1
|
García L, Garaio E, López-Ortega A, Galarreta-Rodriguez I, Cervera-Gabalda L, Cruz-Quesada G, Cornejo A, Garrido JJ, Gómez-Polo C, Pérez-Landazábal JI. Fe 3O 4-SiO 2 Mesoporous Core/Shell Nanoparticles for Magnetic Field-Induced Ibuprofen-Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:211-219. [PMID: 36562662 DOI: 10.1021/acs.langmuir.2c02408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol-gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.
Collapse
|
2
|
Application of UV responsive SiO2/PVP composite hydrogels as intelligent controlled drug release patches. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Li Z, Li Y, Chen C, Cheng Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J Control Release 2021; 335:541-556. [PMID: 34097923 DOI: 10.1016/j.jconrel.2021.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Smart hydrogels which can respond to external stimuli have been widely focused with increasing interest. Thereinto, magnetic-responsive hydrogels that are prepared by embedding magnetic nanomaterials into hydrogel networks are more advantageous in biomedical applications due to their rapid magnetic response, precisely temporal and spatial control and non-invasively remote actuation. Upon the application of an external magnetic field, magnetic hydrogels can be actuated to perform multiple response modes such as locomotion, deformation and thermogenesis for therapeutic purposes without the limit of tissue penetration depth. This review summarizes the latest advances of magnetic-responsive hydrogels with focus on biomedical applications. The synthetic methods of magnetic hydrogels are firstly introduced. Then, the roles of different response modes of magnetic hydrogels played in different biomedical applications are emphatically discussed in detail. In the end, the current limitations and future perspectives for magnetic hydrogels are given.
Collapse
Affiliation(s)
- Zhenguang Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingze Li
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yu Cheng
- The Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
4
|
Hu X, Yan L, Wang Y, Xu M. Smart and functional polyelectrolyte complex hydrogel composed of salecan and chitosan lactate as superadsorbent for decontamination of nickel ions. Int J Biol Macromol 2020; 165:1852-1861. [DOI: 10.1016/j.ijbiomac.2020.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
|
5
|
Lan H, Huang T, Xiao J, Liao Z, Ouyang J, Dong J, Xian CJ, Hu J, Wang L, Ke Y, Liao H. The immuno-reactivity of polypseudorotaxane functionalized magnetic CDMNP-PEG-CD nanoparticles. J Cell Mol Med 2020; 25:561-574. [PMID: 33210833 PMCID: PMC7810964 DOI: 10.1111/jcmm.16109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
pH‐magnetic dual‐responsive nanocomposites have been widely used in drug delivery and gene therapy. Recently, a polypseudorotaxane functionalized magnetic nanoparticle (MNP) was developed by synthesizing the magnetic nanoparticles with cyclodextrin (CD) molecules (CDMNP) via polyethylene glycol (PEG) (CDMNP‐PEG‐CD). The purpose of this study was to explore the antigenicity and immunogenicity of the nanoparticles in vivo prior to their further application explorations. Here, nanoparticles were assessed in vivo for retention, bio‐distribution and immuno‐reactivity. The results showed that, once administered intravenously, CDMNP‐PEG‐CD induced a temporary blood monocyte response and was cleared effectively from the body through the urine system in mice. The introduction of β‐CD and PEG/β‐CD polypseudorotaxane on SiO2 magnetic nanoparticles (SOMNP) limited particle intramuscular dispersion after being injected into mouse gastrocnemius muscle (GN), which led to the prolonged local inflammation and muscle toxicity by CDMNP and CDMNP‐PEG‐CD. In addition, T cells were found to be more susceptible for β‐CD–modified CDMNP; however, polypseudorotaxane modification partially attenuated β‐CD–induced T cell response in the implanted muscle. Our results suggested that CDMNP‐PEG‐CD nanoparticles or the decomposition components have potential to prime antigen‐presenting cells and to break the muscle autoimmune tolerance.
Collapse
Affiliation(s)
- Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangwei Xiao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaohong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianghui Dong
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Wang
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yu Ke
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
The role of sodium alginate and gellan gum in the design of new drug delivery systems intended for antibiofilm activity of morin. Int J Biol Macromol 2020; 162:1944-1958. [PMID: 32791274 DOI: 10.1016/j.ijbiomac.2020.08.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The use of controlled drug delivery systems represents an alternative and promising strategy for the use of antimicrobials in the oral cavity. Microparticles, films and oral tablets based on alginate and gellan gum were developed also as a strategy to overcome the low aqueous solubility of morin. The systems were characterized in terms of morphological characteristics, mucoadhesion and in vitro drug release. Antibiofilm activity was analyzed for acidogenicity, microbial viability and the composition of the extracellular matrix of single-species biofilms. Scanning Electron Microscopy demonstrated that the microparticles were spherical, rough and compact. The film and the tablet presented smooth and continuous surface and in the inner of the tablet was porous. These systems were more mucoadhesive compared to the microparticles. The in vitro morin release profiles in artificial saliva demonstrated that the microparticles controlled the release better (39.6%), followed by the film (41.1%) and the tablet (91.4%) after 20 h of testing. The morin released from the systems reduced the acidogenicity, microbial viability, concentration of insoluble extracellular polysaccharides and dry weight of biofilms, when compared to the control group. The findings of this study showed that the morin has antibiofilm activity against cariogenic microorganisms.
Collapse
|
7
|
Liao J, Huang H. Review on Magnetic Natural Polymer Constructed Hydrogels as Vehicles for Drug Delivery. Biomacromolecules 2020; 21:2574-2594. [DOI: 10.1021/acs.biomac.0c00566] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
9
|
Ke Y, Zhang X, Liu C, Xiao M, Li H, Fan J, Fu P, Wang S, Zan F, Wu G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:159-170. [PMID: 30889688 DOI: 10.1016/j.msec.2019.01.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
A magnetic-pH dual responsive drug delivery system was prepared for antibacterial therapy to reduce the side effects on nonpathological cells or tissues. Iron oxide (Fe3O4) core was surface-functionalized with silane coupling agents to link β‑cyclodextrin (β-CD) (CDMNP), and a polypseudorotaxanes shell where polyethyleneglycol chains threaded much CD molecules was further prepared on the magnetic Fe3O4 core (CDMNP-PEG-CD) to enhance loading capacity of roxithromycin (ROX). CDMNP-PEG-CD with a hydrodynamic diameter of ~168 nm was cytocompatible, superparamagnetic, magnetic-responsive and stable for 180 min of storage. No significant interaction with serum albumin was shown for the nanocomposites. The in vitro release from ROX-loaded CDMNP-PEG-CD nanocomposites was about 76% of total drug within 30 min at pH 1.0, 1.6-fold of that at pH 7.4 and 2-fold of that at pH 8.0, presenting pH-responsive drug release behaviors. The nanocomposites showed positive antibacterial activity against both E. coli and S. aureus based on an agar diffusion method. The antibacterial activity of the nanocomposites was more sensitive against E. coli than S. aureus, and the inhibition halo against E. coli was 85% more than that of Fe3O4. CDMNP-PEG-CD nanocomposites allowed for the localization and fast concentration of hydrophobic drugs, providing a broad potential range of therapeutic applications.
Collapse
Affiliation(s)
- Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaoye Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Caikun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Xiao
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Jiachen Fan
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuhao Wang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fei Zan
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gang Wu
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
10
|
Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci 2019; 7:951-962. [DOI: 10.1039/c8bm01243a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A smart tumor microenvironment responsive theranostic nanoplatform USPDF for UCL/CT dual-mode imaging and combination of chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Wenting Li
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
| | - Yung Doug Suh
- Research Center for Bio Platform Technology
- Korea Research Institute of Chemical Technology (KRICT)
- DaeJeon 305-600
- Korea
- School of Chemical Engineering
| |
Collapse
|
11
|
Polysaccharide-based cationic hydrogels for dye adsorption. Colloids Surf B Biointerfaces 2018; 170:364-372. [PMID: 29940503 DOI: 10.1016/j.colsurfb.2018.06.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
With advances in soft material design and engineering, naturally resourced polysaccharides have frequently been used to construct hydrogels because of their unique properties such as renewability, biodegradability and biocompatibility. In this work, we use a water-soluble microbial polysaccharide, salecan as a trapped natural polymer, poly(acrylamide-co-diallyldimethylammonium chloride) (PAD) as a functional matrix to prepare salecan/PAD hydrogels through a facile one-pot method. We employed a variety of spectroscopic techniques to probe the physicochemical properties of the designed hydrogels. The results demonstrated that salecan not only tuned the polarity of the PAD hydrogels, but also endowed them with adjustable water content. Subsequently, the adsorption performance of these hydrogels to methyl orange (MO) dye was investigated in detail. It was found that the salecan/PAD had the ability to remove MO from the surrounding aqueous solutions. In addition, adsorption kinetic data were nicely described by pseudo-second-order model and the adsorption isotherm data fitted well with the Freundlich equation. Having tailorable physicochemical properties coupled with the ability to uptake dye, these salecan-incorporated hydrogels could be promising platform for wastewater treatment and removal of heavy metal ions.
Collapse
|
12
|
Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering; Jilin Institute of Chemical Technology; Jilin City 132022 P. R. China
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| |
Collapse
|
13
|
Hu X, Wang Y, Zhang L, Xu M, Zhang J, Dong W. Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. Int J Biol Macromol 2018; 107:1811-1820. [DOI: 10.1016/j.ijbiomac.2017.10.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|