1
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Yu W, Dong M, Cheng P, Wang Y. Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats. Heliyon 2024; 10:e32481. [PMID: 38975218 PMCID: PMC11226796 DOI: 10.1016/j.heliyon.2024.e32481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Yuanyu Zhang
- Department of Health Manageent Center, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Wei Yu
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Mengjuan Dong
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Pingping Cheng
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Ye Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| |
Collapse
|
4
|
Ciou JJ, Chien MW, Hsu CY, Liu YW, Dong JL, Tsai SY, Yang SS, Lin SH, Yen BLJ, Fu SH, Sytwu HK. Excess Salt Intake Activates IL-21-Dominant Autoimmune Diabetogenesis via a Salt-Regulated Ste20-Related Proline/Alanine-Rich Kinase in CD4 T Cells. Diabetes 2024; 73:592-603. [PMID: 38241027 PMCID: PMC11031440 DOI: 10.2337/db23-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/19/2023] [Indexed: 03/22/2024]
Abstract
The fundamental mechanisms by which a diet affects susceptibility to or modifies autoimmune diseases are poorly understood. Excess dietary salt intake acts as a risk factor for autoimmune diseases; however, little information exists on the impact of salt intake on type 1 diabetes. To elucidate the potential effect of high salt intake on autoimmune diabetes, nonobese diabetic (NOD) mice were fed a high-salt diet (HSD) or a normal-salt diet (NSD) from 6 to 12 weeks of age and monitored for diabetes development. Our results revealed that the HSD accelerated diabetes progression with more severe insulitis in NOD mice in a CD4+ T-cell-autonomous manner when compared with the NSD group. Moreover, expression of IL-21 and SPAK in splenic CD4+ T cells from HSD-fed mice was significantly upregulated. Accordingly, we generated T-cell-specific SPAK knockout (CKO) NOD mice and demonstrated that SPAK deficiency in T cells significantly attenuated diabetes development in NOD mice by downregulating IL-21 expression in CD4+ T cells. Furthermore, HSD-triggered diabetes acceleration was abolished in HSD-fed SPAK CKO mice when compared with HSD-fed NOD mice, suggesting an essential role of SPAK in salt-exacerbated T-cell pathogenicity. Finally, pharmacological inhibition of SPAK activity using a specific SPAK inhibitor (closantel) in NOD mice ameliorated diabetogenesis, further illuminating the potential of a SPAK-targeting immunotherapeutic approach for autoimmune diabetes. Here, we illustrate that a substantial association between salt sensitivity and the functional impact of SPAK on T-cell pathogenicity is a central player linking high-salt-intake influences to immunopathophysiology of diabetogenesis in NOD mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jing-Jie Ciou
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ming-Wei Chien
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Jia-Ling Dong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Ying Tsai
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - B. Lin-Ju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Shin-Huei Fu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Hou CY, Ma CY, Lin YJ, Huang CL, Wang HD, Yuh CH. WNK1–OSR1 Signaling Regulates Angiogenesis-Mediated Metastasis towards Developing a Combinatorial Anti-Cancer Strategy. Int J Mol Sci 2022; 23:ijms232012100. [PMID: 36292952 PMCID: PMC9602556 DOI: 10.3390/ijms232012100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53−/−] and [HBx,src,p53−/−,RPIA], while ppp2r1bb is downregulated in [tert x p53−/−]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53−/−,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1β expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated β-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1–OSR1–PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1–OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1–OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.
Collapse
Affiliation(s)
- Chia-Ying Hou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chung-Yung Ma
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Ju Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| |
Collapse
|
6
|
Rehman T, Karp PH, Thurman AL, Mather SE, Jain A, Cooney AL, Sinn PL, Pezzulo AA, Duffey ME, Welsh MJ. WNK Inhibition Increases Surface Liquid pH and Host Defense in Cystic Fibrosis Airway Epithelia. Am J Respir Cell Mol Biol 2022; 67:491-502. [PMID: 35849656 PMCID: PMC9564924 DOI: 10.1165/rcmb.2022-0172oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.
Collapse
Affiliation(s)
| | - Philip H. Karp
- Department of Internal Medicine and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| | | | | | | | | | | | | | - Michael E. Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J. Welsh
- Department of Internal Medicine and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
7
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
8
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
9
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Bhuiyan MIH, Young CB, Jahan I, Hasan MN, Fischer S, Meor Azlan NF, Liu M, Chattopadhyay A, Huang H, Kahle KT, Zhang J, Poloyac SM, Molyneaux BJ, Straub AC, Deng X, Gomez D, Sun D. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice. Stroke 2022; 53:1720-1734. [PMID: 35272484 PMCID: PMC9038703 DOI: 10.1161/strokeaha.121.038351] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. METHODS Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. RESULTS Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. CONCLUSIONS The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.
Collapse
Affiliation(s)
- Mohammad Iqbal H Bhuiyan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| | - Cullen B Young
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Israt Jahan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Md Nabiul Hasan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Sydney Fischer
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | - Mingjun Liu
- Medicine (M.L., D.G.), University of Pittsburgh, PA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System (A.C.), University of Pittsburgh, PA
| | - Huachen Huang
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston (K.T.K.)
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | | | - Bradley J Molyneaux
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Pharmacology and Chemical Biology (A.C.S), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China (X.D.)
| | - Delphine Gomez
- Medicine (M.L., D.G.), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Dandan Sun
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| |
Collapse
|
11
|
Taylor CA, Cobb MH. CCT and CCT-Like Modular Protein Interaction Domains in WNK Signaling. Mol Pharmacol 2022; 101:201-212. [PMID: 34312216 PMCID: PMC9092477 DOI: 10.1124/molpharm.121.000307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have well established functions in the maintenance of cell volume and ion homeostasis. Mutations in these kinases have been linked to an inherited form of hypertension, neurologic defects, and other pathologies. A rapidly expanding body of evidence points to the involvement of WNKs in regulating multiple diverse cellular processes as well as the progression of some forms of cancer. How OSR1 and SPAK contribute to these processes is well understood in some cases but completely unknown in others. OSR1 and SPAK are targeted to both WNKs and substrates via their conserved C-terminal (CCT) protein interaction domains. Considerable effort has been put forth to understand the structure, function, and interaction specificity of the CCT domains in relation to WNK signaling, and multiple inhibitors of WNK signaling target these domains. The domains bind RFxV and RxFxV protein sequence motifs with the consensus sequence R-F-x-V/I or R-x-F-x-V/I, but residues outside the core motif also contribute to specificity. CCT interactions are required for OSR1 and SPAK activation and deactivation as well as cation-chloride cotransporter substrate phosphorylation. All four WNKs also contain CCT-like domains that have similar structures and conserved binding residues when compared with CCT domains, but their functions and interaction specificities are mostly unknown. A better understanding of the varied actions of these domains and their interactions will better define the known signaling mechanisms of the WNK pathway as well as uncover new ones. SIGNIFICANCE STATEMENT: WNK [with no lysine (K)] kinases and their downstream effector kinases, oxidative stress responsive 1 (OSR1) and SPS/STE20-related proline-alanine-rich kinase (SPAK), have been shown to be involved in an array of diverse cellular processes. Here we review the function of modular protein interaction domains found in OSR1 and SPAK as well as related domains found in WNKs.
Collapse
Affiliation(s)
- Clinton A Taylor
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Elvers KT, Lipka-Lloyd M, Trueman RC, Bax BD, Mehellou Y. Structures of the Human SPAK and OSR1 Conserved C-Terminal (CCT) Domains. Chembiochem 2022; 23:e202100441. [PMID: 34726826 DOI: 10.1002/cbic.202100441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Indexed: 11/07/2022]
Abstract
STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1) kinase are two serine/threonine protein kinases that regulate the function of ion co-transporters through phosphorylation. The highly conserved C-terminal (CCT) domains of SPAK and OSR1 bind to RFx[V/I] peptide sequences from their upstream 'With No Lysine Kinases (WNKs), facilitating their activation via phosphorylation. Thus, the inhibition of SPAK and OSR1 binding, via their CCT domains, to WNK kinases is a plausible strategy for inhibiting SPAK and OSR1 kinases. To facilitate structure-guided drug design of such inhibitors, we expressed and purified human SPAK and OSR1 CCT domains and solved their crystal structures. Interestingly, these crystal structures show a highly conserved primary pocket adjacent to a flexible secondary pocket. We also employed a biophysical strategy and determined the affinity of SPAK and OSR1 CCT domains to short peptides derived from WNK4 and NKCC1. Together, this work provides a platform that facilitates the design of CCT domain specific small molecule binders that inhibit SPAK- and OSR1-activation by WNK kinases, and these could be useful in treating hypertension and ischemic stroke.
Collapse
Affiliation(s)
- Karen T Elvers
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK.,Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Benjamin D Bax
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
13
|
Jonniya NA, Zhang J, Kar P. Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. J Phys Chem B 2021; 125:9115-9129. [PMID: 34369793 DOI: 10.1021/acs.jpcb.1c04672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline-alanine-rich kinase (SPAK) are physiological substrates of the with-no-lysine (WNK) kinase. They are the master regulators of cation Cl- cotransporters that could be targeted for discovering novel antihypertensive agents. Both kinases have a conserved carboxy-terminal (CCT) domain that recognizes a unique peptide motif (Arg-Phe-Xaa-Val) present in their upstream kinases and downstream substrates. Here, we have combined molecular docking with molecular dynamics simulations and free-energy calculations to identify potential inhibitors that can bind to the allosteric pocket of the OSR1-CCT domain and impede its interaction with the WNK peptide. Our study revealed that STOCK1S-14279 and Closantel bound strongly to the allosteric pocket of OSR1 and displaced the WNK peptide from the primary pocket of OSR1. We showed that primarily Arg1004 and Gln1006 of the WNK4-peptide motif were involved in strong H-bond interactions with Glu453 and Arg451 of OSR1. Besides, our study revealed that atoms of Arg1004 were solvent-exposed in cases of STOCK1S-14279 and Closantel, implying that the WNK4 peptide was moved out of the pocket. Overall, the predicted potential inhibitors altogether abolish the OSR1-WNK4-peptide interaction, suggesting their potency as a prospective allosteric inhibitor against OSR1.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, U.K
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
14
|
Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R, Dang BQ, Chen G. Inhibition of the p‑SPAK/p‑NKCC1 signaling pathway protects the blood‑brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol Med Rep 2021; 24:717. [PMID: 34396440 DOI: 10.3892/mmr.2021.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Surgical brain injury (SBI) can disrupt the function of the blood‑brain barrier (BBB), leading to brain edema and neurological dysfunction. Thus, protecting the BBB and mitigating cerebral edema are key factors in improving the neurological function and prognosis of patients with SBI. The inhibition of WNK lysine deficient protein kinase/STE20/SPS1‑related proline/alanine‑rich kinase (SPAK) signaling ameliorates cerebral edema, and this signaling pathway regulates the phosphorylation of the downstream Na+‑K+‑Cl‑ cotransporter 1 (NKCC1). Therefore, the purpose of the present study was to investigate the role of SPAK in SBI‑induced cerebral edema and to determine whether the SPAK/NKCC1 signaling pathway was involved in SBI via regulating phosphorylation. An SBI model was established in male Sprague‑Dawley rats, and the effects of SPAK on the regulation of the NKCC1 signaling pathway on BBB permeability and nerve cell apoptosis by western blotting analysis, immunofluorescence staining, TUNEL staining, Fluoro‑Jade C staining, and brain edema and nervous system scores. The results demonstrated that, compared with those in the sham group, phosphorylated (p)‑SPAK and p‑NKCC1 protein expression levels were significantly increased in the SBI model group. After inhibiting p‑SPAK, the expression level of p‑NKCC1, neuronal apoptosis and BBB permeability were significantly reduced in SBI model rats. Taken together, these findings suggested that SBI‑induced increases in p‑SPAK and p‑NKCC1 expression exacerbated post‑traumatic neural and BBB damage, which may be mediated via the ion‑transport‑induced regulation of cell edema.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Mengying Shi
- Department of Anesthesiology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Bao-Qi Dang
- Department of Rehabilitation, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
15
|
Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Köchl R, Tybulewicz VLJ, Fernandes-Alnemri T, Alnemri ES. Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 2021; 12:4546. [PMID: 34315884 PMCID: PMC8316491 DOI: 10.1038/s41467-021-24784-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
The NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1β production in response to NLRP3 stimulation compared with control mice. Mechanistically, WNK1 tempers NLRP3 activation by balancing intracellular Cl- and K+ concentrations during NLRP3 activation. Collectively, this work shows that the WNK1 pathway has a critical function in suppressing NLRP3 activation and suggests that pharmacological inhibition of this pathway to treat hypertension might have negative clinical implications.
Collapse
Affiliation(s)
- Lindsey Mayes-Hopfinger
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aura Enache
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert Köchl
- The Francis Crick Institute, London, UK
- Kings College London, London, UK
| | | | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Schiapparelli P, Pirman NL, Mohler K, Miranda-Herrera PA, Zarco N, Kilic O, Miller C, Shah SR, Rogulina S, Hungerford W, Abriola L, Hoyer D, Turk BE, Guerrero-Cázares H, Isaacs FJ, Quiñones-Hinojosa A, Levchenko A, Rinehart J. Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Rep 2021; 36:109416. [PMID: 34289367 PMCID: PMC8379681 DOI: 10.1016/j.celrep.2021.109416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/23/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery.
Collapse
Affiliation(s)
| | - Natasha L Pirman
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kyle Mohler
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | | | - Natanael Zarco
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chad Miller
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Svetlana Rogulina
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - William Hungerford
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery, Yale University, West Haven, CT 06516, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Farren J Isaacs
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Andre Levchenko
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
17
|
Qiu Z, Dong B, Guo W, Piotr R, Longmore G, Yang X, Yu Z, Deng J, Evers BM, Wu Y. STK39 promotes breast cancer invasion and metastasis by increasing SNAI1 activity upon phosphorylation. Theranostics 2021; 11:7658-7670. [PMID: 34335956 PMCID: PMC8315073 DOI: 10.7150/thno.62406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.
Collapse
|
18
|
Meor Azlan NF, Koeners MP, Zhang J. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 2021; 11:1117-1128. [PMID: 34094823 PMCID: PMC8144889 DOI: 10.1016/j.apsb.2020.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.
Collapse
Key Words
- ATP, adenosine triphosphate
- Blood pressure regulation
- CCC, cation-coupled chloride cotransporters
- CCT, conserved carboxy-terminal
- CNI, calcineurin inhibitors
- CUL3, cullin 3
- CUL3/KLHL3-WNK-SPAK/OSR1
- Ca2+, calcium ion
- Cardiovascular disease
- DAG, diacylglycerol
- DCT, distal convoluted tubule
- DUSP, dual specificity phosphatases
- ECF, extracellular fluid
- ELISA, enzyme-bound immunosorbent analysis
- ERK, extracellular signal-regulated kinases
- EnaC, epithelial sodium channels
- GABA, gamma-aminobutyric acid
- HEK293, human embryonic kidney 293
- Hypertension
- I1, inhibitor 1
- K+, potassium ion
- KCC, potassium-chloride-cotransporters
- KLHL3, kelch-like 3
- KS-WNK1, kidney specific-WNK1
- Kinase inhibitors
- MAPK, mitogen-activated protein kinase
- MO25, mouse protein-25
- Membrane trafficking
- NCC, sodium–chloride cotransporters
- NKCC, sodium–potassium–chloride-cotransporter
- Na+, sodium ion
- NaCl, sodium chloride
- NaCl-cotransporter NCC
- OSR1, oxidative stress-responsive gene 1
- PCT, proximal convoluted tubule
- PHAII, pseudohypoaldosteronism type II
- PP, protein phosphatase
- PV, parvalbumin
- ROMK, renal outer medullary potassium
- RasGRP1, RAS guanyl-releasing protein 1
- SLC12, solute carrier 12
- SPAK, Ste20-related proline-alanine-rich-kinase
- TAL, thick ascending limb
- Therapeutic targets
- WNK, with-no-lysine kinases
- mDCT, mammalian DCT
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Maarten P. Koeners
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
19
|
Brown A, Meor Azlan NF, Wu Z, Zhang J. WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacol Sin 2021; 42:508-517. [PMID: 32724175 PMCID: PMC8115323 DOI: 10.1038/s41401-020-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent health condition worldwide, affecting ~1 billion people. Gordon's syndrome is a form of secondary hypertension that can arise due to a number of possible mutations in key genes that encode proteins in a pathway containing the With No Lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive kinase 1 (OSR1). This pathway regulates the activity of the thiazide-sensitive sodium chloride cotransporter (NCC), which is responsible for NaCl reabsorption in the distal nephron. Therefore, mutations in genes encoding proteins that regulate the NCC proteins disrupt ion homeostasis and cause hypertension by increasing NaCl reabsorption. Thiazide diuretics are currently the main treatment option for Gordon's syndrome. However, they have a number of side effects, and chronic usage can lead to compensatory adaptations in the nephron that counteract their action. Therefore, recent research has focused on developing novel inhibitory molecules that inhibit components of the WNK-SPAK/OSR1-NCC pathway, thereby reducing NaCl reabsorption and restoring normal blood pressure. In this review we provide an overview of the currently reported molecular inhibitors of the WNK-SPAK/OSR1-NCC pathway and discuss their potential as treatment options for Gordon's syndrome.
Collapse
Affiliation(s)
- Archie Brown
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- Newcastle University Business School, Newcastle University, Newcastle upon Tyne, NE1 4SE, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK.
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
20
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
21
|
Zhang C, Wang X, Fang D, Xu P, Mo X, Hu C, Abdelatty A, Wang M, Xu H, Sun Q, Zhou G, She J, Xia J, Hui KM, Xia H. STK39 is a novel kinase contributing to the progression of hepatocellular carcinoma by the PLK1/ERK signaling pathway. Theranostics 2021; 11:2108-2122. [PMID: 33500714 PMCID: PMC7797677 DOI: 10.7150/thno.48112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Protein kinases are critical therapeutic targets for curing hepatocellular carcinoma (HCC). As a serine/threonine kinase, the potential roles of serine/threonine kinase 39 (STK39) in HCC remain to be explored. Methods: The expression of STK39 was examined by RT-qPCR, western blotting and immunohistochemistry. Cell proliferation and apoptosis were detected by CCK8 and TUNEL kit. Cell migration and invasion assays were performed using a transwell system with or without Matrigel. RNA-seq, mass spectrometry and luciferase reporter assays were used to identify STK39 binding proteins. Results: Here, we firstly report that STK39 was highly overexpressed in clinical HCC tissues compared with adjacent tissues, high expression of STK39 was induced by transcription factor SP1 and correlated with poor patient survival. Gain and loss of function assays revealed that overexpression of STK39 promoted HCC cell proliferation, migration and invasion. In contrast, the depletion of STK39 attenuated the growth and metastasis of HCC cells. Moreover, knockdown of STK39 induced the HCC cell cycle arrested in the G2/M phase and promoted apoptosis. In mechanistic studies, RNA-seq revealed that STK39 positively regulated the ERK signaling pathway. Mass spectrometry identified that STK39 bound to PLK1 and STK39 promoted HCC progression and activated ERK signaling pathway dependent on PLK1. Conclusions: Thus, our study uncovers a novel role of STK39/PLK1/ERK signaling axis in the progress of HCC and suggests STK39 as an indicator for prognosis and a potential drug target of HCC.
Collapse
Affiliation(s)
- Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Dan Fang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ping Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiao Mo
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chao Hu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Alaa Abdelatty
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mei Wang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haojun Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Junjun She
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Jinglin Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kam Man Hui
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
22
|
Titko T, Perekhoda L, Drapak I, Tsapko Y. Modern trends in diuretics development. Eur J Med Chem 2020; 208:112855. [PMID: 33007663 DOI: 10.1016/j.ejmech.2020.112855] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Diuretics are the first-line therapy for widespread cardiovascular and non-cardiovascular diseases. Traditional diuretics are commonly prescribed for treatment in patients with hypertension, edema and heart failure, as well as with a number of kidney problems. They are diseases with high mortality, and the number of patients suffering from heart and kidney diseases is increasing year by year. The use of several classes of diuretics currently available for clinical use exhibits an overall favorable risk/benefit balance. However, they are not devoid of side effects. Hence, pharmaceutical researchers have been making efforts to develop new drugs with a better pharmacological profile. High-throughput screening, progress in protein structure analysis and modern methods of chemical modification have opened good possibilities for identification of new promising agents for preclinical and clinical testing. In this review, we provide an overview of the medicinal chemistry approaches toward the development of small molecule compounds showing diuretic activity that have been discovered over the past decade and are interesting drug candidates. We have discussed promising natriuretics/aquaretics/osmotic diuretics from such classes as: vasopressin receptor antagonists, SGLT2 inhibitors, urea transporters inhibitors, aquaporin antagonists, adenosine receptor antagonists, natriuretic peptide receptor agonists, ROMK inhibitors, WNK-SPAK inhibitors, and pendrin inhibitors.
Collapse
Affiliation(s)
- Tetiana Titko
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| | - Iryna Drapak
- Department of General, Bioinorganic, Physical and Colloidal Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska Str., 79010, Lviv, Ukraine.
| | - Yevgen Tsapko
- Department of Inorganic Chemistry, National University of Pharmacy, 53 Pushkinska Str., 61002, Kharkiv, Ukraine.
| |
Collapse
|
23
|
Andrews K, Josiah SS, Zhang J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Int J Mol Sci 2020; 21:9142. [PMID: 33266310 PMCID: PMC7730145 DOI: 10.3390/ijms21239142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023] Open
Abstract
Intracellular chloride levels in the brain are regulated primarily through the opposing effects of two cation-chloride co-transporters (CCCs), namely K+-Cl- co-transporter-2 (KCC2) and Na+-K+-Cl- co-transporter-1 (NKCC1). These CCCs are differentially expressed throughout the course of development, thereby determining the excitatory-to-inhibitory γ-aminobutyric acid (GABA) switch. GABAergic excitation (depolarisation) is important in controlling the healthy development of the nervous system; as the brain matures, GABAergic inhibition (hyperpolarisation) prevails. This developmental switch in excitability is important, as uncontrolled regulation of neuronal excitability can have implications for health. Huntington's disease (HD) is an example of a genetic disorder whereby the expression levels of KCC2 are abnormal due to mutant protein interactions. Although HD is primarily considered a motor disease, many other clinical manifestations exist; these often present in advance of any movement abnormalities. Cognitive change, in addition to sleep disorders, is prevalent in the HD population; the effect of uncontrolled KCC2 function on cognition and sleep has also been explored. Several mechanisms by which KCC2 expression is reduced have been proposed recently, thereby suggesting extensive investigation of KCC2 as a possible therapeutic target for the development of pharmacological compounds that can effectively treat HD co-morbidities. Hence, this review summarizes the role of KCC2 in the healthy and HD brain, and highlights recent advances that attest to KCC2 as a strong research and therapeutic target candidate.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK; (K.A.); (S.S.J.)
| |
Collapse
|
24
|
Elzwawi A, Grafton G, Barnes NM, Mehellou Y. SPAK and OSR1 kinases bind and phosphorylate the β 2-Adrenergic receptor. Biochem Biophys Res Commun 2020; 532:88-93. [PMID: 32828531 DOI: 10.1016/j.bbrc.2020.07.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
SPAK and OSR1 are two cytoplasmic serine/threonine protein kinases that regulate the function of a series of sodium, potassium and chloride co-transporters via phosphorylation. Over recent years, it has emerged that these two kinases may have diverse function beyond the regulation of ion co-transporters. Inspired by this, we explored whether SPAK and OSR1 kinases impact physically and phosphorylate the β2-adrenergic receptor (β2ADR). Herein, we report that the amino acid sequence of the human β2ADR displays a SPAK/OSR1 consensus binding motif and using a series of pulldown and in vitro kinase assays we show that SPAK and OSR1 bind the β2ADR and phosphorylate it in vitro. This work provides a notable example of SPAK and OSR1 kinases binding to a G-protein coupled receptor and taps into the potential of these protein kinases in regulating membrane receptors beyond ion co-transporters.
Collapse
Affiliation(s)
- Abdulrahman Elzwawi
- School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gillian Grafton
- School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicholas M Barnes
- School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
25
|
Li Y, Li L, Qin J, Wu J, Dai X, Xu J. OSR1 phosphorylates the Smad2/3 linker region and induces TGF-β1 autocrine to promote EMT and metastasis in breast cancer. Oncogene 2020; 40:68-84. [PMID: 33051597 DOI: 10.1038/s41388-020-01499-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Oxidative stress-responsive kinase 1 (OSR1) plays a critical role in multiple carcinogenic signal pathways, and its overexpression has been found in various types of cancer; however, the pathophysiological role of OSR1 in breast cancer has not been evaluated. This study aims to elaborate on the role of OSR1 in breast cancer metastasis and the specific regulatory mechanism. Our results showed that OSR1 mRNA and protein were upregulated in both human breast cancer samples and cell lines. Moreover, phosphorylated OSR1 (p-OSR1) was an independent poor prognostic indicator in patients with breast cancer. OSR1 upregulation induced epithelial-to-mesenchymal transition (EMT) in normal and malignant mammary epithelial cells with the increasing metastatic capacity. In contrast, deleting OSR1 in aggressive breast cancer cells inhibited these phenotypes. OSR1 is the critical activator for transcription factors of EMT. Mechanistically, we found that OSR1 can directly interact and phosphorylate the linker region of Smad2 at Thr220 and Smad3 at Thr179. Phosphorylated Smad2/3 translocated into the nucleus to enhance transforming growth factor-β1 (TGF-β1) autocrine signalling and increase the transcription of EMT regulators. Importantly, interruption of the OSR1-Smad2/3-TGF-β1 signalling axis elicited a robust anti-EMT and anti-metastatic effect in vitro and in vivo. Taken together, we conclude that OSR1-mediated Smad2/3-TGF-β1 signalling promotes EMT and metastasis representing a promising therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
26
|
Duy PQ, He M, He Z, Kahle KT. Preclinical insights into therapeutic targeting of KCC2 for disorders of neuronal hyperexcitability. Expert Opin Ther Targets 2020; 24:629-637. [PMID: 32336175 DOI: 10.1080/14728222.2020.1762174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder of neuronal hyperexcitability that begets recurrent and unprovoked seizures. The lack of a truly satisfactory pharmacotherapy for epilepsy highlights the clinical urgency for the discovery of new drug targets. To that end, targeting the electroneutral K+/Cl- cotransporter KCC2 has emerged as a novel therapeutic strategy for the treatment of epilepsy. AREAS COVERED We summarize the roles of KCC2 in the maintenance of synaptic inhibition and the evidence linking KCC2 dysfunction to epileptogenesis. We also discuss preclinical proof-of-principle studies that demonstrate that augmentation of KCC2 function can reduce seizure activity. Moreover, potential strategies to modulate KCC2 activity for therapeutic benefit are highlighted. EXPERT OPINION Although KCC2 is a promising drug target, questions remain before clinical translation. It is unclear whether increasing KCC2 activity can reverse epileptogenesis, the ultimate curative goal for epilepsy therapy that extends beyond seizure reduction. Furthermore, the potential adverse effects associated with increased KCC2 function have not been studied. Continued investigations into the neurobiology of KCC2 will help to translate promising preclinical insights into viable therapeutic avenues that leverage fundamental properties of KCC2 to treat medically intractable epilepsy and other disorders of failed synaptic inhibition with attendant neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine , New Haven, CT, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine , New Haven, CT, USA.,Departments of Pediatrics and Cellular & Molecular Physiology, Yale University School of Medicine , New Haven, CT, USA.,Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale University , New Haven, CT, USA.,Yale Stem Cell Center, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
27
|
Forgetta V, Manousaki D, Istomine R, Ross S, Tessier MC, Marchand L, Li M, Qu HQ, Bradfield JP, Grant SFA, Hakonarson H, Paterson AD, Piccirillo C, Polychronakos C, Richards JB. Rare Genetic Variants of Large Effect Influence Risk of Type 1 Diabetes. Diabetes 2020; 69:784-795. [PMID: 32005708 PMCID: PMC7085253 DOI: 10.2337/db19-0831] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022]
Abstract
Most replicated genetic determinants for type 1 diabetes are common (minor allele frequency [MAF] >5%). We aimed to identify novel rare or low-frequency (MAF <5%) single nucleotide polymorphisms with large effects on risk of type 1 diabetes. We undertook deep imputation of genotyped data followed by genome-wide association testing and meta-analysis of 9,358 type 1 diabetes case and 15,705 control subjects from 12 European cohorts. Candidate variants were replicated in a separate cohort of 4,329 case and 9,543 control subjects. Our meta-analysis identified 27 independent variants outside the MHC, among which 3 were novel and had MAF <5%. Three of these variants replicated with P replication < 0.05 and P combined < P discovery In silico analysis prioritized a rare variant at 2q24.3 (rs60587303 [C], MAF 0.5%) within the first intron of STK39, with an effect size comparable with those of common variants in the INS and PTPN22 loci (combined [from the discovery and replication cohorts] estimate of odds ratio [ORcombined] 1.97, 95% CI 1.58-2.47, P combined = 2.9 × 10-9). Pharmacological inhibition of Stk39 activity in primary murine T cells augmented effector responses through enhancement of interleukin 2 signaling. These findings provide insight into the genetic architecture of type 1 diabetes and have identified rare variants having a large effect on disease risk.
Collapse
Affiliation(s)
- Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Despoina Manousaki
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephanie Ross
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie-Catherine Tessier
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Luc Marchand
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Min Li
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Child Health and Human Development Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Struan F A Grant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children's Hospital of Philadelphia, Pliladelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Human Genetics, Children's Hospital of Philadelphia, Pliladelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Andrew D Paterson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, The Hospital for Sick Children, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Constantin Polychronakos
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, U.K
| |
Collapse
|
28
|
Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Sie ZL, Li RY, Sampurna BP, Hsu PJ, Liu SC, Wang HD, Huang CL, Yuh CH. WNK1 Kinase Stimulates Angiogenesis to Promote Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:cancers12030575. [PMID: 32131390 PMCID: PMC7139507 DOI: 10.3390/cancers12030575] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is ubiquitously expressed and essential for embryonic angiogenesis in mice. Increasing evidence indicates the role of WNK kinases in tumorigenesis at least partly by stimulating tumor cell proliferation. Here, we show that human hepatoma cells xenotransplanted into zebrafish produced high levels of vascular endothelial growth factor (VEGF) and WNK1, and induced expression of zebrafish wnk1. Knockdown of wnk1 in zebrafish decreased tumor-induced ectopic vessel formation and inhibited tumor proliferation. Inhibition of WNK1 or its downstream kinases OSR1 (oxidative stress responsive kinase 1)/SPAK (Ste20-related proline alanine rich kinase) using chemical inhibitors decreased ectopic vessel formation as well as proliferation of xenotransplanted hepatoma cells. The effect of WNK and OSR1 inhibitors is greater than that achieved by inhibitor of VEGF signaling cascade. These inhibitors also effectively inhibited tumorigenesis in two separate transgenic zebrafish models of intestinal and hepatocellular carcinomas. Endothelial-specific overexpression of wnk1 enhanced tumorigenesis in transgenic carcinogenic fish, supporting endothelial cell-autonomous effect of WNK1 in tumor promotion. Thus, WNK1 can promote tumorigenesis by multiple effects that include stimulating tumor angiogenesis. Inhibition of WNK1 may be a potent anti-cancer therapy.
Collapse
Affiliation(s)
- Zong-Lin Sie
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (Z.-L.S.); (R.-Y.L.); (B.P.S.); (P.-J.H.)
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30013, Taiwan;
| | - Ruei-Yang Li
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (Z.-L.S.); (R.-Y.L.); (B.P.S.); (P.-J.H.)
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30013, Taiwan;
| | - Bonifasius Putera Sampurna
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (Z.-L.S.); (R.-Y.L.); (B.P.S.); (P.-J.H.)
| | - Po-Jui Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (Z.-L.S.); (R.-Y.L.); (B.P.S.); (P.-J.H.)
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Jhongli Dist., Taoyuan 32001, Taiwan;
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30013, Taiwan;
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa, IA 52242, USA
- Correspondence: (C.-L.H.); (C.-H.Y.); Tel.: +1-319-356-3972 (C.-L.H.); +011-886-37-206166*35338 (C.-H.Y.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; (Z.-L.S.); (R.-Y.L.); (B.P.S.); (P.-J.H.)
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science & Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-L.H.); (C.-H.Y.); Tel.: +1-319-356-3972 (C.-L.H.); +011-886-37-206166*35338 (C.-H.Y.)
| |
Collapse
|
30
|
Zhang J, Bhuiyan MIH, Zhang T, Karimy JK, Wu Z, Fiesler VM, Zhang J, Huang H, Hasan MN, Skrzypiec AE, Mucha M, Duran D, Huang W, Pawlak R, Foley LM, Hitchens TK, Minnigh MB, Poloyac SM, Alper SL, Molyneaux BJ, Trevelyan AJ, Kahle KT, Sun D, Deng X. Modulation of brain cation-Cl - cotransport via the SPAK kinase inhibitor ZT-1a. Nat Commun 2020; 11:78. [PMID: 31911626 PMCID: PMC6946680 DOI: 10.1038/s41467-019-13851-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The SLC12A cation-Cl- cotransporters (CCC), including NKCC1 and the KCCs, are important determinants of brain ionic homeostasis. SPAK kinase (STK39) is the CCC master regulator, which stimulates NKCC1 ionic influx and inhibits KCC-mediated efflux via phosphorylation at conserved, shared motifs. Upregulation of SPAK-dependent CCC phosphorylation has been implicated in several neurological diseases. Using a scaffold-hybrid strategy, we develop a novel potent and selective SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide ("ZT-1a"). ZT-1a inhibits NKCC1 and stimulates KCCs by decreasing their SPAK-dependent phosphorylation. Intracerebroventricular delivery of ZT-1a decreases inflammation-induced CCC phosphorylation in the choroid plexus and reduces cerebrospinal fluid (CSF) hypersecretion in a model of post-hemorrhagic hydrocephalus. Systemically administered ZT-1a reduces ischemia-induced CCC phosphorylation, attenuates cerebral edema, protects against brain damage, and improves outcomes in a model of stroke. These results suggest ZT-1a or related compounds may be effective CCC modulators with therapeutic potential for brain disorders associated with impaired ionic homeostasis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK.
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jason K Karimy
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zhijuan Wu
- Newcastle University Business School, Newcastle University, Newcastle upon Tyne, NE1 4SE, UK
| | - Victoria M Fiesler
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jingfang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huachen Huang
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Md Nabiul Hasan
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anna E Skrzypiec
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Mariusz Mucha
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Daniel Duran
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Robert Pawlak
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15203, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Margaret B Minnigh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradley J Molyneaux
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
31
|
Gao JL, Peng K, Shen MW, Hou YH, Qian XB, Meng XW, Ji FH, Wang LN, Yang JP. Suppression of WNK1-SPAK/OSR1 Attenuates Bone Cancer Pain by Regulating NKCC1 and KCC2. THE JOURNAL OF PAIN 2019; 20:1416-1428. [PMID: 31085334 DOI: 10.1016/j.jpain.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Our preliminary experiment indicated the activation of with-nolysine kinases 1 (WNK1) in bone cancer pain (BCP) rats. This study aimed to investigate the underlying mechanisms via which WNK1 contributed to BCP. A rat model of BCP was induced by Walker-256 tumor cell implantation. WNK1 expression and distribution in the lumbar spinal cord dorsal horn and dorsal root ganglion were examined. SPS1-related proline/alanine-rich kinase (SPAK), oxidative stress-responsive kinase 1 (OSR1), sodium-potassium-chloride cotransporter 1 (NKCC1), and potassium-chloride cotransporter 2 (KCC2) expression were assessed. Pain behaviors including mechanical allodynia and movement-evoked pain were measured. BCP rats exhibited significant mechanical allodynia, with increased WNK1 expression in the dorsal horn and dorsal root ganglion neurons, elevated SPAK/OSR1 and NKCC1 expression in the dorsal root ganglion, and decreased KCC2 expression in the dorsal horn. WNK1 knock-down by small interfering alleviated mechanical allodynia and movement-evoked pain, inhibited WNK1-SPAK/OSR1-NKCC1 activities, and restored KCC2 expression. In addition, closantel (a WNK1-SPAK/OSR1 inhibitor) improved pain behaviors, downregulated SPAK/OSR1 and NKCC1 expression, and upregulated KCC2 expression in BCP rats. Activation of WNK1-SPAK/OSR1 signaling contributed to BCP in rats by modulating NKCC1 and KCC2 expression. Therefore, suppression of WNK1-SPAK/OSR1 may serve as a potential target for BCP therapy. PERSPECTIVE: Our findings demonstrated that the WNK1-SPAK/OSR1 signaling contributed to BCP in rats via regulating NKCC1 and KCC2. Suppressing this pathway reduced pain behaviors. Based on these findings, the WNK1-SPAK/OSR1 signaling may be a potential target for BCP therapy.
Collapse
Affiliation(s)
- Jian-Ling Gao
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng-Wei Shen
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Anesthesiology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Yong-Heng Hou
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Bo Qian
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li-Na Wang
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian-Ping Yang
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Liu JZ, Hu YL, Feng Y, Guo YB, Liu YF, Yang JL, Mao QS, Xue WJ. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K /Akt/mTOR pathway. Exp Cell Res 2019; 385:111691. [PMID: 31678170 DOI: 10.1016/j.yexcr.2019.111691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Rafoxanide is commonly used as anti-helminthic medicine in veterinary medicine, a main compound of salicylanilide. Previous studies have reported that rafoxanide, as an inhibitor of BRAF V600E mutant protein, inhibits the growth of colorectal cancer, multiple myeloma, and skin cancer. However, its therapeutic effect on gastric cancer (GC) and the potential mechanism has not been investigated. Here, we have found that rafoxanide inhibited the proliferation of GC cells in vitro, arrested the cell cycle in the G0/G1 phase, and promoted apoptosis and autophagy in GC cells. Treatment with specific autophagy inhibitor 3-methyladenine drastically inhibited the apoptotic cell death effect by suppressing the switch from autophagy to apoptosis. Mechanistically, we found that rafoxanide inhibited the growth of GC cells in vitro by inhibiting the activity of the PI3K/Akt/mTOR signaling pathway. This process induced autophagy, which essentially resulted in the apoptosis of GC cells. Results from subcutaneous implanted tumor models in nude mice also indicated that rafoxanide inhibited the growth of GC cells in vivo. Taken together, our findings revealed that rafoxanide inhibited the growth of GC cells both in vitro and vivo, indicating a potential drug candidate for the treatment of GC.
Collapse
Affiliation(s)
- Jia-Zhou Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| |
Collapse
|
33
|
Inhibitory Effects of Antiviral Drug Candidates on Canine Parvovirus in F81 cells. Viruses 2019; 11:v11080742. [PMID: 31412574 PMCID: PMC6724046 DOI: 10.3390/v11080742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Canine parvovirus (CPV) is a common etiological agent of acute enteritis, which occurs globally in domestic and wild carnivores. Despite the widespread use of inactivated or live attenuated vaccines, the emergence of antigenic variants and the influence of maternal antibodies have raised some concerns regarding the efficacy of commercial vaccines. While no specific antiviral therapy for CPV infection exists, the only treatment option for the infection is supportive therapy based on symptoms. Thus, there is an urgent medical need to develop antiviral therapeutic options to reduce the burden of CPV-related disease. In this study, a cytopathic effect (CPE)-based high-throughput screening assay was used to screen CPV inhibitors from a Food and Drug Administration (FDA)-approved drug library. After two rounds of screening, seven out of 1430 screened drugs were found to have >50% CPE inhibition. Three drugs—Nitazoxanide, Closantel Sodium, and Closantel—with higher anti-CPV effects were further evaluated in F81 cells by absolute PCR quantification and indirect immunofluorescence assay (IFA). The inhibitory effects of all three drugs were dose-dependent. Time of addition assay indicated that the drugs inhibited the early processes of the CPV replication cycle, and the inhibition effects were relatively high within 2 h postinfection. Western blot assay also showed that the three drugs had broad-spectrum antiviral activity against different subspecies of three CPV variants. In addition, antiapoptotic effects were observed within 12 h in Nitazoxanide-treated F81 cells regardless of CPV infection, while Closantel Sodium- or Closantel-treated cells had no pro- or antiapoptotic effects. In conclusion, Nitazoxanide, Closantel Sodium, and Closantel can effectively inhibit different subspecies of CPV. Since the safety profiles of FDA-approved drugs have already been extensively studied, these three drugs can potentially become specific and effective anti-CPV drugs.
Collapse
|
34
|
Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myeloma by enhancing DNA damage responses and suppressing the p38 MAPK pathway. Cancer Lett 2018; 444:45-59. [PMID: 30583070 DOI: 10.1016/j.canlet.2018.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Rafoxanide is used in veterinary medicine for the treatment of fascioliasis. We previously repositioned the drug as the inhibitor of B-Raf V600E, but its anti-tumor effect in human cancer has never been reported. In this study, we investigated the effects of rafoxanide in multiple myeloma (MM) in vitro and in vivo. We found that rafoxanide inhibited cell proliferation and overcame the protective effect of the bone marrow (BM) microenvironment on MM cells. Rafoxanide induced cell apoptosis by reducing mitochondrial membrane potential (MMP) and regulating the caspase pathway, while having no apparent toxic effect on normal cells. Rafoxanide also inhibited DNA synthesis and caused cell cycle arrest by regulating the cdc25A-degradation pathway. In addition, rafoxanide enhanced the DNA damage response by up-regulating the expression of γ-H2AX, and suppressed activation of the p38 MAPK pathway by down-regulating p38 MAPK phosphorylation and Stat1 phosphorylation. Rafoxanide treatment inhibited tumor growth, with no significant side effects, in an MM mouse xenograft model. Combination of rafoxanide with bortezomib or lenalidomide significantly induced synergistic cytotoxicity in MM cells. Finally, rafoxanide had anti-proliferation effect on both wild type and B-Raf V600E mutated MM cells. And the weaker anti-MM activity of rafoxanide than vemurafenib may indicate other potential mechanisms besides targeting B-Raf V600E mutation. Collectively, our results provide a rationale for use of this drug in MM treatment.
Collapse
|
35
|
Gallolu Kankanamalage S, Karra AS, Cobb MH. WNK pathways in cancer signaling networks. Cell Commun Signal 2018; 16:72. [PMID: 30390653 PMCID: PMC6215617 DOI: 10.1186/s12964-018-0287-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Background The with no lysine [K] (WNK) pathway consists of the structurally unique WNK kinases, their downstream target kinases, oxidative stress responsive (OSR)1 and SPS/Ste20-related proline-alanine-rich kinase (SPAK), and a multitude of OSR1/SPAK substrates including cation chloride cotransporters. Main body While the best known functions of the WNK pathway is regulation of ion transport across cell membranes, WNK pathway components have been implicated in numerous human diseases. The goal of our review is to draw attention to how this pathway and its components exert influence on the progression of cancer, specifically by detailing WNK signaling intersections with major cell communication networks and processes. Conclusion Here we describe how WNKs and associated proteins interact with and influence PI3K-AKT, TGF-β, and NF-κB signaling, as well as its unanticipated role in the regulation of angiogenesis.
Collapse
Affiliation(s)
- Sachith Gallolu Kankanamalage
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA
| | - Aroon S Karra
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA.
| |
Collapse
|
36
|
AlAmri MA, Kadri H, Alderwick LJ, Jeeves M, Mehellou Y. The Photosensitising Clinical Agent Verteporfin Is an Inhibitor of SPAK and OSR1 Kinases. Chembiochem 2018; 19:2072-2080. [PMID: 29999233 DOI: 10.1002/cbic.201800272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 12/27/2022]
Abstract
STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative-stress-responsive kinase 1 (OSR1) are two serine/threonine protein kinases that play key roles in regulating ion homeostasis. Various SPAK and OSR1 mouse models exhibited reduced blood pressure. Herein, the discovery of verteporfin, a photosensitising agent used in photodynamic therapy, as a potent inhibitor of SPAK and OSR1 kinases is reported. It is shown that verteporfin binds the kinase domains of SPAK and OSR1 and inhibits their catalytic activity in an adenosine triphosphate (ATP)-independent manner. In cells, verteporfin was able to suppress the phosphorylation of the ion co-transporter NKCC1; a downstream physiological substrate of SPAK and OSR1 kinases. Kinase panel screening indicated that verteporfin inhibited a further eight protein kinases more potently than that of SPAK and OSR1. Although verteporfin has largely been studied as a modifier of the Hippo signalling pathway, this work indicates that the WNK-SPAK/OSR1 signalling cascade is also a target of this clinical agent. This finding could explain the fluctuation in blood pressure noted in patients and animals treated with this drug.
Collapse
Affiliation(s)
- Mubarak A AlAmri
- School of Pharmacy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hachemi Kadri
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Luke J Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Jeeves
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
37
|
AlAmri MA, Kadri H, Dhiani BA, Mahmood S, Elzwawi A, Mehellou Y. WNK Signaling Inhibitors as Potential Antihypertensive Drugs. ChemMedChem 2017; 12:1677-1686. [DOI: 10.1002/cmdc.201700425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Mubarak A. AlAmri
- School of Pharmacy; College of Medical and Dental Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Hachemi Kadri
- School of Pharmacy and Pharmaceutical Sciences; College of Biomedical and Life Sciences; Cardiff University; Cardiff CF10 3NB UK
| | - Binar A. Dhiani
- School of Pharmacy and Pharmaceutical Sciences; College of Biomedical and Life Sciences; Cardiff University; Cardiff CF10 3NB UK
| | - Shumail Mahmood
- School of Pharmacy; College of Medical and Dental Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Abdulrahman Elzwawi
- School of Pharmacy; College of Medical and Dental Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences; College of Biomedical and Life Sciences; Cardiff University; Cardiff CF10 3NB UK
| |
Collapse
|
38
|
Zhang J, Karimy JK, Delpire E, Kahle KT. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opin Ther Targets 2017; 21:795-804. [PMID: 28679296 PMCID: PMC6081737 DOI: 10.1080/14728222.2017.1351949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl- sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl- cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Jason K. Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiolgy, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T. Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
39
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|