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe highly strained cubane system is of great interest as a scaffold and rigid linker in both pharmaceutical and materials chemistry. A straightforward approach is reported for the scale-up of a [2+2] photocycloaddition step using convenient home-made flow photoreactors to access dimethyl 1,4-cubanedicarboxylate on decagram-scale in 33–40% yield over 8 steps. The process is demonstrated on 3.4 g·h–1 input with 30 minutes residence time, enabling to reduce the process time and to avoid the use of batch photoreactors. Completion of the characterisation of the photocycloadduct and its hydrates is reported.
Collapse
|
50
|
Sodano TM, Combee LA, Stephenson CRJ. Recent Advances and Outlook for the Isosteric Replacement of Anilines. ACS Med Chem Lett 2020; 11:1785-1788. [PMID: 33062152 DOI: 10.1021/acsmedchemlett.9b00687] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many promising drug candidates and pharmaceutical compounds fail due to idiosyncratic adverse drug reactions (IADRs), often arising from the formation of reactive metabolites. Among the "structural alerts" responsible, anilines are well-known to undergo deleterious metabolic processing, yet isosteric replacement strategies remain limited. Herein we discuss current art and potential new avenues of saturated isosteres to mitigate aniline-related toxicities.
Collapse
Affiliation(s)
- Taylor M. Sodano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Logan A. Combee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|