1
|
Araújo HM, Moura GAD, Rocha YM, Pinheiro Gomes CV, Melo de Oliveira VNE, Oliveira RND, Figueiredo Nicolete LDD, Magalhães EP, de Menezes RR, Nicolete R. In vitro antitumor and immunomodulatory activities of 1,2,4-oxadiazole derivatives. Biochem Biophys Rep 2025; 41:101950. [PMID: 40028040 PMCID: PMC11868951 DOI: 10.1016/j.bbrep.2025.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, responsible for approximately 60,000 deaths annually. The main strategy for treating melanoma is surgery to completely remove the lesion and its margins. However, for more advanced cases with a high recurrence rate, the preferred approach is to combine chemotherapy with immunotherapy treatments. Tumor-associated macrophages (TAMs) are the most abundant leukocytes in solid tumors. Current immunotherapy approaches target TAMs by inhibiting pro-tumoral TAMs and activating anti-tumoral TAMs, repolarizing them to the M1 phenotype. The antitumor and immunomodulatory activities of molecules derived from 1,2,4-oxadiazole, as demonstrated in the literature, highlight the potential of this class as a source of promising candidates for therapeutic applications. Thus, the present study aims to evaluate the antitumor and immunomodulatory effects of the synthetic derivative 1,2,4-oxadiazole, N-cyclohexyl-3-(3-methylphenyl)-1,2,4-oxadiazole-5-amine (1,2,4-oxadiazole derivative 2), in melanoma cells and murine Bone Marrow-Derived Macrophages (BMDMs). Cytotoxicity in B16-F10 and BMDMs cells was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT method. 1,2,4-oxadiazole derivative 2 exhibited antiproliferative effects on both cell lines, being 2.6 times more selective for B16-F10. Necrosis was identified as the active induced death pathway. BMDMs isolated and exposed to 1,2,4-oxadiazole derivative 2 polarize to the M1 phenotype and induce TNF-α at a concentration of 64.34 μM. Exposure to melanoma murine supernatants also promotes M1 polarization. Supernatants containing traces of 1,2,4-oxadiazole derivative 2 (Supernatants B, C, and D) increased the percentage of M1 cells compared to Supernatant A, as well as elevated levels of nitrite, TNF-α, and IL-12. 1,2,4-oxadiazole derivative 2 combined with Supernatant A and 1,2,4-oxadiazole derivative 2 combined with LPS also resulted in higher M1 polarization, suggesting a synergistic effect on M1 polarization and TNF-α production. Our findings underscore the significance of the 1,2,4-oxadiazole compound class and highlight the potential of 1,2,4-oxadiazole derivative 2 as an antitumoral and immunotherapeutic agent.
Collapse
Affiliation(s)
- Héverton Mendes Araújo
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Cristian Vicson Pinheiro Gomes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| | | | | | | | - Emanuel Paula Magalhães
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Ramon R.P.P.B. de Menezes
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF), Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Fundação Oswaldo Cruz, Fiocruz, Fiocruz Ceará, Eusébio, CE, Brazil
| |
Collapse
|
2
|
Duran T, Balikci I, Buyukkosucu B, Gunes IF, Pekgonul HK, Vardar N, Yilmaz MD, Ak G, Zengin G. Biological Characterization of One Oxadiazole Derivative (5(4-Hydroxyphenyl)-2-(N-Phenyl Amino)-1,3,4-Oxadiazole): In Vitro, In Silico, and Network Pharmacological Approaches. Chem Biol Drug Des 2025; 105:e70038. [PMID: 39757393 DOI: 10.1111/cbdd.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Oxadiazole compounds are of great interest because they have a range of biological activities ranging from antioxidants to anticancer agents. Against this background, we wanted to demonstrate the antioxidant, enzyme inhibitory, and anticancer effects of 5(4-hydroxyphenyl)-2-(N-phenylamino)-1,3,4-oxadiazole (Hppo). Antioxidant abilities were measured through free radical scavenging and reducing power tests. Enzyme inhibitory effects were studied by cholinesterases, tyrosinase, amylase, and glucosidase. The anticancer effect was tested on pancreatic cancer cell lines (PANC-1, CRL-169) and on HEK293 cell lines. The compound showed significant antioxidant activity (particularly in the CUPRAC (cupric acid-reducing antioxidant capacity) assay) and enzyme inhibitory properties (particularly glucosidase inhibition). In the anticancer test, the compound showed strong anticancer activity in pancreatic cancer with apoptotic signaling pathways. These results were confirmed by molecular modeling and bioinformatics tools. Thus, our findings can provide novel and versatile compounds for the development of multidirectional drugs in the pharmaceutical industry.
Collapse
Affiliation(s)
- Tugce Duran
- Department of Medical Genetics, Faculty of Medicine, KTO Karatay University, Konya, Turkey
- Department of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Irem Balikci
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Busra Buyukkosucu
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Ibrahim Furkan Gunes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Hatice Kubra Pekgonul
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Necati Vardar
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
- Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
| | - Mahmut Deniz Yilmaz
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
- BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, Konya, Turkey
| | - Gunes Ak
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Pecoraro C, Carbone D, Scianò F, Terrana F, Xu G, Bergonzini C, Roeten MSF, Cascioferro S, Cirrincione G, Diana P, Giovannetti E, Parrino B. Exploring the therapeutic potential of a novel series of imidazothiadiazoles targeting focal adhesion kinase (FAK) for pancreatic cancer treatment: synthesis, mechanistic insights and promising antitumor and safety profile. J Drug Target 2024; 32:1278-1294. [PMID: 39067009 DOI: 10.1080/1061186x.2024.2385557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor protein tyrosine kinase that plays a crucial role in various oncogenic processes related to cell adhesion, migration, proliferation, and survival. The strategic targeting of FAK represents a burgeoning approach to address resistant tumours, such as pancreatic ductal adenocarcinoma (PDAC). Herein, we report a new series of twenty imidazo[2,1-b][1, 3, 4]thiadiazole derivatives assayed for their antiproliferative activity against the National Cancer Institute (NCI-60) panel and a wide panel of PDAC models. Lead compound 10l exhibited effective antiproliferative activity against immortalised (SUIT-2, CAPAN-1, PANC-1, PATU-T, BxPC-3), primary (PDAC-3) and gemcitabine-resistant clone (PANC-1-GR) PDAC cells, eliciting IC50 values in the low micromolar range (1.04-3.44 µM), associated with a significant reduction in cell-migration and spheroid shrinkage in vitro. High-throughput kinase arrays revealed a significant inhibition of the FAK signalling network, associated to induction of cell cycle arrest in G2/M phase, suppression of tumour cell invasion and apoptosis induction. The high selectivity index/toxicity prompted studies using PDAC mouse xenografts, demonstrating significant inhibition of tumour growth and safety. In conclusion, compound 10l displayed antitumor activity and safety in both in vitro and in vivo models, emerging as a highly promising lead for the development of FAK inhibitors in PDAC.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Lumobiotics, Karlsruhe, Germany
| | - Francesca Terrana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Margot S F Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
4
|
Xu M, Bai Z, Xie B, Peng R, Du Z, Liu Y, Zhang G, Yan S, Xiao X, Qin S. Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development. Molecules 2024; 29:933. [PMID: 38474445 PMCID: PMC10935119 DOI: 10.3390/molecules29050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Marine-derived bisindoles exhibit structural diversity and exert anti-cancer influence through multiple mechanisms. Comprehensive research has shown that the development success rate of drugs derived from marine natural products is four times higher than that of other natural derivatives. Currently, there are 20 marine-derived drugs used in clinical practice, with 11 of them demonstrating anti-tumor effects. This article provides a thorough review of recent advancements in anti-tumor exploration involving 167 natural marine bisindole products and their derivatives. Not only has enzastaurin entered clinical practice, but there is also a successfully marketed marine-derived bisindole compound called midostaurin that is used for the treatment of acute myeloid leukemia. In summary, investigations into the biological activity and clinical progress of marine-derived bisindoles have revealed their remarkable selectivity, minimal toxicity, and efficacy against various cancer cells. Consequently, they exhibit immense potential in the field of anti-tumor drug development, especially in the field of anti-tumor drug resistance. In the future, these compounds may serve as promising leads in the discovery and development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China;
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Guangshuai Zhang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Si Yan
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (M.X.); (R.P.); (Z.D.); (Y.L.); (G.Z.); (S.Y.)
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| |
Collapse
|
5
|
Elgubbi AS, El-Helw EAE, Alzahrani AYA, Ramadan SK. Synthesis, computational chemical study, antiproliferative activity screening, and molecular docking of some thiophene-based oxadiazole, triazole, and thiazolidinone derivatives. RSC Adv 2024; 14:5926-5940. [PMID: 38362078 PMCID: PMC10867554 DOI: 10.1039/d3ra07048d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Thiophene-2-carbohydrazide was used in this study to produce some thiophene-containing oxadiazole, triazole, and thiazolidinone derivatives through reactions with various carbon-centered electrophiles. Besides, the hydrazone obtained was allowed to react with mercaptoacetic acid and acetic anhydride to construct thiazolidinone and oxadiazole derivatives. The results of computational chemical study and outcomes of the experiments were in good agreement. The in vitro antiproliferative activity of the produced compounds was examined against two human cell lines namely, breast adenocarcinoma (MCF7) and colon cancer (HCT116) cell lines using doxorubicin as a reference anticancer agent. The produced hydrazones and spiro-indolin-oxadiazole derivatives were the most potent against the two cancer cell lines. The molecular docking was conducted to demonstrate the binding energies of produced substances toward human carbonic anhydrase IX (CA IX) protein. The binding energies of these ligands were near to that of the co-crystallized ligand (9FK). Compound 11b exhibits a binding energy of -5.5817 kcal mol-1, indicating tight binding to some key nucleobases and amino acids of CA IX protein, while compound 11a displays a higher binding energy compared to the reference ligand (9FK). This suggests that compounds 11b and 11a display a notably strong binding affinity towards the human carbonic anhydrase IX (CA IX) protein. ADME profiles of the potent compounds including physicochemical characteristics, lipophilicity, and drug-likeness were predicted.
Collapse
Affiliation(s)
- Amna S Elgubbi
- Chemistry Department, Faculty of Science, Misurata University 2478 Misurata Libya
| | - Eman A E El-Helw
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - Abdullah Y A Alzahrani
- Chemistry Department, Faculty of Science and Arts, King Khalid University Mohail Assir Abha Saudi Arabia
| | - Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
6
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
7
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
8
|
Irfan A, Faisal S, Ahmad S, Saif MJ, Zahoor AF, Khan SG, Javid J, Al-Hussain SA, Muhammed MT, Zaki MEA. An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines 2023; 11:3085. [PMID: 38002085 PMCID: PMC10669698 DOI: 10.3390/biomedicines11113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Benzofuran, 1,3,4-oxadiazole, and 1,2,4-triazole are privileged heterocyclic moieties that display the most promising and wide spectrum of biological activities against a wide variety of diseases. In the current study, benzofuran-1,3,4-oxadiazole BF1-BF7 and benzofuran-1,2,4-triazole compounds BF8-BF15 were tested against HCV NS5B RNA-dependent RNA polymerase (RdRp) utilizing structure-based screening via a computer-aided drug design (CADD) approach. A molecular docking approach was applied to evaluate the binding potential of benzofuran-appended 1,3,4-oxadiazole and 1,2,4-triazole BF1-BF15 molecules. Benzofuran-1,3,4-oxadiazole scaffolds BF1-BF7 showed lesser binding affinities (-12.63 to -14.04 Kcal/mol) than benzofuran-1,2,4-triazole scaffolds BF8-BF15 (-14.11 to -16.09 Kcal/mol) against the HCV NS5B enzyme. Molecular docking studies revealed the excellent binding affinity scores exhibited by benzofuran-1,2,4-triazole structural motifs BF-9 (-16.09 Kcal/mol), BF-12 (-15.75 Kcal/mol), and BF-13 (-15.82 Kcal/mol), respectively, which were comparatively better than benzofuran-based HCV NS5B inhibitors' standard reference drug Nesbuvir (-15.42 Kcal/mol). A molecular dynamics simulation assay was also conducted to obtain valuable insights about the enzyme-compounds interaction profile and structural stability, which indicated the strong intermolecular energies of the BF-9+NS5B complex and the BF-12+NS5B complex as per the MM-PBSA method, while the BF-12+NS5B complex was the most stable system as per the MM-GBSA calculation. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-triazole derivatives BF8-BF15 revealed that these compounds possessed good medicinal chemistry profiles in agreement with all the evaluated parameters for being drugs. The molecular docking affinity scores, MM-PBSA/MM-GBSA and MD-simulation stability analysis, drug-likeness profiling, and ADMET study assessment indicated that N-4-fluorophenyl-S-linked benzofuran-1,2,4-triazole BF-12 could be a future promising anti-HCV NS5B RdRp inhibitor therapeutic drug candidate that has a structural agreement with the Nesbuvir standard reference drug.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Jamila Javid
- Department of Chemistry, University of Sialkot, Sialkot 51040, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32260, Turkey
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| |
Collapse
|
9
|
Hong Q, Guo MM, Yang J, Wei X, Liao L, Xin XJ, Zhang D, An FL. Four previously undescribed diketopiperazines from marine fungus Aspergillus puniceus FAHY0085 and their effects on liver X receptor α. PHYTOCHEMISTRY 2023; 214:113816. [PMID: 37536654 DOI: 10.1016/j.phytochem.2023.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Four previously undescribed diketopiperazine-type alkaloids including one oxepin-containing diketopiperazine-type alkaloid, oxepinamide L (1), three 4-quinazolinone alkaloids, puniceloids E-G (10-12), together with 12 known analogues, protuboxepin D (2), oxepinamides D-G, J-K and I (3-9), puniceloids B-D (13-15) and protubonine B (16), were isolated from the culture of the marine-derived fungus Aspergillus puniceus FAHY0085. The structures of the previously undescribed compounds were comprehensively elucidated by detailed interpretation of their NMR and HRESIMS data. Their absolute configurations were unambiguously determined by ROESY experiments, Marfey's method, calculated ECD experiments and single-crystal X-ray diffraction analysis. Compounds (3-4, 6-8, 14-15) were evaluated for their cytotoxic activity against HepG2, MCF-7, SW1116 and HeLa cells and compound 6 and 14 showed moderate cytotoxic activity against HeLa cells with IC50 49.61 ± 2.91 and 28.38 ± 1.57 μM, respectively. Compounds (1-8, 11-15) were screened for their transcriptional activation of liver X receptor α and compound 11 with known compounds 13-15 showed significant transcriptional activation of liver X receptor α with EC50 values in the range 2-50 μM.
Collapse
Affiliation(s)
- Qi Hong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Miao-Miao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing, 100048, China
| | - Jin Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xing Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiu-Juan Xin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Di Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Jiangsu Institute of Marine Resources Development, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| | - Fa-Liang An
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
10
|
Carbone D, Pecoraro C, Panzeca G, Xu G, Roeten MSF, Cascioferro S, Giovannetti E, Diana P, Parrino B. 1,3,4-Oxadiazole and 1,3,4-Thiadiazole Nortopsentin Derivatives against Pancreatic Ductal Adenocarcinoma: Synthesis, Cytotoxic Activity, and Inhibition of CDK1. Mar Drugs 2023; 21:412. [PMID: 37504943 PMCID: PMC10381170 DOI: 10.3390/md21070412] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
A new series of nortopsentin analogs, in which the central imidazole ring of the natural lead was replaced by a 1,3,4-oxadiazole or 1,3,4-thiadiazole moiety, was efficiently synthesized. The antiproliferative activity of all synthesized derivatives was evaluated against five pancreatic ductal adenocarcinoma (PDAC) cell lines, a primary culture and a gemcitabine-resistant variant. The five more potent compounds elicited EC50 values in the submicromolar-micromolar range, associated with a significant reduction in cell migration. Moreover, flow cytometric analysis after propidium iodide staining revealed an increase in the G2-M and a decrease in G1-phase, indicating cell cycle arrest, while a specific ELISA demonstrated the inhibition of CDK1 activity, a crucial regulator of cell cycle progression and cancer cell proliferation.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Margot S. F. Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 Pisa, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (G.P.); (S.C.); (P.D.); (B.P.)
| |
Collapse
|
11
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
12
|
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Sut S, Moro S, Gandin V, Diana P. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 21:md21050288. [PMID: 37233482 DOI: 10.3390/md21050288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35128 Padova, Italy
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
13
|
Pecoraro C, De Franco M, Carbone D, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Moro S, Gandin V, Diana P. 1,2,4-Amino-triazine derivatives as pyruvate dehydrogenase kinase inhibitors: Synthesis and pharmacological evaluation. Eur J Med Chem 2023; 249:115134. [PMID: 36709650 DOI: 10.1016/j.ejmech.2023.115134] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Among the different hallmarks of cancer, deregulation of cellular metabolism turned out to be an essential mechanism in promoting cancer resistance and progression. The pyruvate dehydrogenase kinases (PDKs) are well known as key regulators in cells metabolic process and their activity was found to be overexpressed in different metabolic alerted types of cancer, including the high aggressive pancreatic ductal adenocarcinoma (PDAC). To date few PDK inhibitors have been reported, and the different molecules developed are characterized by structural chemical diversity. In an attempt to find novel classes of potential PDK inhibitors, the molecular hybridization approach, which combine two or more active scaffolds in a single structure, was employed. Herein we report the synthesis and the pharmacological evaluation of the novel hybrid molecules, characterized by the fusion of three different pharmacophoric sub-units such as 1,2,4-amino triazines, 7-azaindoles and indoles, in a single structure. The synthesized derivatives demonstrated a promising ability in hampering the enzymatic activity of PDK1 and 4, further confirmed by docking studies. Interestingly, these derivatives retained a strong antiproliferative activity against pancreatic cancer cells either in 2D and 3D models. Mechanistic studies in highly aggressive PDAC cells confirmed their ability to hamper PDK axis and to induce cancer cell death by apoptosis. Moreover, in vivo translational studies in a murine syngeneic solid tumor model confirmed the ability of the most representative compounds to target the PDK system and highlight the ability to reduce the tumor growth without inducing substantial body weight changes in the treated mice.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Matteo Pavan
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences, Molecular Modeling Section (MMS), University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy.
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
14
|
Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall’Acqua S, Moro S, Gandin V, Diana P. Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043679. [PMID: 36835086 PMCID: PMC9959349 DOI: 10.3390/ijms24043679] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) are serine/threonine kinases, that are directly involved in altered cancer cell metabolism, resulting in cancer aggressiveness and resistance. Dichloroacetic acid (DCA) is the first PDK inhibitor that has entered phase II clinical; however, several side effects associated with weak anticancer activity and excessive drug dose (100 mg/kg) have led to its limitation in clinical application. Building upon a molecular hybridization approach, a small library of 3-amino-1,2,4-triazine derivatives has been designed, synthesized, and characterized for their PDK inhibitory activity using in silico, in vitro, and in vivo assays. Biochemical screenings showed that all synthesized compounds are potent and subtype-selective inhibitors of PDK. Accordingly, molecular modeling studies revealed that a lot of ligands can be properly placed inside the ATP-binding site of PDK1. Interestingly, 2D and 3D cell studies revealed their ability to induce cancer cell death at low micromolar doses, being extremely effective against human pancreatic KRAS mutated cancer cells. Cellular mechanistic studies confirm their ability to hamper the PDK/PDH axis, thus leading to metabolic/redox cellular impairment, and to ultimately trigger apoptotic cancer cell death. Remarkably, preliminary in vivo studies performed on a highly aggressive and metastatic Kras-mutant solid tumor model confirm the ability of the most representative compound 5i to target the PDH/PDK axis in vivo and highlighted its equal efficacy and better tolerability profile with respect to those elicited by the reference FDA approved drugs, cisplatin and gemcitabine. Collectively, the data highlights the promising anticancer potential of these novel PDK-targeting derivatives toward obtaining clinical candidates for combatting highly aggressive KRAS-mutant pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
- Correspondence: (V.G.); (P.D.)
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
- Correspondence: (V.G.); (P.D.)
| |
Collapse
|
15
|
Wu MJ, Yu DD, Du YQ, Zhang J, Su MZ, Jiang CS, Guo YW. Further undescribed cembranoids from South China Sea soft coral Sarcophyton ehrenbergi: Structural elucidation and biological evaluation. PHYTOCHEMISTRY 2023; 206:113549. [PMID: 36481314 DOI: 10.1016/j.phytochem.2022.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
A detailed chemical investigation of the South China Sea soft coral Sarcophyton ehrenbergi has yield seven undescribed cembranoids, namely isoehrenbergol D and sarcoehrenolides F-K embodying a rare α,β-unsaturated-lactone moiety at C-6 to C-19, along with two known related compounds, ehrenbergol D and sarcoehrenolide A. Their structures and absolute configurations were unambiguously established in the light of extensive spectroscopic data analysis, modified Mosher's method, X-ray diffraction analysis, and quantum chemical computation method. In a bioassay for α-glucosidase inhibition, ehrenbergol D was evaluated as α-glucosidase inhibitor with an IC50 value of 13.57 μM.
Collapse
Affiliation(s)
- Meng-Jun Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Dan-Dan Yu
- College of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Ye-Qing Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Yue-Wei Guo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; College of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, PR China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| |
Collapse
|
16
|
Elmadbouh OHM, Pandol SJ, Edderkaoui M. Glycogen Synthase Kinase 3β: A True Foe in Pancreatic Cancer. Int J Mol Sci 2022; 23:14133. [PMID: 36430630 PMCID: PMC9696080 DOI: 10.3390/ijms232214133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3β is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3β creating confusion about the benefit of targeting GSK-3β for treating cancer. In this mini-review, we focus on the role of GSK-3β in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3β are not relevant to pancreatic cancer, and we argue why GSK-3β is, indeed, a very promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Omer H. M. Elmadbouh
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mouad Edderkaoui
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
17
|
Baykov SV, Tarasenko MV, Semenov AV, Katlenok EA, Shetnev AA, Boyarskiy VP. Dualism of 1,2,4-oxadiazole ring in noncovalent interactions with carboxylic group. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Desai N, Monapara J, Jethawa A, Khedkar V, Shingate B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200123. [PMID: 35575467 DOI: 10.1002/ardp.202200123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/26/2022]
Abstract
As a pharmacologically important heterocycle, oxadiazole paved the way to combat the problem associated with the confluence of many commercially available drugs with different pharmacological profiles. The present review focuses on the potential applications of five-membered heterocyclic oxadiazole derivatives, especially 1,2,4-oxadiazole, 1,2,5-oxadiazole, and 1,3,4-oxadiazole, as therapeutic agents. Designing new hybrid molecules containing the oxadiazole moiety is a better solution for the development of new drug molecules. The designed molecules may accumulate a biological profile better than those of the drugs currently available on the market. The present review will guide the way for researchers in the field of medicinal chemistry to design new biologically active molecules based on the oxadiazole nucleus. Antitubercular, antimalarial, anti-inflammatory, anti-HIV, antibacterial, and anticancer activities of various oxadiazoles have been reviewed extensively here.
Collapse
Affiliation(s)
- Nisheeth Desai
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Jahnvi Monapara
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Aratiba Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Vijay Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
19
|
Carbone D, Vestuto V, Ferraro MR, Ciaglia T, Pecoraro C, Sommella E, Cascioferro S, Salviati E, Novi S, Tecce MF, Amodio G, Iraci N, Cirrincione G, Campiglia P, Diana P, Bertamino A, Parrino B, Ostacolo C. Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. Eur J Med Chem 2022; 234:114233. [DOI: 10.1016/j.ejmech.2022.114233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
|
20
|
Karati D, Shaoo KK, Mahadik K, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Pecoraro C, Parrino B, Cascioferro S, Puerta A, Avan A, Peters GJ, Diana P, Giovannetti E, Carbone D. A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules 2021; 27:19. [PMID: 35011251 PMCID: PMC8746667 DOI: 10.3390/molecules27010019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (B.P.); (S.C.); (P.D.)
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.P.); (A.A.); (G.J.P.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (B.P.); (S.C.); (P.D.)
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (B.P.); (S.C.); (P.D.)
| | - Adrian Puerta
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.P.); (A.A.); (G.J.P.)
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Amir Avan
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.P.); (A.A.); (G.J.P.)
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad 91886-17871, Iran
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.P.); (A.A.); (G.J.P.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (B.P.); (S.C.); (P.D.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.P.); (A.A.); (G.J.P.)
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (B.P.); (S.C.); (P.D.)
| |
Collapse
|
22
|
Brüning-Richardson A, Shaw GC, Tams D, Brend T, Sanganee H, Barry ST, Hamm G, Goodwin RJA, Swales JG, King H, Steele L, Morton R, Widyadari A, Ward TA, Esteves F, Boissinot M, Mavria G, Droop A, Lawler SE, Short SC. GSK-3 Inhibition Is Cytotoxic in Glioma Stem Cells through Centrosome Destabilization and Enhances the Effect of Radiotherapy in Orthotopic Models. Cancers (Basel) 2021; 13:5939. [PMID: 34885051 PMCID: PMC8657225 DOI: 10.3390/cancers13235939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous data on glycogen synthase kinase 3 (GSK-3) inhibition in cancer models support a cytotoxic effect with selectivity for tumor cells compared to normal tissue but the effect of these inhibitors in glioma has not been widely studied. Here, we investigate their potential as cytotoxics in glioma. METHODS We assessed the effect of pharmacologic GSK-3 inhibition on established (U87, U251) and patient-derived (GBM1, GBM4) glioblastoma (GBM) cell lines using cytotoxicity assays as well as undertaking a detailed investigation of the effect on cell cycle, mitosis, and centrosome biology. We also assessed drug uptake and efficacy of GSK-3 inhibition alone and in combination with radiation in xenograft models. RESULTS Using the selective GSK-3 inhibitor AZD2858, we demonstrated single agent cytotoxicity in two patient-derived glioma cell lines (GBM1, GBM4) and two established cell lines (U251 and U87) with IC50 in the low micromolar range promoting centrosome disruption, failed mitosis, and S-phase arrest. Glioma xenografts exposed to AZD2858 also showed growth delay compared to untreated controls. Combined treatment with radiation increased the cytotoxic effect of clinical radiation doses in vitro and in orthotopic glioma xenografts. CONCLUSIONS These data suggest that GSK-3 inhibition promotes cell death in glioma through disrupting centrosome function and promoting mitotic failure and that AZD2858 is an effective adjuvant to radiation at clinical doses.
Collapse
Affiliation(s)
- Anke Brüning-Richardson
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Gary C. Shaw
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Daniel Tams
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Tim Brend
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Hitesh Sanganee
- Discovery Sciences BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Simon T. Barry
- Bioscience, Early Oncology, Oncology R&D, AstraZeneca, Cambridge CB2 8PA, UK;
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Richard J. A. Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - John G. Swales
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK; (G.H.); (R.J.A.G.); (J.G.S.)
| | - Henry King
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Lynette Steele
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Ruth Morton
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Anastasia Widyadari
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Thomas A. Ward
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Filomena Esteves
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Marjorie Boissinot
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Georgia Mavria
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| | - Alastair Droop
- Leeds MRC Medical Bioinformatics Centre, University of Leeds, Leeds LS9 7TF, UK;
| | - Sean E. Lawler
- Pathology & Laboratory Medicine, Brown University Cancer Center, Brown University, Providence, RI 02903, USA;
| | - Susan C. Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (G.C.S.); (D.T.); (T.B.); (H.K.); (L.S.); (R.M.); (A.W.); (T.A.W.); (F.E.); (M.B.); (G.M.)
| |
Collapse
|
23
|
5- epi-Sinuleptolide from Soft Corals of the Genus Sinularia Exerts Cytotoxic Effects on Pancreatic Cancer Cell Lines via the Inhibition of JAK2/STAT3, AKT, and ERK Activity. Molecules 2021; 26:molecules26226932. [PMID: 34834023 PMCID: PMC8623039 DOI: 10.3390/molecules26226932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.
Collapse
|
24
|
Identification of cbiO Gene Critical for Biofilm Formation by MRSA CFSa36 Strain Isolated from Pediatric Patient with Cystic Fibrosis. Pathogens 2021; 10:pathogens10111363. [PMID: 34832519 PMCID: PMC8622116 DOI: 10.3390/pathogens10111363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
The colonization of Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has a detrimental effect on the respiratory care of pediatric patients with cystic fibrosis (CF). In addition to being resistant to multiple antibiotics, S. aureus also has the ability to form biofilms, which makes the infection more difficult to treat and eradicate. In this study, we examined the ability of S. aureus strains isolated from pediatric patients with CF to form biofilms. We screened a transposon mutant library of MRSA and identified a putative cobalt transporter ATP binding domain (cbiO) that is required for biofilm formation. We discovered that deleting cbiO creating a cbiO null mutant in CFSa36 (an MRSA strain isolated from a patient with cystic fibrosis) significantly hinders the ability of CFSa36 to form biofilm. The complementation of cbiO restored the ability of the cbiO deletion mutant to generate biofilm. Interestingly, we revealed that incorporating extra copper ions to the chemically defined medium (CDM) complemented the function of cbiO for biofilm formation in a dose-dependent manner, while the addition of extra iron ions in CDM enhanced the effect of cbiO null mutation on biofilm formation. In addition, neither the addition of certain extra amounts of copper ions nor iron ions in CDM had an impact on bacterial growth. Taken together, our findings suggest that cbiO mediates biofilm formation by affecting the transportation of copper ions in the MRSA CFSa36 strain. This study provides new insights into the molecular basis of biofilm formation by S. aureus.
Collapse
|
25
|
Randazzo O, Cascioferro SM, Pecoraro C, Iddouch WA, Avan A, Parrino B, Carbone D, Perricone U, Peters GJ, Diana P, Giovannetti E. SF3B1 modulators affect key genes in metastasis and drug influx: a new approach to fight pancreatic cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:904-922. [PMID: 35582381 PMCID: PMC8992438 DOI: 10.20517/cdr.2021.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Aim: Because mutations of splicing factor 3B subunit-1 (SF3B1) have been identified in 4% of pancreatic ductal adenocarcinoma (PDAC) patients, we investigated the activity of new potential inhibitors of SF3B1 in combination with gemcitabine, one of the standard drugs, in PDAC cell lines. Methods: One imidazo[2,1-b][1,3,4]thiadiazole derivative (IS1) and three indole derivatives (IS2, IS3 and IS4), selected by virtual screening from an in-house library, were evaluated by the sulforhodamine-B and wound healing assay for their cytotoxic and antimigratory activity in the PDAC cells SUIT-2, Hs766t and Panc05.04, the latter harbouring the SF3B1 mutations. The effects on the splicing pattern of proto-oncogene recepteur d'origine nantais (RON) and the gemcitabine transporter human equilibrative nucleoside transporter-1 (hENT1) were assessed by PCR, while the ability to reduce tumour volume was tested in spheroids of primary PDAC cells. Results: The potential SF3B1 modulators inhibited PDAC cell proliferation and prompted induction of cell death. All compounds showed an interesting anti-migratory ability, associated with splicing RON/ΔRON shift in SUIT-2 cells after 24 h exposure. Moreover, IS1 and IS4 potentiated the sensitivity to gemcitabine in both conventional 2D monolayer and 3D spheroid cultures, and these results might be explained by the statistically significant increase in hENT1 expression (P < 0.05 vs. untreated control cells), potentially reversing PDAC chemoresistance. Conclusion: These results support further studies on new SF3B1 inhibitors and the role of RON/hENT1 modulation to develop effective drug combinations against PDAC.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Stella M. Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Camilla Pecoraro
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
- Authors contributed equally
| | - Widad Ait Iddouch
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Ugo Perricone
- Drug Discovery Unit, Fondazione Ri.MED, Palermo 90128, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-210, Poland
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo 90133, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa 56124, Italy
| |
Collapse
|
26
|
Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021; 58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3β) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3β is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3β recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3β and its potential as a druggable target; currently developed GSK3β inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3β biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3β that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3β-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3β inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Beatrice Faggion
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands
| | - Beatrice Balboni
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy, and Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Poland
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy.
| |
Collapse
|
27
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
28
|
Radwan MA, Al Rugaie O, Al Abdulmonem W, Alfaifi MY, Elbehairi SEI. Synthesis and cytotoxic activity of new indolylpyrrole derivatives. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Di Franco S, Parrino B, Gaggianesi M, Pantina VD, Bianca P, Nicotra A, Mangiapane LR, Lo Iacono M, Ganduscio G, Veschi V, Brancato OR, Glaviano A, Turdo A, Pillitteri I, Colarossi L, Cascioferro S, Carbone D, Pecoraro C, Fiori ME, De Maria R, Todaro M, Screpanti I, Cirrincione G, Diana P, Stassi G. CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. iScience 2021; 24:102664. [PMID: 34169240 PMCID: PMC8209271 DOI: 10.1016/j.isci.2021.102664] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless of the mutational background, microsatellite stability, and consensus molecular subtype. Synergistic combination of NORA234 and CHK1 (rabusertib) targeting is synthetic lethal inducing death of both CD44v6-negative and CD44v6-positive CRC stem cell fractions, aside from Wnt pathway activity. These data could provide a rational basis to develop an effective strategy for the treatment of patients with CRC. CR-CSCs acquire a long-term resistance to the NORA234 treatment Replicative and genotoxic stress induces the activation of CHK1 Adaptive response to NORA234 is associated with high expression levels of CHK1 NORA234 together with targeting of CHK1 leads to depletion of CR-CSC compartment
Collapse
Affiliation(s)
- Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Annalisa Nicotra
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Gloria Ganduscio
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Irene Pillitteri
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy.,Policlinico A Gemelli, Lazio, Roma, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | | | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
30
|
Ana G, Kelly PM, Malebari AM, Noorani S, Nathwani SM, Twamley B, Fayne D, O’Boyle NM, Zisterer DM, Pimentel EF, Endringer DC, Meegan MJ. Synthesis and Biological Evaluation of 1-(Diarylmethyl)-1 H-1,2,4-triazoles and 1-(Diarylmethyl)-1 H-imidazoles as a Novel Class of Anti-Mitotic Agent for Activity in Breast Cancer. Pharmaceuticals (Basel) 2021; 14:169. [PMID: 33671674 PMCID: PMC7926793 DOI: 10.3390/ph14020169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.
Collapse
Affiliation(s)
- Gloria Ana
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (G.A.); (P.M.K.); (S.N.); (N.M.O.)
| | - Patrick M. Kelly
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (G.A.); (P.M.K.); (S.N.); (N.M.O.)
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (G.A.); (P.M.K.); (S.N.); (N.M.O.)
| | - Seema M. Nathwani
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.F.); (D.M.Z.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, DO2R590 Dublin, Ireland;
| | - Darren Fayne
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.F.); (D.M.Z.)
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (G.A.); (P.M.K.); (S.N.); (N.M.O.)
| | - Daniela M. Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (S.M.N.); (D.F.); (D.M.Z.)
| | - Elisangela Flavia Pimentel
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha—Espírito Santo, Vila Velha 29102-920, Brazil; (E.F.P.); (D.C.E.)
| | - Denise Coutinho Endringer
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista Vila Velha—Espírito Santo, Vila Velha 29102-920, Brazil; (E.F.P.); (D.C.E.)
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, DO2R590 Dublin, Ireland; (G.A.); (P.M.K.); (S.N.); (N.M.O.)
| |
Collapse
|
31
|
New Prenylated Indole Homodimeric and Pteridine Alkaloids from the Marine-Derived Fungus Aspergillus austroafricanus Y32-2. Mar Drugs 2021; 19:md19020098. [PMID: 33572212 PMCID: PMC7916005 DOI: 10.3390/md19020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Chemical investigation of secondary metabolites from the marine-derived fungus Aspergillus austroafricanus Y32-2 resulted in the isolation of two new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (1) and dinotoamide J (2), one new pteridine alkaloid asperpteridinate A (3), with eleven known compounds (4-14). Their structures were elucidated by various spectroscopic methods including HRESIMS and NMR, while their absolute configurations were determined by ECD calculations. Each compound was evaluated for pro-angiogenic, anti-inflammatory effects in zebrafish models and cytotoxicity for HepG2 human liver carcinoma cells. As a result, compounds 2, 4, 5, 7, 10 exhibited pro-angiogenic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent manner, compounds 7, 8, 10, 11 displayed anti-inflammatory activity in a CuSO4-induced zebrafish inflammation model, and compound 6 showed significant cytotoxicity against HepG2 cells with an IC50 value of 30 µg/mL.
Collapse
|