1
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Cheng-Sánchez I, Gosselé KA, Palaferri L, Kirillova MS, Nevado C. Discovery and Characterization of Active CBP/EP300 Degraders Targeting the HAT Domain. ACS Med Chem Lett 2024; 15:355-361. [PMID: 38505842 PMCID: PMC10945562 DOI: 10.1021/acsmedchemlett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 03/21/2024] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) are bifunctional molecules that simultaneously bind an E3 ligase and a protein of interest, inducing degradation of the latter via the ubiquitin-proteasome system. Here we present the development of degraders targeting CREB-binding protein (CBP) and E1A-associated protein (EP300)-two homologous multidomain enzymes crucial for enhancer-mediated transcription. Our PROTAC campaign focused on CPI-1612, a reported inhibitor of the histone acetyltransferase (HAT) domain of these two proteins. A novel asymmetric synthesis of this ligand was devised, while PROTAC-SAR was explored by measuring degradation, target engagement, and ternary complex formation in cellulo. Our study demonstrates that engagement of Cereblon (CRBN) and a sufficiently long linker between the E3 and CBP/EP300 binders (≥21 atoms) are required for PROTAC-mediated degradation using CPI-1612 resulting in a new active PROTAC dCE-1. Lessons learned from this campaign, particularly the importance of cell-based assays to understand the reasons underlying PROTAC performance, are likely applicable to other targets to assist the development of degraders.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katherine A. Gosselé
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Leonardo Palaferri
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariia S. Kirillova
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Cristina Nevado
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Crawford MC, Tripu DR, Barritt SA, Jing Y, Gallimore D, Kales SC, Bhanu NV, Xiong Y, Fang Y, Butler KAT, LeClair CA, Coussens NP, Simeonov A, Garcia BA, Dibble CC, Meier JL. Comparative Analysis of Drug-like EP300/CREBBP Acetyltransferase Inhibitors. ACS Chem Biol 2023; 18:2249-2258. [PMID: 37737090 PMCID: PMC11059198 DOI: 10.1021/acschembio.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
Collapse
Affiliation(s)
- McKenna C Crawford
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Deepika R Tripu
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yihang Jing
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Diamond Gallimore
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kamaria A T Butler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jordan L Meier
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Basha NJ, Basavarajaiah SM. An insight into therapeutic efficacy of heterocycles as histone modifying enzyme inhibitors that targets cancer epigenetic pathways. Chem Biol Drug Des 2022; 100:682-698. [PMID: 36059065 DOI: 10.1111/cbdd.14135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
Histone modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016-2022 and future perspectives of these heterocycles in epigenetic therapy.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Design, synthesis and biological evaluation of (R)-5-methylpyrrolidin-2-ones as p300 bromodomain inhibitors with Anti-Tumor activities in multiple tumor lines. Bioorg Chem 2022; 124:105803. [DOI: 10.1016/j.bioorg.2022.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
6
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
7
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Feng L, Yu S, Wang H, Yang S, Li X, Dai H, Zhao L, Jiang C, Wang Y. Synthesis and Biological Evaluation of Spirocyclic Chromane Derivatives as a Potential Treatment of Prostate Cancer. Molecules 2021; 26:molecules26113162. [PMID: 34070610 PMCID: PMC8198214 DOI: 10.3390/molecules26113162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
As a significant co-activator involved in cell cycle and cell growth, differentiation and development, p300/CBP has shown extraordinary potential target in cancer therapy. Herein we designed new compounds from the lead compound A-485 based on molecular dynamic simulations. A series of new spirocyclic chroman derivatives was prepared, characterized and proven to be a potential treatment of prostate cancer. The most potent compound B16 inhibited the proliferation of enzalutamide-resistant 22Rv1 cells with an IC50 value of 96 nM. Furthermore, compounds B16–P2 displayed favorable overall pharmacokinetic profiles, and better tumor growth inhibition than A-485 in an in vivo xenograft model.
Collapse
Affiliation(s)
- Li Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China;
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
| | - Shujia Yu
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
| | - Hai Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
| | - Shengwei Yang
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
| | - Xue Li
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
| | - Hongjuan Dai
- Quality Department, Aurovitas Pharma Taizhou Co. Ltd., Taizhou 225300, China;
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
- Correspondence: (L.Z.); (C.J.); (Y.W.); Tel.: +86-25-81066791 (Y.W.)
| | - Cheng Jiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, China;
- Correspondence: (L.Z.); (C.J.); (Y.W.); Tel.: +86-25-81066791 (Y.W.)
| | - Yazhou Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., No. 99, West Yunlianghe Road, Jiangning District, Nanjing 210049, China; (S.Y.); (H.W.); (S.Y.); (X.L.)
- Correspondence: (L.Z.); (C.J.); (Y.W.); Tel.: +86-25-81066791 (Y.W.)
| |
Collapse
|
9
|
O’Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S. The Biological Significance of Targeting Acetylation-Mediated Gene Regulation for Designing New Mechanistic Tools and Potential Therapeutics. Biomolecules 2021; 11:biom11030455. [PMID: 33803759 PMCID: PMC8003229 DOI: 10.3390/biom11030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause developmental and intellectual challenges and metabolic disorders. Despite the availability of tools for detecting acetylation, the mechanistic knowledge of acetylation-mediated cellular processes remains limited. This review aims to integrate molecular and structural bases of KAT functions, which would help design highly selective tools for understanding the biology of KATs toward developing new disease treatments.
Collapse
Affiliation(s)
- Chenise O’Garro
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Loveth Igbineweka
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Zonaira Ali
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Mihaly Mezei
- Department of Pharmaceutical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shiraz Mujtaba
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
- Correspondence:
| |
Collapse
|
10
|
He ZX, Wei BF, Zhang X, Gong YP, Ma LY, Zhao W. Current development of CBP/p300 inhibitors in the last decade. Eur J Med Chem 2021; 209:112861. [PMID: 33045661 DOI: 10.1016/j.ejmech.2020.112861] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
CBP/p300, functioning as histone acetyltransferases and transcriptional co-factors, represents an attractive target for various diseases, including malignant tumor. The development of small-molecule inhibitors targeting the bromodomain and HAT domains of CBP/p300 has aroused broad interests of medicinal chemist in expectation of providing new hope for anti-cancer treatment. In particular, the CBP/p300 bromodomain inhibitor CCS1477, identified by CellCentric, is currently undergone clinical evaluation for the treatment of haematological malignancies and prostate cancer. In this review, we depict the development of CBP/p300 inhibitors reported from 2010 to 2020 and particularly highlight their structure-activity relationships (SARs), binding modes, selectivity and pharmacological functions with the aim to facilitate rational design and development of CBP/p300 inhibitors.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing-Fei Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
12
|
Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 2020; 19:776-800. [PMID: 32929243 DOI: 10.1038/s41573-020-0077-5] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes - DNA methylation and post-translational modification of histones - in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.
Collapse
|
13
|
Wilson JE, Patel G, Patel C, Brucelle F, Huhn A, Gardberg AS, Poy F, Cantone N, Bommi-Reddy A, Sims RJ, Cummings RT, Levell JR. Discovery of CPI-1612: A Potent, Selective, and Orally Bioavailable EP300/CBP Histone Acetyltransferase Inhibitor. ACS Med Chem Lett 2020; 11:1324-1329. [PMID: 32551019 DOI: 10.1021/acsmedchemlett.0c00155] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
The histone acetyltransferases, CREB binding protein (CBP) and EP300, are master transcriptional co-regulators that have been implicated in numerous diseases, such as cancer, inflammatory disorders, and neurodegeneration. A novel, highly potent, orally bioavailable EP300/CBP histone acetyltransferase (HAT) inhibitor, CPI-1612 or 17, was developed from the lead compound 3. Replacement of the indole scaffold of 3 with the aminopyridine scaffold of 17 led to improvements in potency, solubility, and bioavailability. These characteristics resulted in a 20-fold lower efficacious dose for 17 relative to lead 3 in a JEKO-1 tumor mouse xenograft study.
Collapse
Affiliation(s)
- Jonathan E. Wilson
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Gaurav Patel
- Piramal Enterprises Limited-Discovery Solutions, Ahmedabad, Gujarat 382 213, India
| | - Chirag Patel
- Piramal Enterprises Limited-Discovery Solutions, Ahmedabad, Gujarat 382 213, India
| | - Francois Brucelle
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Annissa Huhn
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Anna S. Gardberg
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Florence Poy
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Nico Cantone
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Archana Bommi-Reddy
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Robert J. Sims
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Richard T. Cummings
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Julian R. Levell
- Constellation Pharmaceuticals, 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Irwin BWJ, Levell JR, Whitehead TM, Segall MD, Conduit GJ. Practical Applications of Deep Learning To Impute Heterogeneous Drug Discovery Data. J Chem Inf Model 2020; 60:2848-2857. [PMID: 32478517 DOI: 10.1021/acs.jcim.0c00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Contemporary deep learning approaches still struggle to bring a useful improvement in the field of drug discovery because of the challenges of sparse, noisy, and heterogeneous data that are typically encountered in this context. We use a state-of-the-art deep learning method, Alchemite, to impute data from drug discovery projects, including multitarget biochemical activities, phenotypic activities in cell-based assays, and a variety of absorption, distribution, metabolism, and excretion (ADME) endpoints. The resulting model gives excellent predictions for activity and ADME endpoints, offering an average increase in R2 of 0.22 versus quantitative structure-activity relationship methods. The model accuracy is robust to combining data across uncorrelated endpoints and projects with different chemical spaces, enabling a single model to be trained for all compounds and endpoints. We demonstrate improvements in accuracy on the latest chemistry and data when updating models with new data as an ongoing medicinal chemistry project progresses.
Collapse
Affiliation(s)
- Benedict W J Irwin
- Optibrium Limited, Cambridge Innovation Park, Denny End Rd, Cambridge CB25 9PB, U.K.,Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Julian R Levell
- Constellation Pharmaceuticals Inc., 215 First St Suite 200, Cambridge, Massachusetts 02142, United States
| | - Thomas M Whitehead
- Intellegens Limited, Eagle Labs, 28 Chesterton Road, Cambridge CB4 3AZ, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Rd, Cambridge CB25 9PB, U.K
| | - Gareth J Conduit
- Intellegens Limited, Eagle Labs, 28 Chesterton Road, Cambridge CB4 3AZ, U.K.,Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|