1
|
Yang K, Han F, Jin Y, Li X. C-GCS@ZIF-F/PL based electrochemical sensor for rapid and ultra-sensitive detection of rutin in foods. Food Chem 2024; 460:140382. [PMID: 39126741 DOI: 10.1016/j.foodchem.2024.140382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
Herein, a stable and ultra-sensitive rutin electrochemical sensor was successfully developed. This sensor based on glassy carbon electrode (GCE) modified with C-GCS@ZIF-F/PL nanocomposite, which was made of thermally carbonized glucose (GCS) doped with flower-like ZIF (ZIF-F) and pencil lead (PL). The electrochemical response of rutin was considerably significant at C-GCS@ZIF-F/PL/GCE, demonstrating favorable conductivity and electrocatalytic properties for detection of rutin. Under optimal conditions, the linear range is 0.1-100 μM, with a low detection limit (LOD) of 0.0054 μM. It also exhibits excellent stability, reproducibility, as well as selectivity over common interfering ions such as Na+, uric acid, quercetin and riboflavin, etc. Meanwhile, the practical utility of developed sensor was evaluated in food samples including honey, orange, and buckwheat tea, achieving satisfactory recovery rates ranging from 98.2% to 101.7%. This paper introduces a novel technique for the detection of rutin in foods.
Collapse
Affiliation(s)
- Kaifeng Yang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Fangming Han
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Yafeng Jin
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
2
|
Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022; 14:pharmaceutics14122790. [PMID: 36559283 PMCID: PMC9783219 DOI: 10.3390/pharmaceutics14122790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Metal-organic frameworks (MOFs) have a good designability, a well-defined pore, stimulus responsiveness, a high surface area, and a controllable morphology. Up to now, various MOFs have been widely used as nanocarriers and have attracted lots of attention in the field of drug delivery and release because of their good biocompatibility and high-drug-loading capacity. Herein, we provide a comprehensive summary of MOF-based nanocarriers for drug delivery and release over the last five years. Meanwhile, some representative examples are highlighted in detail according to four categories, including the University of Oslo MOFs, Fe-MOFs, cyclodextrin MOFs, and other MOFs. Moreover, the opportunities and challenges of MOF-based smart delivery vehicles are discussed. We hope that this review will be helpful for researchers to understand the recent developments and challenges of MOF-based drug-delivery systems.
Collapse
|
3
|
Adegoke KA, Adegoke OR, Adigun RA, Maxakato NW, Bello OS. Two-dimensional metal-organic frameworks: From synthesis to biomedical, environmental, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Wang W, Yu Y, Jin Y, Liu X, Shang M, Zheng X, Liu T, Xie Z. Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J Nanobiotechnology 2022; 20:207. [PMID: 35501794 PMCID: PMC9059454 DOI: 10.1186/s12951-022-01395-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
As a typical class of crystalline porous materials, metal-organic framework possesses unique features including versatile functionality, structural and compositional tunability. After being reduced to two-dimension, ultrathin metal-organic framework layers possess more external excellent properties favoring various technological applications. In this review article, the unique structural properties of the ultrathin metal-organic framework nanosheets benefiting from the planar topography were highlighted, involving light transmittance, and electrical conductivity. Moreover, the design strategy and versatile fabrication methodology were summarized covering discussions on their applicability and accessibility, especially for porphyritic metal-organic framework nanosheet. The current achievements in the bioapplications of two-dimensional metal-organic frameworks were presented comprising biocatalysis, biosensor, and theranostic, with an emphasis on reactive oxygen species-based nanomedicine for oncology treatment. Furthermore, current challenges confronting the utilization of two-dimensional metal-organic frameworks and future opportunities in emerging research frontiers were presented.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Min Shang
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
5
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
6
|
Zhou C, Yang Q, Zhou X, Jia N. PDA-coated CPT@MIL-53 (Fe) based Theranostic Nanoplatform for pH-Responsive and MRI-Guided Chemotherapy. J Mater Chem B 2022; 10:1821-1832. [PMID: 35201249 DOI: 10.1039/d1tb02339j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theranostic nanoplatform for multimodal diagnosis and treatment of tumors is a currently research hotspot in the field of nanomedicine. MOF-based theranostic nanoplatforms of integrating drug delivery with magnetic resonance imaging...
Collapse
Affiliation(s)
- Chaohui Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Qingye Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Xinyue Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
7
|
Ge Y, Wang K, Li H, Tian Y, Wu Y, Lin Z, Lin Y, Wang Y, Zhang J, Tang B. An Mg-MOFs based multifunctional medicine for the treatment of osteoporotic pain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112386. [PMID: 34579905 DOI: 10.1016/j.msec.2021.112386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
Bone pain is the primary problem for patients with osteoporosis. Ketoprofen is clinically used to treat osteoporotic pain, while long-term oral administration of ketoprofen can cause some side effects. In addition, osteoporosis is also accompanied by bone mass loss and inflammation. In this study, we designed a multifunctional drug (Ket@Mg-MOF-74) adopted Mg-MOF-74 to load ketoprofen to treat osteoporotic pain, bone loss and inflammation comprehensively. Mg-MOF-74 was prepared, and the physicochemical characterization proved that it had excellent physical and chemical stability. Ket@Mg-MOF-74 was synthesized by post-synthetic modification method and a high loading rate of ketoprofen was confirmed. Drug release and ion release experiments indicated Ket@Mg-MOF-74 had a good controlled release of ketoprofen and Mg in solution. Cell experiments in vitro proved the compound drug could significantly reduce the expression of pain-related genes of cyclooxygenase 2 (COX2), obviously up-regulated the expression of osteogenic cytokines and remarkably down-regulated the secretion of pro-inflammatory factors. Therefore, Ket@Mg-MOF-74 is believed a promising painkiller for osteoporotic bone pain, with the function of anti-inflammatory and promoting bone formation.
Collapse
Affiliation(s)
- Yongmei Ge
- Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Huili Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhaowei Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Yansong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiarong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Hashemzadeh A, Drummen GPC, Avan A, Darroudi M, Khazaei M, Khajavian R, Rangrazi A, Mirzaei M. When metal-organic framework mediated smart drug delivery meets gastrointestinal cancers. J Mater Chem B 2021; 9:3967-3982. [PMID: 33908592 DOI: 10.1039/d1tb00155h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers of the gastrointestinal tract constitute one of the most common cancer types worldwide and a ∼58% increase in the global number of cases has been estimated by IARC for the next twenty years. Recent advances in drug delivery technologies have attracted scientific interest for developing and utilizing efficient therapeutic systems. The present review focuses on the use of nanoscale MOFs (Nano-MOFs) as carriers for drug delivery and imaging purposes. In pursuit of significant improvements to current gastrointestinal cancer chemotherapy regimens, systems that allow multiple concomitant therapeutic options (polytherapy) and controlled release are highly desirable. In this sense, MOF-based nanotherapeutics represent a significant step towards achieving this goal. Here, the current state-of-the-art of interdisciplinary research and novel developments into MOF-based gastrointestinal cancer therapy are highlighted and reviewed.
Collapse
Affiliation(s)
- Alireza Hashemzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gregor P C Drummen
- (Bio)Nanotechnology and Hepato/Renal Pathobiology Programs, Bio&Nano Solutions-LAB3BIO, Bielefeld, Germany
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. and Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ruhollah Khajavian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
9
|
Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101101. [PMID: 34145984 PMCID: PMC8373122 DOI: 10.1002/advs.202101101] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Indexed: 05/07/2023]
Abstract
Metal-coordinated supramolecular nanoassemblies have recently attracted extensive attention as materials for cancer theranostics. Owing to their unique physicochemical properties, metal-coordinated supramolecular self-assemblies can bridge the boundary between traditional inorganic and organic materials. By tailoring the structural components of the metal ions and binding ligands, numerous multifunctional theranostic nanomedicines can be constructed. Metal-coordinated supramolecular nanoassemblies can modulate the tumor microenvironment (TME), thus facilitating the development of TME-responsive nanomedicines. More importantly, TME-responsive organic-inorganic hybrid nanomaterials can be constructed in vivo by exploiting the metal-coordinated self-assembly of a variety of functional ligands, which is a promising strategy for enhancing the tumor accumulation of theranostic molecules. In this review, recent advancements in the design and fabrication of metal-coordinated supramolecular nanomedicines for cancer theranostics are highlighted. These supramolecular compounds are classified according to the order in which the coordinated metal ions appear in the periodic table. Furthermore, the prospects and challenges of metal-coordinated supramolecular self-assemblies for both technical advances and clinical translation are discussed. In particular, the superiority of TME-responsive nanomedicines for in vivo coordinated self-assembly is elaborated, with an emphasis on strategies that enhance the accumulation of functional components in tumors for an ideal theranostic outcome.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jun Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Bin Li
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationCollege of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
10
|
Rodríguez-Cid L, Qian W, Iribarra-Araya J, Etcheverry-Berríos Á, Martínez-Olmos E, Choquesillo-Lazarte D, Sañudo EC, Roubeau O, López-Periago AM, González-Campo A, Planas JG, Soler M, Domingo C, Aliaga-Alcalde N. Broadening the scope of high structural dimensionality nanomaterials using pyridine-based curcuminoids. Dalton Trans 2021; 50:7056-7064. [PMID: 33949538 PMCID: PMC8145613 DOI: 10.1039/d1dt00708d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new heteroditopic ligand (3pyCCMoid) that contains the typical skeleton of a curcuminoid (CCMoid) decorated with two 3-pyridyl groups. The coordination of 3pyCCMoid with ZnII centres results in a set of novel coordination polymers (CPs) that display different architectures and dimensionalities (from 1D to 3D). Our work analyses how synthetic methods and slight changes in the reaction conditions affect the formation of the final materials. Great efforts have been devoted toward understanding the coordination entities that provide high dimensional systems, with emphasis on the characterization of 2D materials, including analyses of different types of substrates, stability and exfoliation in water. Here, we foresee the great use of CCMoids in the field of CPs and emphasize 3pyCCMoid as a new-born linker.
Collapse
Affiliation(s)
- Laura Rodríguez-Cid
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Wenjie Qian
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Joseline Iribarra-Araya
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Álvaro Etcheverry-Berríos
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Eulalia Martínez-Olmos
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 - Armilla, Granada, Spain
| | - Eva Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia. Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Ana María López-Periago
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - José G Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Mònica Soler
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Concepción Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Núria Aliaga-Alcalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain. and ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Demir Duman F, Forgan RS. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J Mater Chem B 2021; 9:3423-3449. [PMID: 33909734 DOI: 10.1039/d1tb00358e] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.
Collapse
Affiliation(s)
- Fatma Demir Duman
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
12
|
Absolonová M, Melounková L, Vinklárek J, Honzíček J, Dostál L, Mrózek O. Cyclopentadienyl-Based Anticancer Drugs: Improvement of Cytotoxic Activity through Functionalisation of the π Ligand. ChemMedChem 2021; 16:1804-1812. [PMID: 33635596 DOI: 10.1002/cmdc.202100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Indexed: 11/07/2022]
Abstract
Cytotoxic complexes containing molybdenum are widely studied as a potential substitution for commercially used drugs that often suffer from pronounced side effects and cellular resistance. Compounds of the type [(η5 -Cp')Mo(CO)2 (N,N L)][BF4 ], where Cp is cyclopentadienyl and N,N L is a bidentate ligand, are well known for their strong anticancer activity. It is a generally accepted paradigm that the nature of the coordinated N,N L ligand has a major impact on the cytotoxicity. In this study, a series of new functionalised Cp complexes of molybdenum was synthesised from derivatised fulvenes as π-ligand precursors. Indeed, the coordination sphere's modulation by various N,N-chelating ligands afforded species active toward leukemic cell line MOLT-4 with IC50 values depending on the character of the N,N-chelator used. However, following study clearly showed that functionalisation of the Cp ring with an amine moiety considerably improved cytotoxicity. These results are of crucial importance for the future design of highly active cytotoxic drugs, as modification of cyclopentadienyl is believed to have a minor effect on biological activity.
Collapse
Affiliation(s)
- Monika Absolonová
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Lucie Melounková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.,Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01, Hradec Králové, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Ondřej Mrózek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.,Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, 44227, Dortmund, Germany
| |
Collapse
|
13
|
Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|