1
|
Sakib S, Andoy NMO, Yang JYC, Galang A, Sullan RMA, Zou S. Antimicrobial and anti-inflammatory effects of polyethyleneimine-modified polydopamine nanoparticles on a burn-injured skin model. Biomater Sci 2025; 13:1770-1783. [PMID: 39995391 DOI: 10.1039/d4bm01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Chronic infections involving bacterial biofilms pose significant treatment challenges due to the resilience of biofilms against existing antimicrobials. Here, we introduce a nanomaterial-based platform for treating Staphylococcus epidermidis biofilms, both in isolation and within a biofilm-infected burn skin model. Our approach leverages biocompatible and photothermal polydopamine nanoparticles (PDNP), functionalized with branched polyethyleneimine (PEI) and loaded with the antibiotic rifampicin, to target bacteria dwelling within biofilms. A key innovation of our method is its ability to not only target planktonic S. epidermidis but also effectively tackle biofilm-embedded bacteria. We demonstrated that PDNP-PEI interacts effectively with the bacterial surface, facilitating laser-activated photothermal eradication of planktonic S. epidermidis. In a 3D skin burn injury model, PDNP-PEI demonstrates anti-inflammatory and reactive oxygen species (ROS)-scavenging effects, reducing inflammatory cytokine levels and promoting healing. The rifampicin-loaded PDNP-PEI (PDNP-PEI-Rif) platform further shows significant efficacy against bacteria inside biofilms. The PDNP-PEI-Rif retained its immunomodulatory activity and efficiently eradicated biofilms grown on our burn-injured 3D skin model, effectively addressing the challenges of biofilm-related infections. This achievement marks a significant advancement in infection management, with the potential for a transformative impact on clinical practice.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Anna Galang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| |
Collapse
|
2
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
3
|
Best W, Ferrell M, Boris A, Heydarian N, Panlilio H, Rice CV. Acquisition of Resistance to PEGylated Branched Polyethylenimine Increases Pseudomonas Aeruginosa Susceptibility to Aminoglycosides. ChemMedChem 2024; 19:e202300689. [PMID: 38806411 PMCID: PMC11368615 DOI: 10.1002/cmdc.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
PEGylated branched polyethylenimine (PEG-BPEI) has antibacterial and antibiofilm properties. Exposure to PEG-BPEI through serial passage leads to resistant P. aeruginosa strains. The minimum inhibitory concentration (MIC) of 600 Da BPEI and PEGylated 600 Da BPEI (PEG-BPEI) in the wild-type PAO1 strain is 16 μg/ml while, after 15 serial passages, the MIC increased to 1024 μg/mL. An additional 15 rounds of serial passage in the absence of BPEI or PEG-BPEI did not change the 1024 μg/mL MIC. Gentamicin, Neomycin, and Tobramycin, cationic antibiotics that inhibit protein synthesis, have a 16-32 fold reduction of MIC values in PEG350-BPEI resistant strains, suggesting increased permeation. The influx of these antibiotics occurs using a self-mediated uptake mechanism, suggesting changes to the outer membrane Data show that resistance causes changes in genes related to outer membrane lipopolysaccharide (LPS) assembly. Mutations were noted in the gene coding for the polymerase Wzy that participates in the assembly of the O-antigen region. Other mutations were noted with wbpE and wbpI of the Wbp pathway responsible for the enzymatic synthesis of ManNAc(3NAc)A in the LPS of P. aeruginosa. These changes suggest that an altered gene product could lead to PEG-BPEI resistance. Nevertheless, the increased susceptibility to aminoglycosides could prevent the emergence of PEG-BPEI resistant bacterial populations.
Collapse
Affiliation(s)
- William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Andrew Boris
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| |
Collapse
|
4
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Low-Molecular Weight Branched Polyethylenimine Reduces Cytokine Secretion from Human Immune System Monocytes Stimulated with Bacterial and Fungal PAMPs. ChemMedChem 2024; 19:e202400011. [PMID: 38740551 PMCID: PMC11463166 DOI: 10.1002/cmdc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Chase Roedl
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tra D. Nguyen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
5
|
Zhao Y, He P, Yao J, Li M, Bai J, Xue F, Chu C, Cong Y, Chu PK. Self-Assembled Multilayered Coatings with Multiple Cyclic Self-Healing Capability, Bacteria Killing, Osteogenesis, and Angiogenesis Properties on Magnesium Alloys. Adv Healthc Mater 2024; 13:e2302519. [PMID: 38078818 DOI: 10.1002/adhm.202302519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 12/28/2023]
Abstract
Self-healing coatings improve the durability of magnesium (Mg) implants, but rapid corrosion still poses a challenge in the healing stage. Moreover, Mg-based materials with acceptable bacteria killing, osteogenic and angiogenic properties are challenging in biomedical applications. Herein, the self-healing polymeric coatings are fabricated on Mg alloys using the spin-assisted layer-by-layer (SLbL) assembly of hyaluronic acid (HA) and branched polyethyleneimine (bPEI) followed by chemical crosslinking treatment. The self-healing coatings show excellent adhesion strength and structure stability. The corrosion resistance is improved due to the physical barrier of polymer coatings, which also promotes the formation of hydroxyapatite (HAp) during degradation for further protection of Mg substrate. Owing to the dynamic reversible hydrogen bonds existing between HA and bPEI, the crosslinked multilayered coatings possess fast, substantial, and cyclic self-healing capabilities leading to restoration of the original structure and functions. In vitro investigations reveal that the self-healing coatings have multiple functionalities pertaining to bacteria killing, cytocompatibility, osteogenesis, as well as angiogenesis. In addition, the self-healing coatings stimulate alkaline phosphatase activity (ALP), extracellular matrix (ECM) mineralization, and the expression of osteogenesis-related genes of mBMSCs and HUVECs. This study reveals a feasible strategy to design and prepare versatile self-healing coatings on Mg implants for biomedical applications.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, School of Medicine, Southeast University, Department of Orthopedics, Chinese PLA General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
6
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Neutralizing Staphylococcus aureus PAMPs that Trigger Cytokine Release from THP-1 Monocytes. ACS OMEGA 2024; 9:10967-10978. [PMID: 38463252 PMCID: PMC10918781 DOI: 10.1021/acsomega.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Innate immunity has considerable specificity and can discriminate between individual species of microbes. In this regard, pathogens are "seen" as dangerous to the host and elicit an inflammatory response capable of destroying the microbes. This immune discrimination is achieved by toll-like receptors on host cells recognizing pathogens, such as Staphylococcus aureus, and microbe-specific pathogen-associated molecular pattern (PAMP) molecules, such as lipoteichoic acid (LTA). PAMPs impede wound healing by lengthening the inflammatory phase of healing and contributing to the development of chronic wounds. Preventing PAMPs from triggering the release of inflammatory cytokines will counteract the dysregulation of inflammation. Here, we use ELISA to evaluate the use of cationic molecules branched polyethylenimine (BPEI), PEGylated BPEI (PEG-BPEI), and polymyxin-B to neutralize anionic LTA and lower levels of TNF-α cytokine release from human THP-1 monocytes in a concentration-dependent manner. Additional data collected with qPCR shows that BPEI and PEG-BPEI reduce the expression profile of the TNF-α gene. Similar effects are observed for the neutralization of whole-cell S. aureus bacteria. In vitro cytotoxicity data demonstrate that PEGylation lowers the toxicity of PEG-BPEI (IC50 = 2661 μm) compared to BPEI (IC50 = 853 μM) and that both compounds are orders of magnitude less toxic than the cationic antibiotic polymyxin-B (IC50 = 79 μM). Additionally, the LTA neutralization ability of polymyxin-B is less effective than BPEI or PEG-BPEI. These properties of BPEI and PEG-BPEI expand their utility beyond disabling antibiotic resistance mechanisms and disrupting S. aureus biofilms, providing additional justification for developing these agents as wound healing therapeutics. The multiple mechanisms of action for BPEI and PEG-BPEI are superior to current wound treatment strategies that have a single modality.
Collapse
Affiliation(s)
- Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ayesha S. Nair
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Chase Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zongkai Peng
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tra D. Nguyen
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Karen L. Wozniak
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Wouters CL, Heydarian N, Pusavat J, Panlilio H, Lam AK, Moen EL, Brennan RE, Rice CV. Breaking membrane barriers to neutralize E. coli and K. pneumoniae virulence with PEGylated branched polyethylenimine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184172. [PMID: 37201561 PMCID: PMC10330601 DOI: 10.1016/j.bbamem.2023.184172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Bacterial infections caused by Gram-negative pathogens, such as those in the family Enterobacteriaceae, are among the most difficult to treat because effective therapeutic options are either very limited or non-existent. This raises serious concern regarding the emergence and spread of multi-drug resistant (MDR) pathogens in the community setting; and thus, creates the need for discovery efforts and/or early-stage development of novel therapies for infections. Our work is directed towards branched polyethylenimine (BPEI) modified with polyethylene glycol (PEG) as a strategy for targeting virulence from Gram-negative bacterial pathogens. Here, we neutralize lipopolysaccharide (LPS) as a barrier to the influx of antibiotics. Data demonstrate that the β-lactam antibiotic oxacillin, generally regarded as ineffective against Gram-negative bacteria, can be potentiated by 600 Da BPEI to kill some Escherichia coli and some Klebsiella pneumoniae. Modification of 600 Da BPEI with polyethylene glycol (PEG) could increase drug safety and improves potentiation activity. The ability to use the Gram-positive agent, oxacillin, against Gram-negative pathogens could expand the capability to deliver effective treatments that simplify, reduce, or eliminate some complicated treatment regimens.
Collapse
Affiliation(s)
- Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, United States of America
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States of America.
| |
Collapse
|
9
|
Bai X, Huang J, Li W, Song Y, Xiao F, Xu Q, Xu H. Portable dual-mode biosensor based on smartphone and glucometer for on-site sensitive detection of Listeria monocytogenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162450. [PMID: 36863591 DOI: 10.1016/j.scitotenv.2023.162450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Contamination of Listeria monocytogenes (L. monocytogenes) in the environment and food can pose a serious threat to human health, and there is an urgent need to establish sensitive on-situ detection methods to mitigate its hazards. In this study, we have developed a field assay that combines magnetic separation technology with antibody-labeled ZIF-8 encapsulating glucose oxidase (GOD@ZIF-8@Ab) to capture and specifically identify L. monocytogenes while GOD catalyzes glucose catabolism to produce signal changes in glucometers. On the other side, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) were added to recombined with the H2O2 generated by the catalyst to form a colorimetric reaction system that changes from colorless to blue. The smartphone software was used for RGB analysis to complete the on-site colorimetric detection of L. monocytogenes. This dual-mode biosensor showed good detection performance for the on-site application of L. monocytogenes in lake water and juice samples, both with a limit of detection up to 101 CFU/mL and a good linear range of 101-106 CFU/mL. Therefore, this dual-mode on-site detection biosensor has a promising application for the early screening of L. monocytogenes in environmental and food samples.
Collapse
Affiliation(s)
- Xuekun Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
10
|
Moen EL, Lam AK, Pusavat J, Wouters CL, Panlilio H, Heydarian N, Peng Z, Lan Y, Rice CV. Dimerization of 600 Da branched polyethylenimine improves β-lactam antibiotic potentiation against antibiotic-resistant Staphylococcus epidermidis and Pseudomonas aeruginosa. Chem Biol Drug Des 2023; 101:489-499. [PMID: 34923750 DOI: 10.1111/cbdd.14009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
Antibiotic resistance is a growing concern in the medical field. Drug-susceptible infections are often treated with β-lactam antibiotics, which bind to enzymes known as penicillin-binding proteins (PBPs). When the PBPs are disabled, the integrity of the cell wall is compromised, leading to cell lysis. Resistance renders β-lactam antibiotics ineffective, and clinicians turn to be more effective, but often more toxic, antibiotics. An alternative approach is combining antibiotics with compounds that disable resistance mechanisms. Previously, we have shown that low-molecular-weight 600 Da branched polyethylenimine restores β-lactam susceptibility to Gram-positive and Gram-negative pathogens with antibiotic resistance. In this study, this approach is extended to the homodimers of 600 Da BPEI that have improved potentiation properties compared to monomers of 600 Da BPEI and 1200 Da BPEI. The homodimers are synthesized by linking two 600 Da BPEI molecules with methylenebisacrylamide (MBAA). The resulting product was characterized with FTIR spectroscopy, 1 H NMR spectroscopy, checkerboard microbroth dilution assays, and cell toxicity assays. These data show that the 600 Da BPEI homodimer is more effective than 1200 Da BPEI toward the potentiation of oxacillin against methicillin-resistant Staphylococcus epidermidis and the potentiation of piperacillin against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Erik L Moen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Anh K Lam
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Yunpeng Lan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Liu X, An L, Zhou Y, Peng W, Huang C. Antibacterial Mechanism of Patrinia scabiosaefolia Against Methicillin Resistant Staphylococcus epidermidis. Infect Drug Resist 2023; 16:1345-1355. [PMID: 36925724 PMCID: PMC10013587 DOI: 10.2147/idr.s398227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose Staphylococcus epidermidis has become one of the most common causes of septicemia. Meanwhile, S. epidermidis has acquired resistance to many antibiotics. Among these, methicillin-resistant S. epidermidis (MRSE) were frequently isolated. Similar to methicillin resistant Staphylococcus aureus (MRSA), they also exhibited multi-resistance, which presented a danger to human health. Patrinia scabiosaefolia as traditional Chinese medicine had strong antibacterial activity against MRSE. However, the mechanism of P. scabiosaefolia against MRSE is not clear. Methods Here, the morphology of cell wall and cell membrane, production of β-lactamase and PBP2, energy metabolism, antioxidant system were systematically studied. Results The data showed that P. scabiosaefolia damaged the cell wall and membrane. In addition, β-lactamase, energy metabolism and antioxidant system were involved in mechanisms of P. scabiosaefolia against MRSE. Conclusion These observations provided new understanding of P. scabiosaefolia against MRSE to control MRSE infections.
Collapse
Affiliation(s)
- Xin Liu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Lili An
- Dermatology Department, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Yonghui Zhou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Wei Peng
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| | - Cong Huang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang City, People's Republic of China
| |
Collapse
|
12
|
Panlilio H, Neel A, Heydarian N, Best W, Atkins I, Boris A, Bui M, Dick C, Ferrell M, Gu T, Haight T, Roedl CC, Rice CV. Antibiofilm Activity of PEGylated Branched Polyethylenimine. ACS OMEGA 2022; 7:44825-44835. [PMID: 36530285 PMCID: PMC9753512 DOI: 10.1021/acsomega.2c04911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biofilm formation is an adaptive resistance mechanism that pathogens employ to survive in the presence of antimicrobials. Pseudomonas aeruginosa is an infectious Gram-negative bacterium whose biofilm allows it to withstand antimicrobial attack and threaten human health. Chronic wound healing is often impeded by P. aeruginosa infections and the associated biofilms. Previous findings demonstrate that 600 Da branched polyethylenimine (BPEI) can restore β-lactam potency against P. aeruginosa and disrupt its biofilms. Toxicity concerns of 600 Da BPEI are mitigated by covalent linkage with low-molecular-weight polyethylene glycol (PEG), and, in this study, PEGylated BPEI (PEG350-BPEI) was found exhibit superior antibiofilm activity against P. aeruginosa. The antibiofilm activity of both 600 Da BPEI and its PEG derivative was characterized with fluorescence studies and microscopy imaging. We also describe a variation of the colony biofilm model that was employed to evaluate the biofilm disruption activity of BPEI and PEG-BPEI.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Andrew Neel
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Isaac Atkins
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Andrew Boris
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Maggie Bui
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Catherine Dick
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Tingting Gu
- Department
of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, Oklahoma 73019, United States
| | - Tristan Haight
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Chase C. Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73069, United States
| |
Collapse
|
13
|
Liu X, An L, Ren S, Zhou Y, Peng W. Comparative Proteomic Analysis Reveals Antibacterial Mechanism of Patrinia scabiosaefolia Against Methicillin Resistant Staphylococcus epidermidis. Infect Drug Resist 2022; 15:883-893. [PMID: 35281570 PMCID: PMC8912936 DOI: 10.2147/idr.s350715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose As a kind of opportunist pathogen, Staphylococcus epidermidis (MRSE) can cause nosocomial infections and easily evolve into resistant bacteria. Among these, methicillin-resistant Staphylococcus epidermidis (MRSE) exhibit significantly higher rates. Our previous study showed that Patrinia scabiosaefolia (PS) possessed strong antibacterial activity against MRSE. However, the mechanism of PS against MRSE is not clear. Methods Here, a tandem mass tag-based (TMT) proteomic analysis was performed to elucidate the potential mechanism of PS against MRSE. We compared the differential expression proteins of MRSE under PS stress. Results Based on a fold change of >1.2 or < 1/1.2 (with p value set at <0.05), a total of 248 proteins (128 up-regulated proteins, 120 down-regulated proteins) were identified. Bioinformatic analysis showed that proteins including arginine deiminase (arcA), ornithine carbamoyltransferase (arcB) and carbamate kinase (arcC), serine–tRNA ligase (serS), phenylalanine–tRNA ligase beta and subunit (pheT), DltD (dlt), d-alanyl carrier protein (dlt), accumulation-associated protein (SasG), serine-aspartate repeat-containing protein C (SdrC) and hemin transport system permease protein HrtB (VraG) played important roles in mechanism of PS against MRSE. Conclusion In summary, these results indicated that arginine deiminase pathway (ADI) pathway, protein synthesis, cell wall synthesis, biofilm formation and uptake of iron were related to mechanisms of PS against MRSE. Our findings provide an insight into the the mechanism of PS against MRSE, and may be valuable in offering new targets to develop more anti-MRSE drugs.
Collapse
Affiliation(s)
- Xin Liu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China
- Correspondence: Xin Liu, College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China, Tel +8618886056643, Email
| | - Lili An
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Shuaijun Ren
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Yonghui Zhou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China
| | - Wei Peng
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People’s Republic of China
| |
Collapse
|
14
|
Dai X, Yang L, Xu Q, Ma J, Zhang Q, Gao F. Water-soluble branched polymer for combined chemo-immunotherapy of bacterial infections. Biomater Sci 2021; 9:8347-8355. [PMID: 34783803 DOI: 10.1039/d1bm01501j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infection is one of the most significant public health challenges due to the limited choices of antibiotics which can overcome antibiotic-resistant bacteria. The promising nonantibiotic therapeutic alternatives for antibiotic-resistant bacterial infection are urgently needed to reduce the disease burden. Herein, the water-soluble branched poly(amino ester) with inherently antibacterial (chemotherapy) and enhanced inflammatory response activity (immunotherapy) was prepared via Michael addition polymerization to combat bacterial infection. These polymers can not only damage bacteria walls, leading to the death of bacteria but also activate macrophages to low-output nitric oxide (NO), TNF-α and interleukin (IL)-1β to kill and clean bacteria. Importantly, these polymers can efficiently inhibit aminoglycoside-resistant P. aeruginosa even at a low dose of 500 nmol L-1. Furthermore, these polymers can treat subcutaneous bacterial infections in vivo. In this study, we first report a water-soluble branched polymer to combat bacteria through the combination of chemotherapy and immunotherapy, which will open a new path to design promising potential therapeutic alternatives for bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Jifang Ma
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
15
|
Li T, Lu Y, Zhang H, Wang L, Beier RC, Jin Y, Wang W, Li H, Hou X. Antibacterial Activity and Membrane-Targeting Mechanism of Aloe-Emodin Against Staphylococcus epidermidis. Front Microbiol 2021; 12:621866. [PMID: 34484130 PMCID: PMC8415635 DOI: 10.3389/fmicb.2021.621866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant Staphylococcus epidermidis (S. epidermidis) dwarfs the current antibiotic development and calls for the discovery of new antibacterial agents. Aloe-emodin is a plant-derived compound that holds promise to battle against these strains. This work reports the antimicrobial activity of aloe-emodin against S. epidermidis and other Gram-positive pathogenic species, manifesting minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) around 4-32 and 32-128 μg/mL, respectively. For Gram-negative bacteria tested, the MICs and MBCs of aloe-emodin were 128-256 and above 1024 μg/mL, respectively. Aloe-emodin at the MBC for 4 h eradicated 96.9% of S. epidermidis cells. Aloe-emodin treatment led to deformities in the morphology of S. epidermidis cells and the destroy of the selective permeability of the cell membranes. Analysis of the transcriptional profiles of aloe-emodin-treated cells revealed changes of genes involved in sulfur metabolism, L-lysine and peptidoglycan biosynthesis, and biofilm formation. Aloe-emodin therefore can safely control Gram-positive bacterial infections and proves to target the bacterial outer membrane.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Yan Lu
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Lei Wang
- Beijing Huafukang Bioscience Co., Ltd., Beijing, China
| | - Ross C. Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Yajie Jin
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wenjing Wang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Huanrong Li
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
16
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
17
|
Panlilio H, Lam AK, Heydarian N, Haight T, Wouters CL, Moen EL, Rice CV. Dual-Function Potentiation by PEG-BPEI Restores Activity of Carbapenems and Penicillins against Carbapenem-Resistant Enterobacteriaceae. ACS Infect Dis 2021; 7:1657-1665. [PMID: 33945257 PMCID: PMC8689638 DOI: 10.1021/acsinfecdis.0c00863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rise of life-threatening carbapenem-resistant Enterobacteriaceae (CRE) infections has become a critical medical threat. Some of the most dangerous CRE bacteria can produce enzymes that degrade a wide range of antibiotics, including carbapenems and β-lactams. Infections by CRE have a high mortality rate, and survivors can have severe morbidity from treatment with toxic last-resort antibiotics. CRE have mobile genetic elements that transfer resistance genes to other species. These bacteria also circulate throughout the healthcare system. The mobility and spread of CRE need to be curtailed, but these goals are impeded by having few agents that target a limited range of pathogenic CRE species. Against CRE possessing the metallo-β-lactamase NDM-1, Klebsiella pneumoniae ATCC BAA-2146 and Escherichia coli ATCC BAA-2452, the potentiation of meropenem and imipenem is possible with low-molecular weight branched polyethylenimine (600 Da BPEI) and its poly(ethylene glycol) (PEG)ylated derivative (PEG-BPEI) that has a low in vivo toxicity. The mechanism of action is elucidated with fluorescence assays of drug influx and isothermal calorimetry data showing the chelation of essential Zn2+ ions. These results suggested that 600 Da BPEI and PEG-BPEI may also improve the uptake of antibiotics and β-lactamase inhibitors. Indeed, the CRE E. coli strain is rendered susceptible to the combination of piperacillin and tazobactam. These results expand the possible utility of 600 Da BPEI potentiators, where previously we have demonstrated the ability to improve antibiotic efficacy against antibiotic resistant clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
18
|
Lam AK, Moen EL, Pusavat J, Wouters CL, Panlilio H, Ferrell MJ, Houck MB, Glatzhofer DT, Rice CV. PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens. ACS OMEGA 2020; 5:26262-26270. [PMID: 33073153 PMCID: PMC7557992 DOI: 10.1021/acsomega.0c04111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 05/29/2023]
Abstract
Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and multi-drug resistant Pseudomonas aeruginosa (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG-BPEI molecules disable β-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG-BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.
Collapse
|
19
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Brennan RE, Rice CV. Expanding the Spectrum of Antibiotics Capable of Killing Multidrug-Resistant Staphylococcus aureus and Pseudomonas aeruginosa. ChemMedChem 2020; 15:1421-1428. [PMID: 32497366 PMCID: PMC7485129 DOI: 10.1002/cmdc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Infections from antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa are a serious threat because reduced antibiotic efficacy complicates treatment decisions and prolongs the disease state in many patients. To expand the arsenal of treatments against antimicrobial-resistant (AMR) pathogens, 600-Da branched polyethylenimine (BPEI) can overcome antibiotic resistance mechanisms and potentiate β-lactam antibiotics against Gram-positive bacteria. BPEI binds cell-wall teichoic acids and disables resistance factors from penicillin binding proteins PBP2a and PBP4. This study describes a new mechanism of action for BPEI potentiation of antibiotics generally regarded as agents effective against Gram-positive pathogens but not Gram-negative bacteria. 600-Da BPEI is able to reduce the barriers to drug influx and facilitate the uptake of a non-β-lactam co-drug, erythromycin, which targets the intracellular machinery. Also, BPEI can suppress production of the cytokine interleukin IL-8 by human epithelial keratinocytes. This enables BPEI to function as a broad-spectrum antibiotic potentiator, and expands the opportunities to improve drug design, antibiotic development, and therapeutic approaches against pathogenic bacteria, especially for wound care.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Erika L Moen
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Robert E Brennan
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
20
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Rice CV. Overcoming Multidrug Resistance and Biofilms of Pseudomonas aeruginosa with a Single Dual-Function Potentiator of β-Lactams. ACS Infect Dis 2020; 6:1085-1097. [PMID: 32223216 PMCID: PMC7233300 DOI: 10.1021/acsinfecdis.9b00486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clinicians prescribe hundreds of millions of β-lactam antibiotics to treat the majority of patients presenting with bacterial infections. Patient outcomes are positive unless resistant bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), are present. P. aeruginosa has both intrinsic and acquired antibiotic resistance, making clinical management of infection a real challenge, particularly when these bacteria are sequestered in biofilms. These problems would be alleviated if, upon the initial presentation of bacterial infection symptoms, clinicians were able to administer an antibiotic that kills both susceptible and otherwise resistant bacteria and eradicates biofilms. As the most common class of antibiotics, β-lactams could be used in a new drug if the leading causes of β-lactam antibiotic resistance, permeation barriers from lipopolysaccharide, efflux pumps, and β-lactamase enzymes, were also defeated. Against P. aeruginosa and their biofilms, the potency of β-lactam antibiotics is restored with 600 Da branched polyethylenimine (600 Da BPEI). Checkerboard assays using microtiter plates demonstrate the potentiation of piperacillin, cefepime, Meropenem, and erythromycin antibiotics. Growth curves demonstrate that only a combination of 600 Da BPEI and piperacillin produces growth inhibition against antibiotic resistant P. aeruginosa. Scanning electron microscopy (SEM) was used to confirm that the combination treatment leads to abnormal P. aeruginosa morphology. Data collected with isothermal titration calorimetry and fluorescence spectroscopy demonstrate a mechanism of action in which potentiation at low concentrations of 600 Da BPEI reduces diffusion barriers from lipopolysaccharides without disrupting the outer membrane itself. Coupled with the ability to overcome a reduction in antibiotic activity created by biofilm exopolymers, targeting anionic sites on lipopolysaccharides and biofilm exopolysaccharides with the same compound provides new opportunities to counter the rise of multidrug-resistant infections.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
21
|
Lam AK, Panlilio H, Pusavat J, Wouters CL, Moen EL, Neel AJ, Rice CV. Low-Molecular-Weight Branched Polyethylenimine Potentiates Ampicillin against MRSA Biofilms. ACS Med Chem Lett 2020; 11:473-478. [PMID: 32292552 PMCID: PMC7153015 DOI: 10.1021/acsmedchemlett.9b00595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/11/2020] [Indexed: 01/18/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a serious threat worldwide. MRSA is the predominant species isolated from medical-device-related biofilm infections and chronic wounds. Its ability to form biofilms grants it resistance to almost all antibiotics on the market. Answering the call for alternative treatments, our lab has been investigating the efficacy of 600 Da branched polyethylenimine (BPEI) as a β-lactam potentiator against bacterial biofilms. Our previous study showed promise against methicillin-resistant Staphylococcus epidermidis biofilms. This study extends our previous findings to eradicate a more virulent pathogen: MRSA biofilms. Microtiter minimum biofilm eradication concentration models, crystal violet assays, and electron microscopy images show synergistic effects between BPEI and ampicillin as a two-step mechanism: step one is the removal of the extracellular polymeric substances (EPS) to expose individual bacteria targets, and step two involves electrostatic interaction of BPEI with anionic teichoic acid in the cell wall to potentiate the antibiotic.
Collapse
Affiliation(s)
- Anh K. Lam
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Cassandra L. Wouters
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Erika L. Moen
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Andrew J. Neel
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Charles V. Rice
- Department of Chemistry and Biochemistry,
Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| |
Collapse
|
22
|
Lam AK, Wouters CL, Moen EL, Pusavat J, Rice CV. Antibiofilm Synergy of β-Lactams and Branched Polyethylenimine against Methicillin-Resistant Staphylococcus epidermidis. Biomacromolecules 2019; 20:3778-3785. [PMID: 31430130 DOI: 10.1021/acs.biomac.9b00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microbial biofilms are ubiquitous in nature, and they pose a serious threat to public health. Staphylococcus epidermidis is the most common clinical isolate from healthcare- and medical device-related biofilm infections. No antibiotic currently on the market can eradicate pathogenic biofilms, which contain complex defense mechanisms composed of slimelike extracellular polymeric substances. Understanding the need to develop alternative approaches, we examine 600 Da branched polyethylenimine (BPEI) against methicillin-resistant Staphylococcus epidermidis (MRSE) biofilms. Here, a microtiter biofilm model is used to test the synergistic effects between the two components of our combination treatment: BPEI and β-lactam antibiotics. Electron microscopy was used to confirm the growth of MRSE biofilms from the model. Minimum biofilm eradication concentration assays, crystal violet assays, and biofilm kill curves suggest that BPEI exhibits antibiofilm activity and can potentiate β-lactams to eradicate MRSE biofilms.
Collapse
Affiliation(s)
- Anh K Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Cassandra L Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Erika L Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Jennifer Pusavat
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
23
|
Blankson G, Parhi AK, Kaul M, Pilch DS, LaVoie EJ. Structure-activity relationships of potentiators of the antibiotic activity of clarithromycin against Escherichia coli. Eur J Med Chem 2019; 178:30-38. [PMID: 31173969 DOI: 10.1016/j.ejmech.2019.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Several studies that have identified agents that potentiate the antimicrobial activity of antibiotics, but there are limited insights into their structure-activity relationships (SAR). The SAR associated with select N-alkylaryl amide derivatives of ornithine was performed to establish those structural features that were associated with potentiation of the antimicrobial activity of clarithromycin against E. coli ATCC 25922. The data indicate that the N-propyl derivative was slightly more active in reducing the effective MIC of clarithromycin against E. coli ATCC 25922. In addition, the S-enantiomer of compound 9 was somewhat more potent than the R-enantiomer in potentiating clarithromycin activity. No significant enhancement in potentiation activity was observed with the conversion of these secondary amides to their N-methyl tertiary amides. Formation of the N-methyl or N,N-dimethyl derivatives of the primary amine of 9 was associated with the loss of potentiation activity. Conversion of this primary amine to a guanidine was also not associated with an increase in potentiation activity. Among the isomeric diamino pentamides, 15 potentiated the antibacterial activity of clarithromycin to the greatest extent. In addition to these amide derivatives, the desoxy derivatives 16 and 18 were the more potent potentiators within this triamine series. The relative location of the primary amines, as indicated by the relative differences in the potentiation observed with 16 compared to 14, appears to be a critical factor in determining potentiation activity. Cell-based membrane permeabilization and efflux inhibition studies in E. coli ATCC 25922 suggest that the potentiation of clarithromycin activity by 16 reflects its ability to inhibit efflux pump activity and to a lesser extent its actions as a permeabilizer of the outer leaflet of the outer cell membrane.
Collapse
Affiliation(s)
- Gifty Blankson
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08820, USA
| | - Ajit K Parhi
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08820, USA; TAXIS Pharmaceuticals, Inc., Monmouth Junction, NJ, 08552, USA
| | - Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Daniel S Pilch
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Edmond J LaVoie
- Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08820, USA.
| |
Collapse
|
24
|
Frohlich KM, Weintraub SF, Bell JT, Todd GC, Väre VYP, Schneider R, Kloos ZA, Tabe ES, Cantara WA, Stark CJ, Onwuanaibe UJ, Duffy BC, Basanta-Sanchez M, Kitchen DB, McDonough KA, Agris PF. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019; 14:758-769. [PMID: 30707489 DOI: 10.1002/cmdc.201800744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 μg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 μg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 μm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.
Collapse
Affiliation(s)
- Kyla M Frohlich
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Regeneron Inc., Rensselaer, NY, USA
| | - Spencer F Weintraub
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: New York Medical College, Valhalla, NY, USA
| | - Janeen T Bell
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Albany Medical College, Center for Physician Assistant Studies, Albany, NY, USA
| | - Gabrielle C Todd
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ville Y P Väre
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ryan Schneider
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA
| | - Zachary A Kloos
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Molecular, Cellular and Developmental Biology, Yale University, West Haven, CT, USA
| | - Ebot S Tabe
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA.,Current address: Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - William A Cantara
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Caren J Stark
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Urenna J Onwuanaibe
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Bryan C Duffy
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA.,Current address: New York State Department of Health, Albany, NY, USA
| | - Maria Basanta-Sanchez
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Waters Corporation, Pleasanton, CA, USA
| | - Douglas B Kitchen
- Albany Molecular Research Incorporated, 26 Corporate Circle, Albany, NY, 12203, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, P.O. Box 22002, Albany, NY, 12201, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY, 12201-2002, USA
| | - Paul F Agris
- The RNA Institute and the Department of Biological Sciences, University at Albany - State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.,Current address: Duke University, Medical School, Durham, NC, USA
| |
Collapse
|