1
|
Akbari Oryani M, Tarin M, Rahnama Araghi L, Rastin F, Javid H, Hashemzadeh A, Karimi-Shahri M. Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy. J Drug Target 2025; 33:473-491. [PMID: 39618308 DOI: 10.1080/1061186x.2024.2433551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 02/25/2025]
Abstract
Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications. The incorporation of porphyrin molecules into the MOF framework enhances light absorption and energy transfer, leading to improved photodynamic and photothermal effects. Additionally, the porosity of MOFs allows for the encapsulation of therapeutic agents, further enhancing efficacy. In PDT, porphyrin-based MOFs generate reactive oxygen species (ROS) upon light activation, destroying cancer cells. The photothermal properties enable the conversion of light energy into heat, resulting in localised hyperthermia and tumour ablation. The combination of PDT and PTT in a single platform offers synergistic effects, leading to better therapeutic outcomes, reduced side effects, and improved selectivity. This dual-modal treatment strategy provides precise spatiotemporal control over the treatment process, paving the way for next-generation therapeutics with enhanced efficacy and reduced side effects. Further research and optimisation are needed for clinical applications.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Rahnama Araghi
- Department of Biotechnology, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Dhir R, Kaur M, Malik AK. Porphyrin Metal-organic Framework Sensors for Chemical and Biological Sensing. J Fluoresc 2025; 35:1895-1917. [PMID: 38607529 DOI: 10.1007/s10895-024-03674-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Porphyrins and porphyrin derivatives have been intensively explored for a number of applications such as sensing, catalysis, adsorption, and photocatalysis due to their outstanding photophysical properties. Their usage in sensing applications, however, is limited by intrinsic defects such as physiological instability and self-quenching. To reduce self-quenching susceptibility, researchers have developed porphyrin metal-organic frameworks (MOFs). Metal-organic frameworks (MOFs), a unique type of hybrid porous coordination polymers comprised of metal ions linked by organic linkers, are gaining popularity. Porphyrin molecules can be integrated into MOFs or employed as organic linkers in the production of MOFs. Porphyrin-based MOFs are a separate branch of the huge MOF family that combines the distinguishing qualities of porphyrins (e.g., fluorescent nature) and MOFs (e.g., high surface area, high porosity) to enable sensing applications with higher sensitivity, specificity, and extended target range. The key synthesis techniques for porphyrin-based MOFs, such as porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, are outlined in this review article. This review article focuses on current advances and breakthroughs in the field of porphyrin-based MOFs for detecting a variety of targets (for example, metal ions, anions, explosives, biomolecules, pH, and toxins). Finally, the issues and potential future uses of this class of emerging materials for sensing applications are reviewed.
Collapse
Affiliation(s)
- Rupy Dhir
- Department of Chemistry, G.S.S.D.G.S. Khalsa College, Patiala, Punjab, India
| | - Manpreet Kaur
- Department of Applied Sciences, Chandigarh Group of Colleges, Mohali, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
3
|
Magadla A. Hybrid Nanoplatforms Based on Photosensitizers and Metal/Covalent Organic Frameworks for Improved Cancer Synergistic Treatment Nano-Delivery Systems. Molecules 2025; 30:884. [PMID: 40005193 PMCID: PMC11858586 DOI: 10.3390/molecules30040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Researchers have extensively investigated photosensitizer (PS) derivatives for various applications due to their superior photophysical and electrochemical properties. However, inherent problems, such as instability and self-quenching under physiological conditions, limit their biological applications. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) represent two relatively new material types. These materials have high surface areas and permanent porosity, and they show a tremendous deal of potential for applications like these. This review summarizes key synthesis processes and highlights recent advancements in integrating PS-based COF and MOF nanocarriers for biomedical applications while addressing potential obstacles and prospects.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| |
Collapse
|
4
|
Zhou J, Jiang M, Zhang Q, Jiang Y, Wang H, Sun L. Alleviating hypoxia by integrating MnO 2 with metal-organic frameworks coated upconversion nanocomposites for enhanced photodynamic therapy in vitro. Dalton Trans 2025; 54:550-560. [PMID: 39576001 DOI: 10.1039/d4dt02605e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Photodynamic therapy (PDT) requires the participation of abundant oxygen while the hypoxic tumor microenvironment limits the efficacy of PDT. Here, upconversion luminescent nanocomposites coated with metal-organic frameworks (MOFs) were synthesized and modified with MnO2 (named UMMnP) to alleviate hypoxia of the tumor microenvironment. Under 980 nm light irradiation, the upconversion nanoparticles (UCNPs) achieve upconversion emission to excite porphyrin MOFs, which then transfer energy to oxygen to produce singlet oxygen for PDT. At the same time, the MnO2 in the UMMnP nanocomposites can catalyze the generation of O2 from H2O2, which could increase singlet oxygen production in a hypoxic environment, thus enhancing the PDT effect. The HeLa cell viability assay shows that the UMMnP nanocomposites possess good biocompatibility, while after irradiation with 980 nm light, the cell viability decreases dramatically, demonstrating efficient PDT. Furthermore, the nanocomposites can be successfully applied for upconversion luminescence imaging in vitro. Thus, this work provides a promising application of bioimaging and enhanced photodynamic therapy by alleviating hypoxia in tumor treatment.
Collapse
Affiliation(s)
- Junxun Zhou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mengyue Jiang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuan Jiang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Ihalagedara HB, Xu Q, Greer A, Lyons AM. Singlet oxygen generation on a superhydrophobic surface: Effect of photosensitizer coating and incident wavelength on 1O 2 yields. Photochem Photobiol 2025; 101:167-179. [PMID: 38824412 PMCID: PMC11609375 DOI: 10.1111/php.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Photochemical generation of singlet oxygen (1O2) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of 1O2 by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low 1O2 physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on 1O2 yields. We also investigated the effect of incident wavelength on 1O2 yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.
Collapse
Affiliation(s)
- Hasanuwan B. Ihalagedara
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
| | - Alexander Greer
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
| |
Collapse
|
6
|
Granados-Tavera K, Cárdenas-Jirón G. Electronic, optical and charge transport properties of Zn-porphyrin-C 60 MOFs: a combined periodic and cluster modeling. Dalton Trans 2024; 53:16830-16842. [PMID: 39189898 DOI: 10.1039/d4dt01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Density functional theory (DFT) calculations were performed on the 5,15 meso-positions of nine porphyrin-containing MOFs; Zn2(TCPB)-(NMe2-ZnP); (H4TCPB = 1,2,4,5-tetrakis(4-carboxyphenyl)benzene), (NMe2-ZnP = [5,15-bis[(4-pyridyl)-ethynyl]-10,20-bis-(dimethylamine) porphinato]zinc(II)) functionalized with nitrogen-, oxygen-, and sulfur-containing groups to study their effects on the electronic, optical and transport properties of the materials. The properties of these materials have also been investigated by encapsulating fullerene (C60) in their pores (C60@MOFs). The results indicate that the guest C60 in the MOF generates high photoconductivity through efficient porphyrin/fullerene donor-acceptor (D-A) interactions, which are facilitated by oxygen and sulfur functionalities. DFT calculations show that C60 interacts favorably in MOFs due to negative Eint values. Encapsulated C60 molecules modify the electronic band structure, affecting the conduction band and unoccupied states of MOFs corresponding to C60 p orbitals. TD-DFT calculations show that incorporating C60 promotes D-A interactions in MOFs, leading to charge transfer in the near-infrared and visible photoinduced electron transfer (PET) from porphyrins to C60. Nonequilibrium Green's function-based calculations for MOFs with sulfur group, with and without C60, performed using molecular junctions with Au(111)-based electrodes show increased charge transport for the doped MOF. These insights into tuning electronic/optical properties and controlling charge transfer can aid in the design of new visible/near-infrared MOF-based optoelectronic devices.
Collapse
Affiliation(s)
- Kevin Granados-Tavera
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
- Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia, Colombia
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
7
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
9
|
Rossi GG, Tisoco I, Moreira KS, de Lima Burgo TA, de Campos MMA, Iglesias BA. Photophysical, photobiological, and mycobacteria photo-inactivation properties of new meso-tetra-cationic platinum(II) metalloderivatives at meta position. Braz J Microbiol 2024; 55:11-24. [PMID: 38051456 PMCID: PMC10920514 DOI: 10.1007/s42770-023-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
Affiliation(s)
- Grazielle Guidolin Rossi
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Isadora Tisoco
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Kelly Schneider Moreira
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil
| | - Thiago Augusto de Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São Jose Do Rio Preto, São Paulo State, Brazil.
| | - Marli Matiko Anraku de Campos
- Department of Pharmaceutical Sciences, Laboratory of Mycobacteriology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Almeida Iglesias
- Department of Chemistry, Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
11
|
Tehrani Nejad S, Rahimi R, Najafi M, Rostamnia S. Sustainable Gold Nanoparticle (Au-NP) Growth within Interspaces of Porphyrinic Zirconium-Based Metal-Organic Frameworks: Green Synthesis of PCN-224/Au-NPs and Its Anticancer Effect on Colorectal Cancer Cells Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3162-3170. [PMID: 38194287 DOI: 10.1021/acsami.3c15398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.
Collapse
Affiliation(s)
- Sajedeh Tehrani Nejad
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
12
|
Xie Y, Li Z, Zhao C, Lv R, Li Y, Zhang Z, Teng M, Wan Q. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication. LUMINESCENCE 2024; 39:e4621. [PMID: 38044321 DOI: 10.1002/bio.4621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
Near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) technology plays an important role in treating various diseases and still attracts increasing research interests for developing novel photosensitizers (PSs) with outstanding performances. Conventional PSs such as porphyrin and rhodamine derivatives have easy self-aggregation properties in the physiological environment due to their inherent hydrophobic nature caused by their rigid molecular structure that induces strong intermolecular stacking π-π interaction, leading to serious fluorescence quenching and cytotoxic reactive oxygen species (ROS) reduction. Meanwhile, hypoxia is an inherent barrier in the microenvironment of solid tumors, seriously restricting the therapeutic outcome of conventional PDT. Aforementioned disadvantages should be overcome urgently to enhance the therapeutic effect of PSs. Novel NIR fluorescence-guided type I PSs with aggregation-induced emission (AIE), which features the advantages of improving fluorescent intensity and ROS generation efficiency at aggregation as well as outstanding oxygen tolerance, bring hope for resolving aforementioned problems simultaneously. At present, plenty of research works fully demonstrates the advancement of AIE-active PDT based on type I PSs. In this review, cutting-edge advances focusing on AIE-active NIR type I PSs that include the aspects of the photochemical mechanism of type I ROS generation, various molecular structures of reported type I PSs with NIR fluorescence and their design strategies, and typical anticancer applications are summarized. Finally, a brief conclusion is obtained, and the underlying challenges and prospects of AIE-active type I PSs are proposed.
Collapse
Affiliation(s)
- Yili Xie
- College of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| | - Zhijia Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Ruizhi Lv
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Yan Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Zhihong Zhang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, China
| |
Collapse
|
13
|
Guo YX, Liu B, Wang WL, Kang J, Chen JH, Sun WM. Computational screening of metalloporphyrin-based drug carriers for antitumor drug 5-fluorouracil. J Mol Graph Model 2023; 125:108617. [PMID: 37696119 DOI: 10.1016/j.jmgm.2023.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
Developing novel nanoscale carriers for drug delivery is of great significance for improving treatment efficiency and reducing side effects of antitumor drugs. In view of the good biocompatibility and special affinity of porphyrin (PP) molecule to cancer cells, it was used to construct a series of metal-doped M@PP (M = Ca ∼ Zn) materials for the delivery of anticancer drug 5-fluorouracil (5-Fu) in this work. Our results reveal that 5-Fu is tightly adsorbed on M@PP (M = Ca ∼ V, Mn ∼ Co, and Zn) by chemisorption, but is physically adsorbed by M@PP (M = Cr, Ni, and Cu). The calculated electronic properties show that all these 5-Fu@[M@PP] (M = Ca ∼ Zn) complexes have both high stability and solubility. Among these 5-Fu@[M@PP] complexes, the chemical bond formed between 5-Fu and Ti@PP has the strongest covalent characteristic, resulting in the largest adsorption energy of -19.93 kcal/mol for 5-Fu@[Ti@PP]. In particular, 5-Fu@[Ti@PP] has the proper recovery time under the near-infrared light at body temperature, which further suggests that Ti@PP is the best drug carrier for 5-Fu. This study not only reveals the interaction strength and nature between 5-Fu and M@PP, but also confirmed the intriguing potential of Ti@PP as nano-carrier for drug delivery. However, further experimental research should be conducted to verify the conclusion obtained in this work.
Collapse
Affiliation(s)
- Ya-Xing Guo
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China; School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110000, People's Republic of China
| | - Bin Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Wen-Lu Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Jie Kang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
14
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
15
|
Jiang X, Zhao Y, Sun S, Wang L, Sun L, Li W, Wang Z, Wang J, Pei R. A metal-organic framework complex for enhancing tumor treatments through synergistic effect of chemotherapy and photodynamic therapy. J Mater Chem B 2023; 11:10706-10716. [PMID: 37917175 DOI: 10.1039/d3tb01592k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Porphyrin-based metal-organic frameworks (PMOFs) are a kind of crystal hybrid material with broad application prospects in energy, catalysis, biomedicine, and other fields. In this study, the La-TCPP PMOF nanocrystal was constructed using a porphyrin ligand and La ion. This material can produce a high loading rate on doxorubicin (DOX) owing to its special porous structure. The high loading rate of drug molecules and the reactive oxygen species (ROS) of the porphyrin ligand enable La-TCPP@DOX nanocrystal to produce a powerful killing effect on cancer cells under the synergistic attack of chemotherapy (CT) and photodynamic therapy (PDT). Finally, by modifying the targeted aptamer, the actual therapeutic effect of this special La-TCPP@DOX@Apt material on tumors was confirmed by applying the established mouse tumor model. The composite nanomaterial not only avoids the side effects caused by high concentrations of chemotherapeutic drugs, but also overcomes the limitation of PDT owing to insufficient light penetration and can inhibit and kill solid tumors under the condition of synergistic attack. This study is a complement to PMOF crystal materials, and its tumor-killing ability was achieved by loading drugs and introducing targeting molecules, which proves that the synergistic attack can more effectively inhibit and treat solid tumors. These studies have a reference and guiding significance for the treatment of cancer patients.
Collapse
Affiliation(s)
- Xiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
16
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Sonodynamic therapy-based nanoplatforms for combating bacterial infections. ULTRASONICS SONOCHEMISTRY 2023; 100:106617. [PMID: 37769588 PMCID: PMC10542942 DOI: 10.1016/j.ultsonch.2023.106617] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
17
|
Mishra N, Quon AS, Nguyen A, Papazyan EK, Hao Y, Liu Y. Constructing Physiological Defense Systems against Infectious Disease with Metal-Organic Frameworks: A Review. ACS APPLIED BIO MATERIALS 2023; 6:3052-3065. [PMID: 37560923 PMCID: PMC10445270 DOI: 10.1021/acsabm.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The swift and deadly spread of infectious diseases, alongside the rapid advancement of scientific technology in the past several centuries, has led to the invention of various methods for protecting people from infection. In recent years, a class of crystalline porous materials, metal-organic frameworks (MOFs), has shown great potential in constructing defense systems against infectious diseases. This review addresses current approaches to combating infectious diseases through the utilization of MOFs in vaccine development, antiviral and antibacterial treatment, and personal protective equipment (PPE). Along with an updated account of MOFs used for designing defense systems against infectious diseases, directions are also suggested for expanding avenues of current MOF research to develop more effective approaches and tools to prevent the widespread nature of infectious diseases.
Collapse
Affiliation(s)
- Nikita
O. Mishra
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Alisa S. Quon
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Anna Nguyen
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Edgar K. Papazyan
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yajiao Hao
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| |
Collapse
|
18
|
Komatsu Y, Yoshitomi T, Doan VTH, Kurokawa H, Fujiwara S, Kawazoe N, Chen G, Matsui H. Locally Administered Photodynamic Therapy for Cancer Using Nano-Adhesive Photosensitizer. Pharmaceutics 2023; 15:2076. [PMID: 37631290 PMCID: PMC10459333 DOI: 10.3390/pharmaceutics15082076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Photodynamic therapy (PDT) is a great potential anti-tumor therapy owing to its non-invasiveness and high spatiotemporal selectivity. However, systemically administered photosensitizers diffuse in the skin and the eyes for a long duration, which cause phototoxicity to bright light and sunlight. Therefore, following PDT, patients must avoid exposure of to light and sunlight to avoid this phototoxicity. In this study, we have developed a locally administered PDT using nano-adhesive porphyrin with polycations consisting of quaternary ammonium salt groups (aHP) as a photosensitizer. The aHP, approximately 3.0 nm in diameter, adhered the negatively charged cell membrane via electrostatic interaction. The aHP localized to the endosome via cell adhesion and induced apoptosis upon 635 nm light irradiation. On being administered subcutaneously on the tumor, 30% of the injected aHP remained in the administered sites. However, low-molecular-weight hematoporphyrin dihydrochloride (HP) disappeared due to rapid diffusion. PDT with locally administered aHP showed a higher anti-tumor effect after light irradiation at 635 nm for three days compared to low-molecular-weight HP. Intraperitoneal administration of HP caused severe phototoxicity upon irradiation with ultraviolet A at 10 J cm-2, whereas aHP did not cause phototoxicity because its diffusion into the skin could be suppressed, probably due to the high-molecular weight of aHP. Therefore, locally administered PDT with aHP is a potential PDT having high therapeutic efficacy without phototoxicity.
Collapse
Affiliation(s)
- Yoshiki Komatsu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Van Thi Hong Doan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Hiromi Kurokawa
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Saori Fujiwara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (Y.K.); (V.T.H.D.); (S.F.); (N.K.); (G.C.)
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| |
Collapse
|
19
|
Feng H, Zhao L, Bai Z, Xin Z, Wang C, Liu L, Song J, Zhang H, Bai Y, Feng F. Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors. RSC Adv 2023; 13:11215-11224. [PMID: 37056970 PMCID: PMC10087063 DOI: 10.1039/d3ra00753g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Active-targeted nanoplatforms could specifically target tumors compared to normal cells, making them a promising therapeutic agent. The aptamer is a kind of short DNA or RNA sequence that can specifically bind to target molecules, and could be widely used as the active targeting agents of nanoplatforms to achieve active-targeted therapy of tumors. Herein, an aptamer modified nanoplatform DOX@PCN@Apt-M was designed for active-targeted chemo-photodynamic therapy of tumors. Zr-based porphyrinic nanoscale metal organic framework PCN-224 was synthesized through a one-pot reaction, which could produce cytotoxic 1O2 for efficient treatment of tumor cells. To improve the therapeutic effect of the tumor, the anticancer drug doxorubicin (DOX) was loaded into PCN-224 to form DOX@PCN-224 for tumor combination therapy. Active-targeted combination therapy achieved by modifying the MUC1 aptamer (Apt-M) onto DOX@PCN-224 surface can not only further reduce the dosage of therapeutic agents, but also reduce their toxic and side effects on normal tissues. In vitro, experimental results indicated that DOX@PCN@Apt-M exhibited enhanced combined therapeutic effect and active targeting efficiency under 808 nm laser irradiation for MCF-7 tumor cells. Based on PCN-224 nanocarriers and aptamer MUC1, this work provides a novel strategy for precisely targeting MCF-7 tumor cells.
Collapse
Affiliation(s)
- Haidi Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Zhiqiang Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Zhihui Xin
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
| | - Chaoyu Wang
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Jinping Song
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University Datong 037009 P. R. China
- School of Chemistry and Material Science, Shanxi Normal University Linfen 041004 P. R. China
- School Department of Energy Chemistry and Materials Engineering, Shanxi Institute P. R. China
| |
Collapse
|
20
|
Yang L, Lang Y, Wu H, Xiang K, Wang Y, Yu M, Liu Y, Yang B, He L, Lu G, Ni Q, Chen X, Zhang L. Engineered Toll-like Receptor Nanoagonist Binding to Extracellular Matrix Elicits Safe and Robust Antitumor Immunity. ACS NANO 2023; 17:5340-5353. [PMID: 36913671 DOI: 10.1021/acsnano.2c08429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy, such as the Toll-like receptor (TLR) agonist including CpG oligodeoxynucleotide, has shown potency in clinical settings. However, it is still confronted with multiple challenges, which include the limited efficacy and severe adverse events caused by the rapid clearance and systemic diffusion of CpG. Here we report an improved CpG-based immunotherapy approach composed of a synthetic extracellular matrix (ECM)-anchored DNA/peptide hybrid nanoagonist (EaCpG) via (1) a tailor designed DNA template that encodes tetramer CpG and additional short DNA moieties, (2) generation of elongated multimeric CpG through rolling circle amplification (RCA), (3) self-assembly of densely packaged CpG particles composed of tandem CpG building blocks and magnesium pyrophosphate, and (4) incorporation of multiple copies of ECM binding peptide through hybridization to short DNA moieties. The structurally well-defined EaCpG shows dramatically increased intratumoral retention and marginal systemic dissemination through peritumoral administration, leading to potent antitumor immune response and subsequent tumor elimination, with minimal treatment-related toxicity. Combined with conventional standard-of-care therapies, peritumor administration of EaCpG generates systemic immune responses that lead to a curative abscopal effect on distant untreated tumors in multiple cancer models, which is superior to the unmodified CpG. Taken together, EaCpG provides a facile and generalizable strategy to simultaneously potentiate the potency and safety of CpG for combinational cancer immunotherapies.
Collapse
Affiliation(s)
- Liu Yang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Haoguang Wu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Kaiyan Xiang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Yuanzheng Wang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Mengqi Yu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Liu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| | - Qianqian Ni
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China
| |
Collapse
|
21
|
Zhang Q, Yu W, Liu Z, Li H, Liu Y, Liu X, Han Z, He J, Zeng Y, Guo Y, Liu Y. Design, synthesis, antitumor activity and ct-DNA binding study of photosensitive drugs based on porphyrin framework. Int J Biol Macromol 2023; 230:123147. [PMID: 36621729 DOI: 10.1016/j.ijbiomac.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising novel tumor treatment method. In this study, novel porphyrin-chrysin photosensitizer derivatives were synthesized. Most of the compounds showed antitumor activity against human cervical cancer HeLa cells and human lung cancer A549 cells, among which compound 4c had the best photodynamic therapy effect on HeLa cells and A549 cells, with IC50 values of 6.26 μM and 23.37 μM, respectively. Free-base porphyrin-chrysin derivatives bind to DNA through surface self-stacking, and zinc metalloporphyrin-chrysin derivatives bind to ct-DNA through intercalation. Notably, the tightness of compound binding to ct-DNA was positively correlated with its antitumor activity. What's more, three-dimensional quantitative conformation studies have shown that increasing the positive charge of the porphyrin ring and introducing a strong electron-withdrawing group at the meso position of the porphyrin ring at the para-position of the benzene ring or reducing the space volume of the compound can enhance the antitumor activity.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yihui Liu
- The second Hospital, University of South China, PR China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhaoshun Han
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yaofu Zeng
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
22
|
The bromoporphyrins as promising anti-tumor photosensitizers in vitro. Photochem Photobiol Sci 2023; 22:427-439. [PMID: 36344865 DOI: 10.1007/s43630-022-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
The synthesis of ideal photosensitizers (PSs) is considered to be the most significant bottleneck in photodynamic therapy (PDT). To discover novel PSs with excellent photodynamic anti-tumor activities, a series of novel photosensitizers 5,15-diaryl-10,20-dibromoporphyrins (I1-6) were synthesized by a facile method. Compared with hematoporphyrin monomethyl ether (HMME) as the representative porphyrin-based photosensitizers, it is found that not only the longest absorption wavelength of all compounds was red-shifted to therapeutic window (660 nm) of photodynamic therapy, but also the singlet oxygen quantum yields were significantly increased. Furthermore, all compounds exhibited lower dark toxicity (except I2) and stronger phototoxicity (except I4) against Eca-109 tumor cells than HMME. Among them, I3 possessed the highest singlet oxygen quantum yield (ΦΔ = 0.205), the lower dark toxicity and the strongest phototoxicity (IC50 = 3.5 μM) in vitro. The findings indicated the compounds I3 had the potential to become anti-tumor agents for PDT.
Collapse
|
23
|
Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C, Zhou Y. Hybrid Nanomaterials for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204932. [PMID: 36567305 PMCID: PMC9951325 DOI: 10.1002/advs.202204932] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Nano-immunotherapy has been recognized as a highly promising strategy for cancer treatment in recent decades, which combines nanotechnology and immunotherapy to combat against tumors. Hybrid nanomaterials consisting of at least two constituents with distinct compositions and properties, usually organic and inorganic, have been engineered with integrated functions and enormous potential in boosting cancer immunotherapy. This review provides a summary of hybrid nanomaterials reported for cancer immunotherapy, including nanoscale metal-organic frameworks, metal-phenolic networks, mesoporous organosilica nanoparticles, metallofullerene nanomaterials, polymer-lipid, and biomacromolecule-based hybrid nanomaterials. The combination of immunotherapy with chemotherapy, chemodynamic therapy, radiotherapy, radiodynamic therapy, photothermal therapy, photodynamic therapy, and sonodynamic therapy based on hybrid nanomaterials is also discussed. Finally, the current challenges and the prospects for designing hybrid nanomaterials and their application in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Jianing Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Wanyue Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yannan Yang
- Institute of OptoelectronicsFudan UniversityShanghai200433China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Ruiqing Xiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbane4072Australia
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan UniversityShanghai200433China
| |
Collapse
|
24
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Mollaeva MR, Yabbarov NG, Sokol MB, Chirkina MV, Popov AA. Biocompatibility and Antimicrobial Activity of Electrospun Fibrous Materials Based on PHB and Modified with Hemin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020236. [PMID: 36677989 PMCID: PMC9861043 DOI: 10.3390/nano13020236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 05/31/2023]
Abstract
The effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Elena D. Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Mariia R. Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Nikita G. Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Maria B. Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Margarita V. Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly A. Popov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
25
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
26
|
Sun S, Zhao Y, Wang J, Pei R. Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 2022; 10:9535-9564. [PMID: 36385652 DOI: 10.1039/d2tb01884e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention as emerging nanomaterials. Based on their tunable size, high porosity, and large specific surface area, MOFs have a wide range of applications in the fields of chemistry, energy, and biomedicine. However, the MOF materials obtained from lanthanides with a unique electronic configuration as inorganic building units have unique properties such as optics, magnetism, and radioactivity. In this study, various synthetic methods for preparing MOF materials using lanthanides as inorganic building units are described. Combined with the characteristics of lanthanides, their application prospects of lanthanide-based MOFs in tumor diagnosis and treatment are emphasized. The authors hope to provide methodological reference for the construction of MOF materials of rare-earth elements, and to provide ideas and inspiration for their practical applications in the field of biomedicine.
Collapse
Affiliation(s)
- Shengkai Sun
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
27
|
Zhang D, Teng T, Zhao Q, Lin Z, Zhang J, Liu X, Zeng Y. Nanoparticles for Near-Infrared Light-Driven Singlet Oxygen and CO Gas Cogeneration for Pancreatic Adenocarcinoma Therapy. ACS APPLIED NANO MATERIALS 2022; 5:16741-16752. [DOI: 10.1021/acsanm.2c03748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou350116, P. R. China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou350025, P. R. China
| | - Zhiwen Lin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou350005, P. R. China
| | - Junrong Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou350116, P. R. China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou350005, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou350025, P. R. China
| |
Collapse
|
28
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
29
|
Lu Z, Bai S, Jiang Y, Wu S, Xu D, Zhang J, Peng X, Zhang H, Shi Y, Liu G. Amplifying Dendritic Cell Activation by Bioinspired Nanometal Organic Frameworks for Synergistic Sonoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203952. [PMID: 36148843 DOI: 10.1002/smll.202203952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Despite recent advancements of sonodynamic therapy (SDT) in cancer immunotherapy, challenges have yet to be surmounted to further boost its immunotherapeutic efficacy due to the low-level tumor antigens presentation of dendritic cells (DCs). Cell membrane camouflaged-nanoparticles can integrate the neoantigens of the cancer cell membrane with the multifunctionalities of synthetic nanocores. Herein, sono-responsive nanoparticles coated with DC-targeted antibody chimeric cancer cell membrane are investigated for multimodal therapy. The nanometal organic frameworks (MOFs) that respond to ultrasound are loaded successfully inside the vesicles displaying an anti-DEC205 antibody. The anti-DEC205 chimeric vesicles can directly target and activate DCs, promote tumor antigens cross-presentation, and then produce a cascade amplified T-cell immune response. Upon deep tissue-penetrating sonication, AMR-MOF@AuPt generates large amounts of reactive oxygen species that directly kill cancer cells, further initiating an anti-cancer T cell immune response. Such synergistic sono-immunotherapies effectually inhibit tumor growth and induce strong systemic and long-term immune memory against cancer recurrence and distant metastasis. The authors findings provide DCs and tumor cells of a dual active-targeting cell membrane-coated sono-immunotherapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yonghe Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Xuqi Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Hongrui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
30
|
Ding M, Liu W, Gref R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv Drug Deliv Rev 2022; 190:114496. [PMID: 35970275 DOI: 10.1016/j.addr.2022.114496] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023]
Abstract
Since the first report in 1989, Metal-Organic Frameworks (MOFs) self-assembled from metal ions or clusters, as well as organic linkers, have attracted extensive attention. Due to their flexible composition, large surface areas, modifiable surface properties, and their degradability, there has been an exponential increase in the study of MOFs materials, specifically in drug delivery system areas such as infection, diabetes, pulmonary disease, ocular disease, imaging, tumor therapy, and especially cancer theranostics. In this review, we discuss the trends in MOFs biosafety, from "green" synthesis to applications in drug delivery systems. Firstly, we present the different "green" synthesis approaches used to prepare MOFs materials. Secondly, we detail the methods for the functional coating, either through grafting targeting units, poly(ethylene glycol) (PEG) chains or by using cell membranes. Then, we discuss drug encapsulation strategies, host-guest interactions, as well as drug release mechanisms. Lastly, we report on the drug delivery applications of nanoscale MOFs. In particular, we discuss MOFs-based imaging techniques, including magnetic resonance imaging (MRI), photoacoustic imaging (PAI), positron emission tomography (PET), and fluorescence imaging. MOFs-based cancer therapy methods are also presented, such as photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy (RT), chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Mengli Ding
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Wenbo Liu
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
31
|
Chen Y, Liu AG, Liu PD, Zhang ZY, Yu F, Qi W, Li B. Application of Copper(II)-Organic Frameworks Bearing Dilophine Derivatives in Photocatalysis and Guest Separation. Inorg Chem 2022; 61:16009-16019. [PMID: 36153966 DOI: 10.1021/acs.inorgchem.2c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalized design of metal-organic frameworks (MOFs) has been rapidly developed in the last 20 years, and its broad applicability has been demonstrated in many fields. MOFs with desired functions can be assembled using predesigned organic linkers with specific metal nodes, which possess the ordered functional sites and open structures. Although a large number of carboxylic acid junctions have been used to construct MOFs, it is still a great challenge to realize their multifunctionality. In particular, there is a relative lack of research on MOFs as direct photocatalysts, which require not only abundant active sites and open structures but also adsorption groups and effective electron-hole separation performance. To this end, MOFs constructed from the carboxylic acid ligands derived from lophine-based derivatives and copper ions were deliberately used as a photocatalyst, and then, their application in dye degradation and aromatic alcohol conversion was investigated. In addition, in combination with the abundant Lewis sites of copper ions and imidazole sites, the material shows not only the adsorption and separation of C2 series and dyes but also the application of dye degradation and conversion of aromatic alcohols under illumination conditions. The corresponding results fully illustrate that the MOF constructed by using lophine derivatives can be an effective way to prepare photocatalysts. The subsequent research ideas will focus on designing a series of MOFs constructed with multilinked moieties of lophine groups and exploring their application strategies in the field of photocatalysis.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen-Yi Zhang
- Bruker Company, 9F, Building NO. 1, Lane 2570, Hechuan Rd, Minhang District, Shanghai 200233, China
| | - Fan Yu
- State Key Laboratory of Precision Blasting, Hubei Key Laboratory of Blasting Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Wei Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
32
|
Feng Y, Wu W, Li M. Metal-organic frameworks for hepatocellular carcinoma therapy and mechanism. Front Pharmacol 2022; 13:1025780. [PMID: 36225574 PMCID: PMC9549350 DOI: 10.3389/fphar.2022.1025780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, metal organic frameworks (MOFs) have attracted increasing attention in cancer therapy, because they can enhance the anticancer efficacy of photodynamic therapy (PDT), photothermal therapy (PTT), photoacoustic imaging, and drug delivery. Owing to stable chemical adjustability, MOFs can be used as carriers to provide excellent loading sites and protection for small-molecule drugs. In addition, MOFs can be used to combine with a variety of therapeutic drugs, including chemotherapeutics drugs, photosensitizers, and radiosensitizers, to efficiently deliver drugs to tumor tissue and achieve desired treatment. There is hardly any review regarding the application of MOFs in hepatocellular carcinoma. In this review, the design, structure, and potential applications of MOFs as nanoparticulate systems in the treatment of hepatocellular carcinoma are presented. Systematic Review Registration: website, identifier registration number
Collapse
|
33
|
Guduru ATKVVNSK, Manav N, Mansuri A, Gupta I, Bhatia D, Kumar A, Dalvi SV. NIR-Active Porphyrin-Decorated Lipid Microbubbles for Enhanced Therapeutic Activity Enabled by Photodynamic Effect and Ultrasound in 3D Tumor Models of Breast Cancer Cell Line and Zebrafish Larvae. ACS APPLIED BIO MATERIALS 2022; 5:4270-4283. [PMID: 35960932 DOI: 10.1021/acsabm.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyrin is known to enable the photodynamic effect during cancer drug delivery and molecular imaging. However, its hydrophobicity and tendency to aggregate in an aqueous medium create a significant hurdle for its use as an anticancer drug. Loading porphyrin onto biocompatible delivery vehicles can enhance its efficacy. This can be achieved by using gas-filled microbubbles that can be administered intravenously. This study aimed at developing near-infrared (NIR)-active porphyrin-loaded lipid microbubbles with anticancer activity enhanced by sonodynamic and photodynamic effects. The porphyrin-loaded microbubbles were studied for their cell toxicity, cellular uptake of porphyrin, and effect on cellular three-dimensional (3D) invasion of breast cancer cells (MDA-MB-231) in cellulo. Toxicity studies in zebrafish larvae (Danio rerio) in the presence and absence of photodynamic and sonodynamic therapy were also conducted. The results suggest that with a higher concentration of porphyrin loaded on microbubbles, the porphyrin-loaded microbubbles display a higher therapeutic effect facilitated by photodynamic and sonodynamic therapy, which results in enhanced cellular uptake and cellular toxicity. A lower concentration of loaded porphyrin microbubbles exhibits high cellular viability and good fluorescence intensity in the NIR region, which can be exploited for bioimaging applications.
Collapse
Affiliation(s)
- Aditya Teja K V V N S K Guduru
- Department of Chemical Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Neha Manav
- Department of Chemistry, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangapura, Ahmedabad 380009, Gujarat, India
| | - Iti Gupta
- Department of Chemistry, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangapura, Ahmedabad 380009, Gujarat, India
| | - Sameer V Dalvi
- Department of Chemical Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
34
|
Zhou J, Shi X, Dong X, Sun L, Shi D, Liang X, Xu H. Tuning the molecular electronic structure and macroscopic aggregates of [2 + 2]-type H 2- and Zn(II)porphyrins through meso-substituents. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ji Zhou
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, P. R. China
| | - Xingxin Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xinyi Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lei Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, P. R. China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, P. R. China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China
| |
Collapse
|
35
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
36
|
Sengupta D, Rai M, Hoque Mazumdar Z, Sharma D, Malabika Singha K, Pandey P, Gaur R. Two cationic meso-thiophenium porphyrins and their zinc-complexes as anti-HIV-1 and antibacterial agents under non-photodynamic therapy (PDT) conditions. Bioorg Med Chem Lett 2022; 65:128699. [PMID: 35341921 DOI: 10.1016/j.bmcl.2022.128699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
The anti-HIV-1 and antimicrobial activities of novel cationic meso-thiophenium porphyrins and their zinc-complex are reported under in vitro non-photodynamic (PDT) conditions. While all the cationic porphyrins led to the inhibition of de novo virus infection, the Zn(II)-complexes of T2(OH)2M (A2B2-type) and T(OH)3M (AB3-type) displayed potent inhibition of HIV-1 entry with T2(OH)2MZn displaying maximal anti-HIV activity. The Zinc complex of both the thiophenium porphyrins T2(OH)2M and T(OH)3M also depicted antibacterial activities against Escherichia coli (ATCC 25922) and more prominently against Staphylococcus aureus (ATCC 25923). Again, the antibacterial activity was more potent for T2(OH)2MZn. Our study highlighted that the presence of two thiophenium groups at the meso-positions of the A2B2-type porphyrins along with zinc strongly enhanced anti-HIV and antimicrobial properties of these novel thiophenium porphyrins under non-PDT conditions.
Collapse
Affiliation(s)
- Devashish Sengupta
- Department of Chemistry, Assam University, Silchar, Assam 788011, India.
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | | | - Debdulal Sharma
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - K Malabika Singha
- Department of Microbiology, Assam University, Silchar, Assam 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam 788011, India.
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India.
| |
Collapse
|
37
|
Figueira F, Tomé JPC, Paz FAA. Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules 2022; 27:3111. [PMID: 35630585 PMCID: PMC9147750 DOI: 10.3390/molecules27103111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Metal-Organic Frameworks (MOFs) are hybrid multifunctional platforms that have found remarkable applications in cancer treatment and diagnostics. Independently, these materials can be employed in cancer treatment as intelligent drug carriers in chemotherapy, photothermal therapy, and photodynamic therapy; conversely, MOFs can further be used as diagnostic tools in fluorescence imaging, magnetic resonance imaging, computed tomography imaging, and photoacoustic imaging. One essential property of these materials is their great ability to fine-tune their composition toward a specific application by way of a judicious choice of the starting building materials (metal nodes and organic ligands). Moreover, many advancements were made concerning the preparation of these materials, including the ability to downsize the crystallites yielding nanoporous porphyrin MOFs (NMOFs) which are of great interest for clinical treatment and diagnostic theranostic tools. The usage of porphyrins as ligands allows a high degree of multifunctionality. Historically these molecules are well known for their reactive oxygen species formation and strong fluorescence characteristics, and both have proved helpful in cancer treatment and diagnostic tools. The anticipation that porphyrins in MOFs could prompt the resulting materials to multifunctional theranostic platforms is a reality nowadays with a series of remarkable and ground-breaking reports available in the literature. This is particularly remarkable in the last five years, when the scientific community witnessed rapid development in porphyrin MOFs theranostic agents through the development of imaging technologies and treatment strategies for cancer. This manuscript reviews the most relevant recent results and achievements in this particular area of interest in MOF chemistry and application.
Collapse
Affiliation(s)
- Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - João P. C. Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n° 1, 1049-001 Lisboa, Portugal;
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
38
|
Li MY, Mi L, Meerovich G, Soe TW, Chen T, Than NN, Yan YJ, Chen ZL. The biological activities of 5,15-diaryl-10,20-dihalogeno porphyrins for photodynamic therapy. J Cancer Res Clin Oncol 2022; 148:2335-2346. [PMID: 35522290 DOI: 10.1007/s00432-022-04037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Esophageal cancer is the most common gastrointestinal tumor and is difficult to be eradicated with conventional treatment. Porphyrin-based photosensitizers (PSs) mediated photodynamic therapy (PDT) could kill tumor cells with less damage to normal cells. As the most widely used porphyrin-based photosensitizer in clinics, Photofrin II has excellent anti-tumor effect. However, it has some disadvantages such as weak absorption at near infrared region, the complexity of components and prolonged skin photosensitivity. Here series novel 5,15-diaryl-10,20-dihalogeno porphyrin derivatives were afforded and evaluated to develop more effective and safer photosensitizers for tumor therapy. METHODS The photophysical properties and singlet oxygen generation rates of 5,15-diaryl-10,20-dihalogeno porphyrins (I1-6, II1-4) were tested. The cytotoxicity of I1-6 and II1-4 were measured by MTT assay. The pathway of cell death was studied by flow cytometry. In vivo photodynamic efficacy of I3 and II2-4 in Eca-109 tumor-bearing BABL/c nude mice were measured and histopathological analysis were examined. RESULTS 5,15-Diaryl-10,20-dihalogeno porphyrins I1-6 and II1-4 were synthesized. The longest absorption wavelength of these halogenated porphyrins (λmax = 660 nm) displayed a red shift around 30 nm compared to the unhalogenated porphyrins PS1 (λmax = 630 nm). The singlet oxygen generation rates of I1-6 and II1-4 were significantly higher than PS1 and HMME. All PSs mediated PDT showed obvious cytotoxic effect against Eca-109 cells compared to HMME in vitro and in vivo. Among these PSs, II4 exhibited appropriate absorption in the phototherapeutic window, higher 1O2 generation rate (k = 0.0061 s-1), the strongest phototoxicity (IC50 = 0.4 μM), lower dark toxicity, high generation of intracellular ROS in Eca-109 cells and excellent photodynamic anti-tumor efficacy in vivo. Besides, cell necrosis was induced by compound II4 mediated PDT. CONCLUSION All new compounds have obvious photodynamic anti-esophageal cancer effects. Among them, the photosensitizer II4 showed excellent efficacy in vitro and in vivo, which has the potential to become a photodynamic anti-tumor drug.
Collapse
Affiliation(s)
- Man Yi Li
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Le Mi
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119435, Russia
| | - Thin Wut Soe
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Ting Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Ni Ni Than
- Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Yi Jia Yan
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China.
| | - Zhi Long Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China. .,Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
39
|
Luo H, Yu W, Chen S, Wang Z, Tian Z, He J, Liu Y. Application of metalloporphyrin sensitizers for the treatment or diagnosis of tumors. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
At present, metalloporphyrin compounds demonstrate three main uses as anticancer sensitizers: (1) photosensitizers, (2) photothermal conversion agents, and (3) ultrasound sensitizers. Developing efficient sensitizers for cancer with excellent controllability and biocompatibility is an important goal of oncology medicine. Because of the different structural diversity of anticancer sensitizers, such sensitizers are used for treating cancers by employing a variety of tumor treatment methods such as mature photodynamic therapy, commonly used clinically photothermal therapy and promising sonodynamic therapy. Among the many sensitizers, metalloporphyrin-complex sensitizers attract wide attention due to their excellent performance in tumor treatment and diagnosis. This review briefly describes some metalloporphyrin anticancer drugs and diagnostic agents related to photodynamic, photothermal and sonodynamic therapy, and discusses the roles of metal atoms in these drugs.
Collapse
Affiliation(s)
- Hongyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Wenmei Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Si Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Zejie Tian
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Yunmei Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People’s Republic of China
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
40
|
Cornell HD, Zhu Y, Ilic S, Lidman NE, Yang X, Matson JB, Morris AJ. Green-light-responsive metal-organic frameworks for colorectal cancer treatment. Chem Commun (Camb) 2022; 58:5225-5228. [PMID: 35380568 DOI: 10.1039/d2cc00591c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the synthetic methods for preparation of a novel light-responsive metal-organic framework (MOF) UiO-AZB-F are outlined. Upon irradiation with green light, the framework demonstrates controlled release of chemotherapeutic drug cargo with simultaneous breakdown into low toxicity small molecule components.
Collapse
Affiliation(s)
- Hannah D Cornell
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA.
| | - Naomei E Lidman
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA.
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - John B Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
41
|
Tyubaeva P, Varyan I, Krivandin A, Shatalova O, Karpova S, Lobanov A, Olkhov A, Popov A. The Comparison of Advanced Electrospun Materials Based on Poly(-3-hydroxybutyrate) with Natural and Synthetic Additives. J Funct Biomater 2022; 13:23. [PMID: 35323223 PMCID: PMC8955504 DOI: 10.3390/jfb13010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/10/2022] Open
Abstract
The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB.
Collapse
Affiliation(s)
- Polina Tyubaeva
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Ivetta Varyan
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Alexey Krivandin
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Olga Shatalova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Svetlana Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anton Lobanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anatoly Olkhov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| | - Anatoly Popov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119334 Moscow, Russia; (A.K.); (O.S.); (S.K.)
| |
Collapse
|
42
|
Development of Novel Tetrapyrrole Structure Photosensitizers for Cancer Photodynamic Therapy. Bioengineering (Basel) 2022; 9:bioengineering9020082. [PMID: 35200435 PMCID: PMC8868602 DOI: 10.3390/bioengineering9020082] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
The effectiveness of photodynamic therapy (PDT) is based on the triad effects of photosensitizer (PS), molecular oxygen and visible light on malignant tumors. Such complex induces a multifactorial manner including reactive-oxygen-species-mediated damage and the killing of cells, vasculature damage of the tumor, and activation of the organism immunity. The effectiveness of PDT depends on the properties of photosensitizing drugs, their selectivity, enhanced photoproduction of reactive particles, absorption in the near infrared spectrum, and drug delivery strategies. Photosensitizers of the tetrapyrrole structure (porphyrins) are widely used in PDT because of their unique diagnostic and therapeutic functions. Nevertheless, the clinical use of the first-generation PS (sodium porfimer and hematoporphyrins) revealed difficulties, such as long-term skin photosensitivity, insufficient penetration into deep-seated tumors and incorrect localization to it. The second generation is based on different approaches of the synthesis and conjugation of porphyrin PS with biomolecules, which made it possible to approach the targeted PDT of tumors. Despite the fact that the development of the second-generation PS started about 30 years ago, these technologies are still in demand and are in intensive development, especially in the direction of improving the process of optimization split linkers responsive to input. Bioconjugation and encapsulation by targeting molecules are among the main strategies for developing of the PS synthesis. A targeted drug delivery system with the effect of increased permeability and retention by tumor cells is one of the ultimate goals of the synthesis of second-generation PS. This review presents porphyrin PS of various generations, discusses factors affecting cellular biodistribution and uptake, and indicates their role as diagnostic and therapeutic (theranostic) agents. New complexes based on porphyrin PS for photoimmunotherapy are presented, where specific antibodies are used that are chemically bound to PS, absorbing light from the near infrared part of the spectrum. Additionally, a two-photon photodynamic approach using third-generation photosensitizers for the treatment of tumors is discussed, which indicates the prospects for the further development of a promising method antitumor PDT.
Collapse
|
43
|
Panchavarnam S, Sengupta R, Ravikanth M. Synthesis, Structure, and Properties of Palladium(II) Complex of α-Formyl Pyrrolyl Dipyrromethene. Dalton Trans 2022; 51:5587-5595. [DOI: 10.1039/d2dt00166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple α-formyl pyrrolyl dipyrromethene ligand was synthesized by deboronation of BF2-complex of α-formyl pyrrolyl dipyrrin under Lewis acid-catalyzed conditions. The α-formyl pyrrolyl dipyrrin ligand was treated with PdCl2 in...
Collapse
|
44
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
45
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
46
|
Fan Z, Xie J, Sadhukhan T, Liang C, Huang C, Li W, Li T, Zhang P, Banerjee S, Raghavachari K, Huang H. Highly Efficient Ir(III)-Coumarin Photo-Redox Catalyst for Synergetic Multi-Mode Cancer Photo-Therapy. Chemistry 2021; 28:e202103346. [PMID: 34755401 DOI: 10.1002/chem.202103346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Can Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenqing Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tingxuan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | | | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
47
|
Varzandeh M, Mohammadinejad R, Esmaeilzadeh-Salestani K, Dehshahri A, Zarrabi A, Aghaei-Afshar A. Photodynamic therapy for leishmaniasis: Recent advances and future trends. Photodiagnosis Photodyn Ther 2021; 36:102609. [PMID: 34728420 DOI: 10.1016/j.pdpdt.2021.102609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis has infected more than 12 million people worldwide. This neglected tropical disease, causing 20,000-30,000 deaths per year, is a global health problem. The emergence of resistant parasites and serious side effects of conventional therapies has led to the search for less toxic and non-invasive alternative treatments. Photodynamic therapy is a promising therapeutic strategy to produce reactive oxygen species for the treatment of leishmaniasis. In this regard, natural and synthetic photosensitizers such as curcumin, hypericin, 5-aminolevulinic acid, phthalocyanines, phenothiazines, porphyrins, chlorins and nanoparticles have been applied. In this review, the recent advances on using photodynamic therapy for treating Leishmania species have been reviewed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, EE51014 Tartu, Estonia
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Abbas Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
48
|
Luo T, Nash GT, Xu Z, Jiang X, Liu J, Lin W. Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. J Am Chem Soc 2021; 143:13519-13524. [PMID: 34424712 PMCID: PMC8414475 DOI: 10.1021/jacs.1c07379] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The performance of
photodynamic therapy (PDT) depends on the solubility,
pharmacokinetic behaviors, and photophysical properties of photosensitizers
(PSs). However, highly conjugated PSs with strong reactive oxygen
species (ROS) generation efficiency tend to have poor solubility
and aggregate in aqueous environments, leading to suboptimal PDT performance.
Here, we report a new strategy to load highly conjugated but poorly
soluble zinc-phthalocyanine (ZnP) PSs in the pores of a Hf12-QC (QC = 2″,3′-dinitro-[1,1’:4′,1”;4″,1’”-quaterphenyl]-4,4’”-dicarboxylate)
nanoscale metal–organic framework to afford ZnP@Hf-QC with
spatially confined ZnP PSs. ZnP@Hf-QC avoids aggregation-induced quenching
of ZnP excited states to significantly enhance ROS generation upon
light irradiation. With higher cellular uptake, enhanced ROS generation,
and better biocompatibility, ZnP@Hf-QC mediated PDT exhibited an IC50 of 0.14 μM and achieved exceptional antitumor efficacy
with >99% tumor growth inhibition and 80% cure rates on two murine
colon cancer models.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianqiao Liu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
49
|
Zheng Y, Zhang X, Su Z. Design of metal-organic framework composites in anti-cancer therapies. NANOSCALE 2021; 13:12102-12118. [PMID: 34236380 DOI: 10.1039/d1nr02581c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks are a class of new and promising anti-cancer materials. MOFs with adjustable pore size, large specific surface area, diverse structure, and excellent chemical and physical properties make them a class of effective protection carriers for anti-cancer substances. This review is centered on the core point of "anti-cancer" and discusses MOFs' research progress in anti-cancer therapies. Firstly, we provided readers with the different types of MOFs, their preparation strategies and the resulting structures. Then, different MOF composites and their biological applications were systematically presented. The specificity of biomolecules endows MOFs with broader anti-cancer applications, while MOFs can protect the drugs and biomolecules to make the best of a challenging situation. Finally, we elucidated a comprehensive overview of the biological applications of MOFs, including research hotspots as drug delivery and biomolecule carriers. Besides, we looked forward to the future developments of MOFs in the field of anti-cancer therapies. As a class of novel materials, the anti-cancer applications of MOFs are extended through the combination of different materials and different methods to improve their efficacy.
Collapse
Affiliation(s)
- Yadan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | | | | |
Collapse
|
50
|
Magna G, Nardis S, Stefanelli M, Monti D, Di Natale C, Paolesse R. The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Trans 2021; 50:5724-5731. [PMID: 33949554 DOI: 10.1039/d1dt00528f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of chemical sensors is an urgent need for both environmental and health issues. The breakthrough needed for the advancement of these devices is the development of efficient receptors. Porphyrins have been widely used as sensing layers in chemical sensors, but their integration with nanostructures can greatly boost the performance of these macrocycles, improving from one side the stability of the sensing layer, and from the other, offering additional interaction mechanisms with target analytes. We present here some recent examples of hybrid materials prepared by the integration of porphyrins with metal and metal oxide nanoparticles, porphyrin-based metal organic frameworks and their exploitation as sensing layers in chemical sensors.
Collapse
Affiliation(s)
- Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donato Monti
- Department of Chemistry, University of Roma La Sapienza, 00185 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|