1
|
He Z, Uto T, Tanigawa S, Sakao K, Kumamoto T, Xie K, Pan X, Wu S, Yang Y, Komatsu M, Hou D. Fisetin is a selective adenosine triphosphate-competitive inhibitor for mitogen-activated protein kinase kinase 4 to inhibit lipopolysaccharide-stimulated inflammation. Biofactors 2025; 51:e2108. [PMID: 39087587 PMCID: PMC11680972 DOI: 10.1002/biof.2108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4), a member of the MAP kinase kinase family, directly phosphorylates and activates the c-Jun NH2-terminal kinases (JNK), in response to proinflammatory cytokines and cellular stresses. Regulation of the MKK4 activity is considered to be a novel approach for the prevention and treatment of inflammation. The aim of this study was to identify whether fisetin, a potential anti-inflammatory compound, targets MKK4-JNK cascade to inhibit lipopolysaccharide (LPS)-stimulated inflammatory response. RAW264 macrophage pretreated with fisetin following LPS stimulation was used as a cell model to investigate the transactivation and expression of related-inflammatory genes by transient transfection assay, electrophoretic mobility shift assay (EMSA), or enzyme-linked immunosorbent assay (ELISA), and cellular signaling as well as binding of related-signal proteins by Western blot, pull-down assay and kinase assay, and molecular modeling. The transactivation and expression of cyclooxygenase-2 (COX-2) gene as well as prostaglandin E2 (PGE2) secretion induced by LPS were inhibited by fisetin in a dose-dependent manner. Signaling transduction analysis demonstrated that fisetin selectively inhibited MKK4-JNK1/2 signaling to suppress the phosphorylation of transcription factor AP-1 without affecting the NF-κB and Jak2-Stat3 signaling as well as the phosphorylation of Src, Syk, and TAK1. Furthermore, in vitro and ex vivo pull-down assay using cell lysate or purified protein demonstrated that fisetin could bind directly to MKK4. Molecular modeling using the Molecular Operating Environment™ software indicated that fisetin docked into the ATP-binding pocket of MKK4 with a binding energy of -71.75 kcal/mol and formed a 1.70 Å hydrogen bound with Asp247 residue of MKK4. The IC50 of fisetin against MKK4 was estimated as 2.899 μM in the kinase assay, and the ATP-competitive effect was confirmed by ATP titration. Taken together, our data revealed that fisetin is a potent selective ATP-competitive MKK4 inhibitor to suppress MKK4-JNK1/2-AP-1 cascade for inhibiting LPS-induced inflammation.
Collapse
Affiliation(s)
- Ziyu He
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Takuhiro Uto
- Department of Pharmacy, Faculty of Pharmaceutical SciencesNagasaki International UniversitySaseboJapan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Kozue Sakao
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Takuma Kumamoto
- Department of Brain & NeurosciencesTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kun Xie
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Xuchi Pan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and TechnologyHunan Agricultural UniversityChangshaPeople's Republic of China
| | - Yili Yang
- China Regional Research CentreInternational Centre for Genetic Engineering and BiotechnologyTaizhouPeople's Republic of China
| | - Masaharu Komatsu
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| | - De‐Xing Hou
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Graduate School of Agriculture, Forestry and FisheriesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
2
|
Yumura S, Kitagawa D, Moritsugu K, Nakayama A, Shinada T, Sawa M, Kinoshita T. Conserved gatekeeper methionine regulates the binding and access of kinase inhibitors to ATP sites of MAP2K1, 4, and 7: Clues for developing selective inhibitors. Bioorg Med Chem Lett 2024; 112:129914. [PMID: 39111728 DOI: 10.1016/j.bmcl.2024.129914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Mitogen-activated protein kinase kinases (MAP2Ks) 1, 4, and 7 are potential targets for treating various diseases. Here, we solved the crystal structures of MAP2K1 and MAP2K4 complexed with covalent inhibitor 5Z-7-oxozeaenol (5Z7O). The elucidated structures showed that 5Z7O was non-covalently bound to the ATP binding site of MAP2K4, while it covalently attached to cysteine at the DFG-1 position of the deep ATP site of MAP2K1. In contrast, we previously showed that 5Z7O covalently binds to MAP2K7 via another cysteine on the solvent-accessible edge of the ATP site. Structural analyses and molecular dynamics calculations indicated that the configuration and mobility of conserved gatekeeper methionine located at the central ATP site regulated the binding and access of 5Z7O to the ATP site of MAP2Ks. These structural features provide clues for developing highly potent and selective inhibitors against MAP2Ks. Abbreviations: ATP, adenosine triphosphate; FDA, Food and Drug Administration; MAP2Ks, mitogen-activated protein kinase kinases; MD, molecular dynamics; NSCLC, non-small cell lung cancer; 5Z7O, 5Z-7-oxozeaenol; PDB, protein data bank; RMSD, root-mean-square deviation.
Collapse
Affiliation(s)
- Seigo Yumura
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Daisuke Kitagawa
- Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kei Moritsugu
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masaaki Sawa
- Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
3
|
Kim D, Orr MJ, Kwong AJ, Deibler KK, Munshi HH, Bridges CS, Chen TJ, Zhang X, Lacorazza HD, Scheidt KA. Rational Design of Highly Potent and Selective Covalent MAP2K7 Inhibitors. ACS Med Chem Lett 2023; 14:606-613. [PMID: 37197477 PMCID: PMC10184151 DOI: 10.1021/acsmedchemlett.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023] Open
Abstract
The mitogen-activated protein kinase signaling cascade is conserved across eukaryotes, where it plays a critical role in the regulation of activities including proliferation, differentiation, and stress responses. This pathway propagates external stimuli through a series of phosphorylation events, which allows external signals to influence metabolic and transcriptional activities. Within the cascade, MEK, or MAP2K, enzymes occupy a molecular crossroads immediately upstream to significant signal divergence and cross-talk. One such kinase, MAP2K7, also known as MEK7 and MKK7, is a protein of great interest in the molecular pathophysiology underlying pediatric T cell acute lymphoblastic leukemia (T-ALL). Herein, we describe the rational design, synthesis, evaluation, and optimization of a novel class of irreversible MAP2K7 inhibitors. With a streamlined one-pot synthesis, favorable in vitro potency and selectivity, and promising cellular activity, this novel class of compounds wields promise as a powerful tool in the study of pediatric T-ALL.
Collapse
Affiliation(s)
- Dalton
R. Kim
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Meghan J. Orr
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ada J. Kwong
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kristine K. Deibler
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hasan H. Munshi
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cory Seth Bridges
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Taylor Jie Chen
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Xiaoyu Zhang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
| | - H. Daniel Lacorazza
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Karl A. Scheidt
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Department
of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Scaffold modified Vemurafenib analogues as highly selective mitogen activated protein kinase kinase 4 (MKK4) inhibitors. Eur J Med Chem 2022; 240:114584. [PMID: 35868124 DOI: 10.1016/j.ejmech.2022.114584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4) has recently been identified as druggable target for the treatment of acute liver failure in RNAi experiments. In these experiments MKK4 was identified to be a major regulator in hepatocyte regeneration. Inhibitors thereof may serve as medication to promote liver regeneration or reducing hepatocyte death. Just a small number of potent inhibitors with acceptable selectivity towards relevant off-targets are known up to date. Among the known potent inhibitors, selectivity is highly sensitive towards minor modifications of the molecule, which makes it necessary to carefully balance between potency and selectivity. In the herein presented study, a new class of Vemurafenib-derived inhibitors was investigated with α-carbolines as new scaffold. This new scaffold showed a remarkable intrinsic selectivity towards the chosen off-targets, without affecting potency towards MKK4 on a broad range of structural modifications.
Collapse
|
6
|
Zubenko AA, Morkovnik AS, Divaeva LN, Sochnev VS, Demidov OP, Klimenko AI, Fetisov LN, Bodryakov AN, Bodryakova MA, Borodkin GS. New type of recyclization in 3,4-dihydroisoquinolines in the synthesis of β-(o-indazolylaryl)ethylamines and their 7-azaindazolyl analogues. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Kwong AJ, Pham TND, Oelschlager HE, Munshi HG, Scheidt KA. Rational Design, Optimization, and Biological Evaluation of Novel MEK4 Inhibitors against Pancreatic Adenocarcinoma. ACS Med Chem Lett 2021; 12:1559-1567. [PMID: 34676038 DOI: 10.1021/acsmedchemlett.1c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
Growth, division, and development of healthy cells relies on efficient response to environmental survival cues. The conserved mitogen-activated protein kinase (MAPK) family of pathways interface extracellular stimuli to intracellular processes for this purpose. Within these pathways, the MEK family has been identified as a target of interest due to its clinical relevance. Particularly, MEK4 has drawn recent attention for its indications in pancreatic and prostate cancers. Here, we report two potent MEK4 inhibitors demonstrating significant reduction of phospho-JNK and antiproliferative properties against pancreatic cancer cell lines. Furthermore, molecular inhibition of MEK4 pathway activates the MEK1/2 pathway, with the combination of MEK1/2 and MEK4 inhibitors demonstrating synergistic effects against pancreatic cancer cells. Our inhibitors provided insight into the crosstalk between MAPK pathways and new tools for elucidating the roles of MEK4 in disease states, findings which will pave the way for better understanding of the MAPK pathways and development of additional probes.
Collapse
Affiliation(s)
- Ada J. Kwong
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thao N. D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Hannah E. Oelschlager
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Karl A. Scheidt
- Department of Chemistry, Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Pfaffenrot B, Klövekorn P, Juchum M, Selig R, Albrecht W, Zender L, Laufer SA. Design and synthesis of 1H-pyrazolo[3,4-b]pyridines targeting mitogen-activated protein kinase kinase 4 (MKK4) - A promising target for liver regeneration. Eur J Med Chem 2021; 218:113371. [PMID: 33794385 DOI: 10.1016/j.ejmech.2021.113371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023]
Abstract
Currently, the therapeutic options for treatment of liver failure are very limited. As mitogen-activated protein kinase kinase 4 (MKK4) has recently been identified by in vivo RNAi experiments to be a major regulator in hepatocyte regeneration, we pursued the development of a small molecule targeting this protein kinase. Starting from the approved BRAFV600E inhibitor vemurafenib (8), that showed a high off-target affinity to MKK4 in an initial screening, we followed a scaffold-hopping approach, changing the core heterocycle from 1H-pyrrolo[2,3-b]pyridine to 1H-pyrazolo[2,3-b]pyridine (10). Affinity to MKK4 could be conserved while the selectivity against off-target protein kinases was slightly improved. Further modifications led to 58 and 59 showing high affinity to MKK4 in the low nanomolar range and excellent selectivity profile from mandatory multiparameter-optimization for the essential anti-targets (MKK7, JNK1) and off-targets (BRAF, MAP4K5, ZAK) in the MKK4 pathway. Herein we report the first selective MKK4 inhibitors in this class.
Collapse
Affiliation(s)
- Bent Pfaffenrot
- Department of Pharmaceutical/Medicinal Chemistry an Tuebingen Center for Academic Drug Discovery (TüCAD(2)), Eberhard Karls Universität, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Philip Klövekorn
- Department of Pharmaceutical/Medicinal Chemistry an Tuebingen Center for Academic Drug Discovery (TüCAD(2)), Eberhard Karls Universität, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Michael Juchum
- Department of Pharmaceutical/Medicinal Chemistry an Tuebingen Center for Academic Drug Discovery (TüCAD(2)), Eberhard Karls Universität, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Roland Selig
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072, Tübingen, DE, Germany
| | | | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076, Tuebingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry an Tuebingen Center for Academic Drug Discovery (TüCAD(2)), Eberhard Karls Universität, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Klövekorn P, Pfaffenrot B, Juchum M, Selig R, Albrecht W, Zender L, Laufer SA. From off-to on-target: New BRAF-inhibitor-template-derived compounds selectively targeting mitogen activated protein kinase kinase 4 (MKK4). Eur J Med Chem 2020; 210:112963. [PMID: 33199152 DOI: 10.1016/j.ejmech.2020.112963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022]
Abstract
The mitogen-activated protein kinase (MAP) kinase 4 (MKK4) was found to be a major regulator of liver regeneration and could be a valuable drug target addressing liver related diseases by restoring its intrinsic regenerative capacity. We report on the synthesis and optimization of novel MKK4 inhibitors following a target-hopping strategy from the FDA-approved BRAFV600E inhibitor PLX4032 (8). Applying an iterative multi-parameter optimization process we carved out essential structural features yielding in compounds with a low nanomolar affinity for MKK4 and excellent selectivity profiles against the main off-targets MKK7 and JNK1, which, upon relevant inhibition, would totally abrogate the pro-regenerative effect of MKK4 inhibition, as well as against the off-targets MAP4K5, ZAK and BRAF with selectivity factors ranging from 40 to 430 for our best-balanced compounds 70 and 73.
Collapse
Affiliation(s)
- Philip Klövekorn
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Bent Pfaffenrot
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Michael Juchum
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Roland Selig
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072, Tuebingen, Germany
| | | | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076, Tübingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Tuebingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany.
| |
Collapse
|
10
|
Jiang J, Jiang B, He Z, Ficarro SB, Che J, Marto JA, Gao Y, Zhang T, Gray NS. Discovery of Covalent MKK4/7 Dual Inhibitor. Cell Chem Biol 2020; 27:1553-1560.e8. [PMID: 32916088 DOI: 10.1016/j.chembiol.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
MKK4/7 are kinases that phosphorylate JNKs and regulate the MAPK signaling pathway. Their overexpression has been associated with tumorigenesis and aggressiveness in cancers such as breast, prostate, non-small cell lung, and pediatric leukemia, making them a potential target for inhibitor development. Here, we report the discovery, development, and validation of a dual MKK4/7 inhibitor, BSJ-04-122, that covalently targets a conserved cysteine located before the DFG motif and displays excellent kinome selectivity. BSJ-04-122 exhibits potent cellular target engagement and induces robust target-specific downstream effects. The combination of the dual MKK4/7 inhibitor with a selective, covalent JNK inhibitor demonstrated an enhanced antiproliferative activity against triple-negative breast cancer cells. Taken together, the results show that BSJ-04-122 represents a pharmacological probe for MKK4/7 and credential covalent targeting as a way to explore the therapeutic potential of these kinases.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Kwong AJ, Scheidt KA. Non-'classical' MEKs: A review of MEK3-7 inhibitors. Bioorg Med Chem Lett 2020; 30:127203. [PMID: 32389527 PMCID: PMC7299838 DOI: 10.1016/j.bmcl.2020.127203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The MAPK pathways are an enduring area of interest due to their essential roles in cell processes. Increased expression and activity can lead to a multitude of diseases, sparking research efforts in developing inhibitors against these kinases. Though great strides have been made in developing MEK1/2 inhibitors, there is a notable lack of chemical probes for MEK3-7, given their central role in stimuli response, cell growth, and development. This review summarizes the progress that has been made on developing small molecule probes for MEK3-7, the specific disease states in which they have been studied, and their potential to become novel therapeutics.
Collapse
Affiliation(s)
- Ada J Kwong
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States.
| |
Collapse
|
12
|
Mishra RK, Deibler KK, Clutter MR, Vagadia PP, O'Connor M, Schiltz GE, Bergan R, Scheidt KA. Modeling MEK4 Kinase Inhibitors through Perturbed Electrostatic Potential Charges. J Chem Inf Model 2019; 59:4460-4466. [PMID: 31566378 DOI: 10.1021/acs.jcim.9b00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MEK4, mitogen-activated protein kinase kinase 4, is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. With advances in both computer and biological high-throughput screening, selective chemical entities can be discovered. Structure-based quantitative structure-activity relationship (QSAR) modeling often fails to generate accurate models due to poor alignment of training sets containing highly diverse compounds. Here we describe a highly predictive, nonalignment based robust QSAR model based on a data set of strikingly diverse MEK4 inhibitors. We computed the electrostatic potential (ESP) charges using a density functional theory (DFT) formalism of the donor and acceptor atoms of the ligands and hinge residues. Novel descriptors were then generated from the perturbation of the charge densities of the donor and acceptor atoms and were used to model a diverse set of 84 compounds, from which we built a robust predictive model.
Collapse
Affiliation(s)
- Rama K Mishra
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Kristine K Deibler
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Matthew R Clutter
- Chemistry of Life Processes Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Purav P Vagadia
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Matthew O'Connor
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Raymond Bergan
- Knight Cancer Institute , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Karl A Scheidt
- Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Pharmacology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States.,Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Chemistry of Life Processes Institute , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| |
Collapse
|