1
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
2
|
Dobrydnev AV, Popova MV, Volovenko YM. Cyclic Sulfinamides. CHEM REC 2024; 24:e202300221. [PMID: 37594737 DOI: 10.1002/tcr.202300221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The literature on cyclic sulfinamides (put simply, sultims) published from 1989 to 2022 has been summarized and reviewed. The information is divided into two sections: the analysis of synthetic methods on the preparation of cyclic sulfinamides and the discussion of the chemical properties of cyclic sulfinamides focusing on their reactions and applications. The survey of the reaction conditions, provided in the most detailed way, and a critical view of the reaction mechanisms add an extra dimension to the text. The data presented will be useful to specialists in different areas, especially those who work in the field of synthetic organic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Maria V Popova
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
| |
Collapse
|
3
|
Thamban Chandrika N, Green KD, Spencer AC, Tsodikov OV, Garneau-Tsodikova S. Discovery and development of novel substituted monohydrazides as potent antifungal agents. RSC Med Chem 2023; 14:1351-1361. [PMID: 37484566 PMCID: PMC10357949 DOI: 10.1039/d3md00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Novel substituted monohydrazides synthesized for this study displayed broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains. The activity of these compounds was either comparable or superior to amphotericin B against most of the fungal strains tested. These compounds possessed fungistatic activity in a time-kill assay and exhibited no mammalian cell toxicity. In addition, they prevented the formation of fungal biofilms. Even after repeated exposures, the Candida albicans ATCC 10231 (strain A) fungal strain did not develop resistance to these monohydrazides.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Abbygail C Spencer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| |
Collapse
|
4
|
Goswami L, Gupta L, Paul S, Vermani M, Vijayaraghavan P, Bhattacharya AK. Design and synthesis of eugenol/isoeugenol glycoconjugates and other analogues as antifungal agents against Aspergillus fumigatus. RSC Med Chem 2022; 13:955-962. [PMID: 36092146 PMCID: PMC9384816 DOI: 10.1039/d2md00138a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 08/24/2023] Open
Abstract
Glycoconjugates are biologically significant molecules as they tend to serve a wide range of intra- and extra-cellular processes depending on their size and complexity. The secondary metabolites of the plant Myristica fragrans, eugenol and isoeugenol, have shown antifungal activities (IC50 1900 μM). Therefore, we envisioned that glycoconjugates based on these two scaffolds could prove to be potent antifungal agents. Triazole-containing compounds have shown prominent activities as antifungal agents. Based on this, we opined that a Cu(i) catalyzed click reaction could serve as the bridging tool between a eugenol/isoeugenol moiety and sugars to synthesize eugenol/isoeugenol based glycoconjugates. In our present work, we have coupled propargylated eugenol/isoeugenol and azido sugar to furnish eugenol/isoeugenol based glycoconjugates. In another approach, we have carried out hydroxylation of the double bond of eugenol and subsequent azidation of a primary alcohol followed by intramolecular coupling reactions leading to various other analogues. All the synthesized compounds were assayed against an opportunistic pathogenic fungus, Aspergillus fumigatus. Among the synthesized compounds, two analogues have exhibited significant antifungal activities with IC50 values of 5.42 and 9.39 μM, respectively. The study suggested that these two analogues inhibit cell wall-associated melanin hydrophobicity along with the number of conidia. The synthesized compounds were found to be non-cytotoxic to an untransformed cell line.
Collapse
Affiliation(s)
- Lakshmi Goswami
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Lovely Gupta
- Antimycotic and Drug Susceptibility Laboratory, J3 Block, Amity Institute of Biotechnology, Amity University Uttar Pradesh Sector-125 Noida India
| | - Sayantan Paul
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Maansi Vermani
- Antimycotic and Drug Susceptibility Laboratory, J3 Block, Amity Institute of Biotechnology, Amity University Uttar Pradesh Sector-125 Noida India
| | - Pooja Vijayaraghavan
- Antimycotic and Drug Susceptibility Laboratory, J3 Block, Amity Institute of Biotechnology, Amity University Uttar Pradesh Sector-125 Noida India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
5
|
Moghimi S, Shafiei M, Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin Drug Discov 2022; 17:879-895. [PMID: 35793245 DOI: 10.1080/17460441.2022.2098949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the availability of novel antifungals and therapeutic strategies, the rate of global mortality linked to invasive fungal diseases from fungal infection remains high. Candida albicans account for the most invasive mycosis produced by yeast. Thus, the current arsenal of medicinal chemists is focused on finding new effective agents with lower toxicity and broad-spectrum activity. In this review article, recent efforts to find effective agents against azole-resistant candidiasis, a common fungal infection, are covered. AREAS COVERED Herein, the authors outlined all azole-based compounds, dual target, and new scaffolds (non-azole-based compounds) which were effective against azole-resistant candidiasis. In addition, the mechanism of action and SAR studies were also discussed, if the data were available. EXPERT OPINION The current status of fungal infections and the drawbacks of existing drugs have encouraged scientists to find novel scaffolds based on different methods like virtual screening and fragment-based drug discovery. Machine learning and in-silico methods have found their role in this field and experts are hopeful to find novel scaffolds/compounds by using these methods.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiei
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Jampilek J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin Drug Discov 2022; 17:949-968. [PMID: 35787715 DOI: 10.1080/17460441.2022.2097659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Some of otherwise useful fungi are pathogenic to humans, and unfortunately, the number of these pathogens is increasing. In addition to common skin infections, these opportunistic pathogens are able to cause severe, often incurable, systemic mycoses. AREAS COVERED : The number of antifungal drugs is limited, especially drugs that can be used for systemic administration, and resistance to these drugs is very common. This review summarizes various approaches to the discovery and development of new antifungal drugs, provides an overview of the most important molecules in terms of basic (laboratory) research and compounds currently in clinical trials, and focuses on drug repurposing strategy, while providing an overview of drugs of other indications that have been tested in vitro for their antifungal activity for possible expansion of antifungal drugs and/or support of existing antimycotics. EXPERT OPINION : Despite the limitations of the research of new antifungal drugs by pharmaceutical manufacturers, in addition to innovated molecules based on clinically used drugs, several completely new small entities with unique mechanisms of actions have been identified. The identification of new molecular targets that offer alternatives for the development of new unique selective antifungal highly effective agents has been an important outcome of repurposing of non-antifungal drugs to antifungal drug. Also, given the advances in monoclonal antibodies and their application to immunosuppressed patients, it may seem possible to predict a more optimistic future for antifungal therapy than has been the case in recent decades.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
7
|
Gnat S, Łagowski D, Dyląg M, Jóźwiak G, Trościańczyk A, Nowakiewicz A. In Vitro Activity of Ebselen and Diphenyl Diselenide Alone and in Combination with Drugs against Trichophyton mentagrophytes Strains. Pharmaceutics 2022; 14:pharmaceutics14061158. [PMID: 35745731 PMCID: PMC9229022 DOI: 10.3390/pharmaceutics14061158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Dermatophytoses are one of the most prevalent infectious diseases in the world for which the pace of developing new drugs has not kept pace with the observed therapeutic problems. Thus, searching for new antifungals with an alternative and novel mechanism of action is necessary. Objective: This study aimed to evaluate the antifungal activity of ebselen and diphenyl diselenide against Trichophyton mentagrophytes clinical isolates. Methods: In vitro antifungal susceptibility was assessed for organoselenium compounds used alone or in combination with allylamines and azoles according to the 3rd edition of the CLSI M38 protocol. Results: Ebselen demonstrated high antifungal activity with MICGM equal to 0.442 μg/mL and 0.518 μg/mL in the case of human and animal origin strains, respectively. The values of MICGM of diphenyl diselenide were higher: 17.36 μg/mL and 13.45 μg/mL for the human and animal isolates, respectively. Synergistic or additive effects between terbinafine and ebselen or diphenyl diselenide were observed in the case of 12% and 20% strains, respectively. In turn, the combination of itraconazole with diphenyl diselenide showed a synergistic effect only in the case of 6% of the tested strains, whereas no synergism was shown in the combination with ebselen. Conclusions: The results highlight the promising activity of organoselenium compounds against Trichophyton mentagrophytes. However, their use in combinational therapy with antifungal drugs seems to be unjustified due to the weak synergistic effect observed.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
- Correspondence: ; Tel.: +48-81-445-6093
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63, 50-137 Wroclaw, Poland;
| | - Grzegorz Jóźwiak
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Aleksandra Trościańczyk
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (D.Ł.); (A.T.); (A.N.)
| |
Collapse
|
8
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
9
|
Dangi M, Khichi A, Jakhar R, Chhillar AK. Growing Preferences towards Analog-based Drug Discovery. Curr Pharm Biotechnol 2021; 22:1030-1045. [PMID: 32900347 DOI: 10.2174/1389201021666200908121409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The major concern of today's time is the developing resistance in most of the clinically derived pathogenic micro-organisms for available drugs through several mechanisms. Therefore, there is a dire need to develop novel molecules with drug-like properties that can be effective against the otherwise resistant micro-organisms. METHODS New drugs can be developed using several methods like structure-based drug design, ligandbased drug design, or by developing analogs of the available drugs to further improve their effects. However, the smartness is to opt for the techniques that have comparatively less expenditure, lower failure rates, and faster discovery rates. RESULTS Analog-Based Drug Design (ABDD) is one such technique that researchers worldwide are opting to develop new drug-like molecules with comparatively lower market values. They start by first designing the analogs sharing structural and pharmacological similarities to the existing drugs. This method embarks on scaffold structures of available drugs already approved by the clinical trials, but are left ineffective because of resistance developed by the pathogens. CONCLUSION In this review, we have discussed some recent examples of anti-fungal and anti-bacterial (antimicrobial) drugs that were designed based on the ABDD technique. Also, we have tried to focus on the in silico tools and techniques that can contribute to the designing and computational screening of the analogs, so that these can be further considered for in vitro screening to validate their better biological activities against the pathogens with comparatively reduced rates of failure.
Collapse
Affiliation(s)
- Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Alka Khichi
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Ritu Jakhar
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| | - Anil K Chhillar
- Centre for Bioinformatics, M.D. University, Rohtak-124001, Haryana, India
| |
Collapse
|
10
|
Menon S, Vartak R, Patel K, Billack B. Evaluation of the antifungal activity of an ebselen-loaded nanoemulsion in a mouse model of vulvovaginal candidiasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102428. [PMID: 34217850 DOI: 10.1016/j.nano.2021.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, is a common infection in women affecting their quality of life. Standard antifungal drugs (e.g., fluconazole, itraconazole) are typically fungistatic or rendered ineffective due to drug resistance indicating an urgent need to build an arsenal of novel antifungal agents. To surmount this issue, we tested the hypothesis that the organoselenium compound ebselen (EB) possesses antifungal efficacy in a mouse model of VVC. EB is a poorly water-soluble drug and DMSO as a vehicle has the potential to exhibit cytotoxic effects when administered in vivo. EB loaded self-nanoemulsifying preconcentrate (EB-SNEP) was developed, characterized in vitro, and tested in a mouse model of VVC. In vivo studies carried out with EB-SNEP (12.5 mg/kg) showed a remarkable decrease in infection by ~562-fold compared to control (infected, untreated animals). Taken together, EB nanoemulsion proved to be an effective and promising antifungal agent.
Collapse
Affiliation(s)
- Suvidha Menon
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Richa Vartak
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| | - Blase Billack
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| |
Collapse
|
11
|
Kim SK, Ngo HX, Dennis EK, Thamban Chandrika N, DeShong P, Garneau-Tsodikova S, Lee VT. Inhibition of Pseudomonas aeruginosa Alginate Synthesis by Ebselen Oxide and Its Analogues. ACS Infect Dis 2021; 7:1713-1726. [PMID: 33871968 DOI: 10.1021/acsinfecdis.1c00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is frequently found in the airways of cystic fibrosis (CF) patients due to the dehydrated mucus that collapses the underlying cilia and prevents mucociliary clearance. During this life-long chronic infection, P. aeruginosa cell accumulates mutations that lead to inactivation of the mucA gene that results in the constitutive expression of algD-algA operon and the production of alginate exopolysaccharide. The viscous alginate polysaccharide further occludes the airways of CF patients and serves as a protective matrix to shield P. aeruginosa from host immune cells and antibiotic therapy. Development of inhibitors of alginate production by P. aeruginosa would reduce the negative impact from this viscous polysaccharide. In addition to transcriptional regulation, alginate biosynthesis requires allosteric activation by bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding to an Alg44 protein. Previously, we found that ebselen (Eb) and ebselen oxide (EbO) inhibited diguanylate cyclase from synthesizing c-di-GMP. In this study, we show that EbO, Eb, ebsulfur (EbS), and their analogues inhibit alginate production. Eb and EbS can covalently modify the cysteine 98 (C98) residue of Alg44 and prevent its ability to bind c-di-GMP. However, P. aeruginosa with Alg44 C98 substituted with alanine or serine was still inhibited for alginate production by Eb and EbS. Our results indicate that EbO, Eb, and EbS are lead compounds for reducing alginate production by P. aeruginosa. Future development of these inhibitors could provide a potential treatment for CF patients infected with mucoid P. aeruginosa.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Huy X. Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Yaakoub H, Staerck C, Mina S, Godon C, Fleury M, Bouchara JP, Calenda A. Repurposing of auranofin and honokiol as antifungals against Scedosporium species and the related fungus Lomentospora prolificans. Virulence 2021; 12:1076-1090. [PMID: 33825667 PMCID: PMC8032236 DOI: 10.1080/21505594.2021.1909266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The slowing-down de novo drug-discovery emphasized the importance of repurposing old drugs. This is particularly true when combating infections caused by therapy-refractory microorganisms, such as Scedosporium species and Lomentospora prolificans. Recent studies on Scedosporium responses to oxidative stress underscored the importance of targeting the underlying mechanisms. Auranofin, ebselen, PX-12, honokiol, and to a lesser extent, conoidin A are known to disturb redox-homeostasis systems in many organisms. Their antifungal activity was assessed against 27 isolates belonging to the major Scedosporium species: S. apiospermum, S. aurantiacum, S. boydii, S. dehoogii, S. minutisporum, and Lomentospora prolificans. Auranofin and honokiol were the most active against all Scedosporium species (mean MIC50 values of 2.875 and 6.143 μg/ml, respectively) and against L. prolificans isolates (mean MIC50 values of 4.0 and 3.563μg/ml respectively). Combinations of auranofin with voriconazole or honokiol revealed additive effects against 9/27 and 18/27 isolates, respectively. Synergistic interaction between auranofin and honokiol was only found against one isolate of L. prolificans. The effects of auranofin upon exposure to oxidative stress were also investigated. For all species except S. dehoogii, the maximal growth in the presence of auranofin significantly decreased when adding a sublethal dose of menadione. The analysis of the expression of genes encoding oxidoreductase enzymes upon exposure of S. apiospermum to honokiol unveiled the upregulation of many genes, especially those coding peroxiredoxins, thioredoxin reductases, and glutaredoxins. Altogether, these data suggest that auranofin and honokiol act via dampening the redox balance and support their repurposing as antifungals against Scedosporium species and L. prolificans.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Cindy Staerck
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Charlotte Godon
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Maxime Fleury
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France.,Département de biologie des agents infectieux , Laboratoire De Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Alphonse Calenda
- Groupe d'Etude Des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Institut De Biologie En Santé-IRIS, CHU Angers,Angers, France
| |
Collapse
|
13
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
14
|
Benelli JL, Poester VR, Munhoz LS, Melo AM, Trápaga MR, Stevens DA, Xavier MO. Ebselen and diphenyl diselenide against fungal pathogens: A systematic review. Med Mycol 2021; 59:409-421. [PMID: 33421963 DOI: 10.1093/mmy/myaa115] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are one of the most prevalent diseases in the world and there is a lack of new antifungal drug development for these diseases. We conducted a systematic review of the literature regarding the in vitro antifungal activity of the organoselenium compounds ebselen (Eb) and diphenyl diselenide [(PhSe)2]. A systematic review was carried out based on the search for articles with data concerning Minimal Inhibitory Concentration (MIC) values, indexed in international databases and published until August 2020. A total of 2337 articles were found, and, according to the inclusion and exclusion criteria used, 22 articles were included in the study. Inhibitory activity against 96% (200/208) and 95% (312/328) of the pathogenic fungi tested was described for Eb and [(PhSe)2], respectively. Including in these 536 fungal isolates tested, organoselenium activity was highlighted against Candida spp., Cryptococcus ssp., Trichosporon spp., Aspergillus spp., Fusarium spp., Pythium spp., and Sporothrix spp., with MIC values lower than 64 μg/mL. In conclusion, Eb and [(PhSe)2] have a broad spectrum of in vitro inhibitory antifungal activity. These data added with other pharmacological properties of these organoselenium compounds suggest that both compounds are potential future antifungal drugs. Whether MICs toward the upper end of the ranges described here are compatible with efficacious therapy, and whether they may achieve such end as a result of the favorable non-antimicrobial effects of selenium on the host, requires more in vivo testing.
Collapse
Affiliation(s)
- Jéssica Louise Benelli
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Aryse Martins Melo
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA
| | - Melissa Orzechowski Xavier
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil.,Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
15
|
Thamban Chandrika N, Dennis EK, Brubaker KR, Kwiatkowski S, Watt DS, Garneau-Tsodikova S. Broad-Spectrum Antifungal Agents: Fluorinated Aryl- and Heteroaryl-Substituted Hydrazones. ChemMedChem 2021; 16:124-133. [PMID: 33063957 PMCID: PMC10898509 DOI: 10.1002/cmdc.202000626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Fluorinated aryl- and heteroaryl-substituted monohydrazones displayed excellent broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains relative to a control antifungal agent, voriconazole (VRC). These monohydrazones displayed less hemolysis of murine red blood cells than that of VRC at the same concentrations, possessed fungicidal activity in a time-kill study, and exhibited no mammalian cell cytotoxicity. In addition, these monohydrazones prevented the formation of biofilms that otherwise block antibiotic effectiveness and did not trigger the development of resistance when exposed to C. auris AR Bank # 0390 over 15 passages.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Katelyn R Brubaker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| |
Collapse
|
16
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
17
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
18
|
Barce Ferro CT, dos Santos BF, da Silva CDG, Brand G, da Silva BAL, de Campos Domingues NL. Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Curr Org Synth 2020; 17:192-210. [DOI: 10.2174/1570179417666200212113412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sulfur-containing compounds represent an important class of chemical compounds due
to their wide range of biological and pharmaceutical properties. Moreover, sulfur-containing compounds may be
applied in other fields, such as biological, organic, and materials chemistry. Several studies on the activities of
sulfur compounds have already proven their anti-inflammatory properties and use to treat diseases, such as
Alzheimer’s, Parkinson’s, and HIV. Moreover, examples of sulfur-containing compounds include dapsone,
quetiapine, penicillin, probucol, and nelfinavir, which are important drugs with known activities.
Objective:
This review will focus on the synthesis and application of some sulfur-containing compounds used to
treat several diseases, as well as promising new drug candidates.
Results:
Due to the variety of compounds containing C-S bonds, we have reviewed the different synthetic
routes used toward the synthesis of sulfur-containing drugs and other compounds.
Collapse
Affiliation(s)
- Criscieli Taynara Barce Ferro
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Fuzinato dos Santos
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Caren Daniele Galeano da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - George Brand
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Beatriz Amaral Lopes da Silva
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| | - Nelson Luís de Campos Domingues
- Faculty of Exact Sciences and Technology, Organic Catalysis and Biocatalysis Laboratory – (LACOB), Federal University of Grande Dourados – UFGD, Dourados/MS, Brazil
| |
Collapse
|
19
|
Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev 2020; 49:2426-2480. [PMID: 32140691 DOI: 10.1039/c9cs00556k] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.
Collapse
Affiliation(s)
- Kaitlind C Howard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | | | | | |
Collapse
|
20
|
Dennis EK, Kim JH, Parkin S, Awuah SG, Garneau-Tsodikova S. Distorted Gold(I)–Phosphine Complexes as Antifungal Agents. J Med Chem 2019; 63:2455-2469. [DOI: 10.1021/acs.jmedchem.9b01436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jong Hyun Kim
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sean Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Samuel G. Awuah
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506-0055, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
21
|
Chen C, Yang K. Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria. Bioorg Chem 2019; 93:103286. [PMID: 31585265 DOI: 10.1016/j.bioorg.2019.103286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023]
Abstract
Antibiotic-resistant bacteria has become one of the greatest challenges to global human health today. Innovative strategies are needed to identify new therapeutic leads to tackle infections of drug-resistant Gram-negative bacteria. We herein synthesize a series of EB analogues to investigate their antibacterial activities. Select polar functionality at N-terminus of EB exhibited higher activities against multi-drug-resistant Gram-negative pathogens, including E. coli, P. aeruginosa and K. pneumoniae. EB analogue 4g and 4i exhibited potent antibacterial activities against E. coli-ESBL (MIC = 1-4 µg/mL) and E. coli producing NDM-1 (MIC = 4-32 µg/mL), which is superior to the traditional antibiotics (cefazolin, imipenem). Furthermore, the time-kill kinetics studies and the inhibition zone tests indicated that analogue 4i effectively and rapidly cause death of E. coli-ESBL and E. coli-NDM-1. Additionally, accumulation assays and SEM images showed that 4i could permeate bacterial membranes, leading to an irregular cell morphology. Importantly, bacterial resistance for analogue 4i was difficult to induce against E. coli-ESBL. EB analogues here reported low cytotoxicity against L-929 cells and mice model in vivo. We believe that EB analogues with polar functionality could play a pivotal role in the development of novel antibacterial agents in eradicating multi-drug-resistant Gram-negative pathogens infections.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China
| | - Kewu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China.
| |
Collapse
|
22
|
Thamban Chandrika N, Dennis EK, Shrestha SK, Ngo HX, Green KD, Kwiatkowski S, Deaciuc AG, Dwoskin LP, Watt DS, Garneau-Tsodikova S. N,N'-diaryl-bishydrazones in a biphenyl platform: Broad spectrum antifungal agents. Eur J Med Chem 2018; 164:273-281. [PMID: 30597328 DOI: 10.1016/j.ejmech.2018.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/11/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022]
Abstract
N,N'-Diaryl-bishydrazones of [1,1'-biphenyl]-3,4'-dicarboxaldehyde, [1,1'-biphenyl]-4,4'-dicarboxaldehyde, and 4,4'-bisacetyl-1,1-biphenyl exhibited excellent antifungal activity against a broad spectrum of filamentous and non-filamentous fungi. These N,N'-diaryl-bishydrazones displayed no antibacterial activity in contrast to previously reported N,N'-diamidino-bishydrazones and N-amidino-N'-aryl-bishydrazones. The leading candidate, 4,4'-bis((E)-1-(2-(4-fluorophenyl)hydrazono)ethyl)-1,1'-biphenyl, displayed less hemolysis of murine red blood cells at concentrations at or below that of a control antifungal agent (voriconazole), was fungistatic in a time-kill study, and possessed no mammalian cytotoxicity and no toxicity with respect to hERG inhibition.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Sanjib K Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Agripina Gabriela Deaciuc
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
23
|
Lauruschkat CD, Einsele H, Loeffler J. Immunomodulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. J Fungi (Basel) 2018; 4:jof4040137. [PMID: 30558125 PMCID: PMC6308942 DOI: 10.3390/jof4040137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Invasive aspergillosis (IA) is the most serious life-threatening infectious complication of intensive remission induction chemotherapy and allogeneic stem cell transplantation in patients with a variety of hematological malignancies. Aspergillus fumigatus is the most commonly isolated species from cases of IA. Despite the various improvements that have been made with preventative strategies and the development of antifungal drugs, there is an urgent need for new therapeutic approaches that focus on strategies to boost the host’s immune response, since immunological recovery is recognized as being the major determinant of the outcome of IA. Here, we aim to summarize current knowledge about a broad variety of immunotherapeutic approaches against IA, including therapies based on the transfer of distinct immune cell populations, and the administration of cytokines and antibodies.
Collapse
Affiliation(s)
- Chris D Lauruschkat
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Building C11, 97080 Wuerzburg, Germany.
| |
Collapse
|
24
|
Sam QH, Yew WS, Seneviratne CJ, Chang MW, Chai LYA. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Front Microbiol 2018; 9:1612. [PMID: 30090091 PMCID: PMC6068232 DOI: 10.3389/fmicb.2018.01612] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal disease (IFD) causes significant morbidity in immunocompromised patients due to their weakened immune system. Immunomodulatory therapy, in synergy with existing antifungal therapy, is an attractive option to enhance their immune system and aid clearance of these opportunistic pathogens. From a scientific and clinical perspective, we explore the immunotherapeutic options to augment standard antifungal drugs for patients with an IFD. We discuss the range of immunomodulatory therapies being considered in IFD - from cytokines, including G-CSF, GM-CSF, M-CSF, IFN-γ, and cytokine agonists, to cellular therapies, consisting of granulocyte transfusion, adoptive T-cell, CAR T-cell, natural killer cell therapies, and monoclonal antibodies. Adjunct pharmaceutical agents which augment the immunity are also being considered. Lastly, we explore the likelihood of the use of probiotics and manipulation of the microbiome/mycobiome to enhance IFD treatment outcomes.
Collapse
Affiliation(s)
- Qi Hui Sam
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | | | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster – National University Health System, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
25
|
Fosso MY, Shrestha SK, Thamban Chandrika N, Dennis EK, Green KD, Garneau-Tsodikova S. Differential Effects of Linkers on the Activity of Amphiphilic Tobramycin Antifungals. Molecules 2018; 23:molecules23040899. [PMID: 29652845 PMCID: PMC5971061 DOI: 10.3390/molecules23040899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
As the threat associated with fungal infections continues to rise and the availability of antifungal drugs remains a concern, it becomes obvious that the need to bolster the antifungal armamentarium is urgent. Building from our previous findings of tobramycin (TOB) derivatives with antifungal activity, we further investigate the effects of various linkers on the biological activity of these aminoglycosides. Herein, we analyze how thioether, sulfone, triazole, amide, and ether functionalities affect the antifungal activity of alkylated TOB derivatives against 22 Candida, Cryptococcus, and Aspergillus species. We also evaluate their impact on the hemolysis of murine erythrocytes and the cytotoxicity against mammalian cell lines. While the triazole linker appears to confer optimal activity overall, all of the linkers incorporated into the TOB derivatives resulted in compounds that are very effective against the Cryptococcus neoformans species, with MIC values ranging from 0.48 to 3.9 μg/mL.
Collapse
Affiliation(s)
- Marina Y Fosso
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Sanjib K Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| |
Collapse
|
26
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
27
|
Chandrika NT, Shrestha SK, Ranjan N, Sharma A, Arya DP, Garneau-Tsodikova S. New Application of Neomycin B-Bisbenzimidazole Hybrids as Antifungal Agents. ACS Infect Dis 2018; 4:196-207. [PMID: 29227087 PMCID: PMC5971066 DOI: 10.1021/acsinfecdis.7b00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alkylated aminoglycosides and bisbenzimidazoles have previously been shown to individually display antifungal activity. Herein, we explore for the first time the antifungal activity (in liquid cultures and in biofilms) of ten alkylated aminoglycosides covalently linked to either mono- or bisbenzimidazoles. We also investigate their toxicity against mammalian cells, their hemolytic activity, and their potential mechanism(s) of action (inhibition of fungal ergosterol biosynthetic pathway and/or reactive oxygen species (ROS) production). Overall, many of our hybrids exhibited broad-spectrum antifungal activity. We also found them to be less cytotoxic to mammalian cells and less hemolytic than the FDA-approved antifungal agents amphotericin B and voriconazole, respectively. Finally, we show with our best derivative (8) that the mechanism of action of our compounds is not the inhibition of ergosterol biosynthesis, but that it involves ROS production in yeast cells.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sanjib K. Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Nihar Ranjan
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Anindra Sharma
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Dev P. Arya
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
28
|
Thamban Chandrika N, Shrestha SK, Ngo HX, Tsodikov OV, Howard KC, Garneau-Tsodikova S. Alkylated Piperazines and Piperazine-Azole Hybrids as Antifungal Agents. J Med Chem 2017; 61:158-173. [PMID: 29256601 DOI: 10.1021/acs.jmedchem.7b01138] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extensive use of fluconazole (FLC) and other azole drugs has caused the emergence and rise of azole-resistant fungi. The fungistatic nature of FLC in combination with toxicity concerns have resulted in an increased demand for new azole antifungal agents. Herein, we report the synthesis and antifungal activity of novel alkylated piperazines and alkylated piperazine-azole hybrids, their time-kill studies, their hemolytic activity against murine erythrocytes, as well as their cytotoxicity against mammalian cells. Many of these molecules exhibited broad-spectrum activity against all tested fungal strains, with excellent minimum inhibitory concentration (MIC) values against non-albicans Candida and Aspergillus strains. The most promising compounds were found to be less hemolytic than the FDA-approved antifungal agent voriconazole (VOR). Finally, we demonstrate that the synthetic alkylated piperazine-azole hybrids do not function by fungal membrane disruption, but instead by disruption of the ergosterol biosynthetic pathway via inhibition of the 14α-demethylase enzyme present in fungal cells.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sanjib K Shrestha
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Kaitlind C Howard
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
29
|
Thamban Chandrika N, Shrestha SK, Ngo HX, Howard KC, Garneau-Tsodikova S. Novel fluconazole derivatives with promising antifungal activity. Bioorg Med Chem 2017; 26:573-580. [PMID: 29279242 DOI: 10.1016/j.bmc.2017.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 11/26/2022]
Abstract
The fungistatic nature and toxicity concern associated with the azole drugs currently on the market have resulted in an increased demand for new azole antifungal agents for which these problematic characteristics do not exist. The extensive use of azoles has resulted in fungal strains capable of resisting the action of these drugs. Herein, we report the synthesis and antifungal activity of novel fluconazole (FLC) analogues with alkyl-, aryl-, cycloalkyl-, and dialkyl-amino substituents. We evaluated their antifungal activity by MIC determination and time-kill assay as well as their safety profile by hemolytic activity against murine erythrocytes as well as cytotoxicity against mammalian cells. The best compounds from our study exhibited broad-spectrum activity against most of the fungal strains tested, with excellent MIC values against a number of clinical isolates. The most promising compounds were found to be less hemolytic than the least hemolytic FDA-approved azole antifungal agent voriconazole (VOR). Finally, we demonstrated that the synthetic alkyl-amino FLC analogues displayed chain-dependent fungal membrane disruption as well as inhibition of ergosterol biosynthesis as possible mechanisms of action.
Collapse
Affiliation(s)
| | - Sanjib K Shrestha
- University of Kentucky, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Huy X Ngo
- University of Kentucky, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | - Kaitlind C Howard
- University of Kentucky, Department of Pharmaceutical Sciences, Lexington, KY 40536-0596, USA
| | | |
Collapse
|
30
|
Novel alkylated azoles as potent antifungals. Eur J Med Chem 2017; 133:309-318. [PMID: 28395217 DOI: 10.1016/j.ejmech.2017.03.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
Abstract
Fluconazole (FLC) is the drug of choice when it comes to treat fungal infections such as invasive candidiasis in humans. However, the widespread use of FLC has resulted in the development of resistance to this drug in various fungal strains and, simultaneously has occasioned the need for new antifungal agents. Herein, we report the synthesis of 27 new FLC derivatives along with their antifungal activity against a panel of 13 clinically relevant fungal strains. We also explore their toxicity against mammalian cells, their hemolytic activity, as well as their mechanism of action. Overall, many of our FLC derivatives exhibited broad-spectrum antifungal activity and all compounds displayed an MIC value of <0.03 μg/mL against at least one of the fungal strains tested. We also found them to be less hemolytic and less cytotoxic to mammalian cells than the FDA approved antifungal agent amphotericin B. Finally, we demonstrated with our best derivative that the mechanism of action of our compounds is the inhibition of the sterol 14α-demethylase enzyme involved in ergosterol biosynthesis.
Collapse
|
31
|
Shrestha SK, Kril LM, Green KD, Kwiatkowski S, Sviripa VM, Nickell JR, Dwoskin LP, Watt DS, Garneau-Tsodikova S. Bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones: New classes of antibacterial/antifungal agents. Bioorg Med Chem 2016; 25:58-66. [PMID: 27769670 DOI: 10.1016/j.bmc.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022]
Abstract
The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicrobial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from <0.5 to >500μM against bacteria and 1.0 to >31.3μg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12 to 3.29μM. Overall, these studies show that bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Sanjib K Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Liliia M Kril
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, USA
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.
| |
Collapse
|
32
|
Thangamani S, Eldesouky HE, Mohammad H, Pascuzzi PE, Avramova L, Hazbun TR, Seleem MN. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochim Biophys Acta Gen Subj 2016; 1861:3002-3010. [PMID: 27712973 DOI: 10.1016/j.bbagen.2016.09.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. METHODS The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. RESULTS Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. CONCLUSION Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. GENERAL SIGNIFICANCE The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Pete E Pascuzzi
- Faculty in Libraries, Purdue University, West Lafayette, IN 47906, USA
| | - Larisa Avramova
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Tony R Hazbun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|