1
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Ricardo MG, Llanes D, Rennert R, Jänicke P, Rivera DG, Wessjohann LA. Improved Access to Potent Anticancer Tubulysins and Linker-Functionalized Payloads Via an All-On-Resin Strategy. Chemistry 2024; 30:e202401943. [PMID: 38771268 DOI: 10.1002/chem.202401943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Tubulysins are among the most recent antimitotic compounds to enter into antibody/peptide-drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e. g., by using small tertiary amide N-substituents (Me, Et, Pr) on the tubuvaline residue. Cumbersome solution-phase approaches are typically used for both syntheses and functionalization with cleavable linkers. p-Aminobenzyl quaternary ammonium (PABQ) linkers were a remarkable advancement for targeted delivery, but the procedures to incorporate them into tubulysins are only of moderate efficiency. Here we describe a novel all-on-resin strategy permitting a loss-free resin linkage and an improved access to super potent tubulysin analogs showing close resemblance to the natural compounds. For the first time, a protocol enables the integration of on-resin tubulysin derivatization with, e. g., a maleimido-Val-Cit-PABQ linker, which is a notable progress for the payload-PABQ-linker technology. The strategy also allows tubulysin diversification of the internal amide N-substituent, thus enabling to screen a tubulysin library for the discovery of new potent analogs. This work provides ADC/PDC developers with new tools for both rapid access to new derivatives and easier linker-attachment and functionalization.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
- Present address: Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dayma Llanes
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Paul Jänicke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
3
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
4
|
Alameddine R, Mallea P, Shahab F, Zakharia Y. Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives. Curr Treat Options Oncol 2023; 24:1167-1182. [PMID: 37403009 DOI: 10.1007/s11864-023-01114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Over the last several years, the treatment landscape of urothelial carcinoma has witnessed an unprecedented expansion of therapeutic options including checkpoint inhibitors, tyrosine kinase inhibitors, and antibody drug conjugates (ADC). Early trial data has shown that ADCs are safer and potentially effective treatment options in advanced bladder cancer as well as in the early disease. In particular, enfortumab-vedotin (EV) has shown promising results with a recent cohort of a clinical trial demonstrating that EV is effective as neoadjuvant monotherapy as well as in combination with pembrolizumab in metastatic setting. Similar promising results have been shown by other classes of ADC in other trials including sacituzumab-govitecan (SG) and oportuzumab monatox (OM). ADCs are likely to become a mainstay treatment option in the urothelial carcinoma playbook as either a monotherapy or combination therapy. The cost of the drug presents a real challenge, but further trial data may justify the use of the drug as mainstay treatment.
Collapse
Affiliation(s)
- Raafat Alameddine
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Patrick Mallea
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Farhan Shahab
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
5
|
Jackson CP, Fang S, Benjamin SR, Alayi T, Hathout Y, Gillen SM, Handel JP, Brems BM, Howe JM, Tumey LN. Evaluation of an ester-linked immunosuppressive payload: A case study in understanding the stability and cleavability of ester-containing ADC linkers. Bioorg Med Chem Lett 2022; 75:128953. [PMID: 36058468 PMCID: PMC10166636 DOI: 10.1016/j.bmcl.2022.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
In spite of their value in prodrug applications, the use of esters in antibody-drug-conjugate (ADC) payloads and linkers has generally been avoided due to the ubiquitous and promiscuous nature of human esterases. ADCs generally have a long circulating half life (3-7 days) that makes them susceptible to esterase-mediated metabolism. Moreover, it is largely unclear whether lysosomal and cytosolic esterases cleave ester-containing linkers upon ADC internalization. Due to our interest in the targeted delivery of immune-modulators, our team has recently prepared a series of ester-linked dexamethasone ADCs. Herein, we report our studies of the functional activity of these ADCs, with a particular focus on their catabolism in various biological milieu. We found that esters are selectively but inefficiently cleaved upon cellular uptake, likely by cytosolic esterases. Lysosomal catabolism studies indicate that, in spite of the strong proteolytic activity, very little cleavage of ester-containing linkers occurs in the lysosome. However, ADCs bearing the ester-linked payloads are active in various immune-suppressive assays, suggesting that cytosolic cleavage is taking place. This was confirmed through LCMS quantitation of the payload following cell lysis. Finally, the stability of the ester linkage was evaluated in mouse and human plasma. We found, similar to other reports, there is a significant site-dependence on the cleavage. Esters attached at highly exposed sites, such as 443C, were rapidly cleaved in plasma while esters at more hindered sites, such at 334C, were not. Together, these results help to unravel the complexities of ester-incorporation into ADC linkers and pave a path forward for their utility in ADC applications.
Collapse
Affiliation(s)
- Courtney P Jackson
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Samantha R Benjamin
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Tchilabalo Alayi
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Sarah M Gillen
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Jillian P Handel
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Brittany M Brems
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Justin M Howe
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States.
| |
Collapse
|
6
|
Dal Corso A, Frigoli M, Prevosti M, Mason M, Bucci R, Belvisi L, Pignataro L, Gennari C. Advanced Pyrrolidine-Carbamate Self-Immolative Spacer with Tertiary Amine Handle Induces Superfast Cyclative Drug Release. ChemMedChem 2022; 17:e202200279. [PMID: 35620983 PMCID: PMC9544318 DOI: 10.1002/cmdc.202200279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/07/2022]
Abstract
Amine-carbamate self-immolative (SI) spacers represent practical and versatile tools in targeted prodrugs, but their slow degradation mechanism limits drug activation at the site of disease. We engineered a pyrrolidine-carbamate SI spacer with a tertiary amine handle which strongly accelerates the spacer cyclization to give a bicyclic urea and the free hydroxy groups of either cytotoxic (Camptothecin) or immunostimulatory (Resiquimod) drugs. In silico conformational analysis and pKa calculations suggest a plausible mechanism for the superior efficacy of the advanced SI spacer compared to state-of-art analogues.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Margaux Frigoli
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Martina Prevosti
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Mattia Mason
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Raffaella Bucci
- Università degli Studi di MilanoDipartimento di Scienze Farmaceutichevia G. Venezian 2120133MilanItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di Chimicavia C. Golgi, 1920133MilanItaly
| |
Collapse
|
7
|
Burnouf PA, Roffler SR, Wu CC, Su YC. Glucuronides: From biological waste to bio-nanomedical applications. J Control Release 2022; 349:765-782. [PMID: 35907593 DOI: 10.1016/j.jconrel.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Long considered as no more than biological waste meant to be eliminated in urine, glucuronides have recently contributed to tremendous developments in the biomedical field, particularly against cancer. While glucuronide prodrugs monotherapy and antibody-directed enzyme prodrug therapy have been around for some time, new facets have emerged that combine the unique properties of glucuronides notably in the fields of antibody-drug conjugates and nanomedicine. In both cases, glucuronides are utilized as a vector to improve pharmacokinetics and confer localized activation of potent drugs at tumor sites while also decreasing systemic toxicity. Here we will discuss some of the most promising strategies using glucuronides to promote successful anti-tumor therapeutic treatments.
Collapse
Affiliation(s)
- Pierre-Alain Burnouf
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Ching Wu
- International Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Cheng Z, Huang Y, Shen Q, Zhao Y, Wang L, Yu J, Lu W. A camptothecin-based, albumin-binding prodrug enhances efficacy and safety in vivo. Eur J Med Chem 2021; 226:113851. [PMID: 34547508 DOI: 10.1016/j.ejmech.2021.113851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
The albumin-based drug delivery system is an effective drug delivery strategy for traditional chemotherapeutic drugs that can improve their antitumour efficacies and reduce systemic toxicities. The camptothecin derivative CPTS0001 has excellent antitumour activity in vitro, but it shows toxicity and side effects in vivo. In this study, we report the synthesis and biological evaluation of the β-glucuronidase-reactive albumin-binding prodrug Mal-glu-CPTS0001 based on quaternary ammonium. After intravenous administration, the compound covalently binds to plasma albumin through Michael addition, enabling it to accumulate in tumours, where tumour-associated β-glucuronidase triggers the selective release of CPTS0001. This prodrug significantly reduced the toxicity of the parent drug, and the maximum tolerated dose was increased by 2.5 times. At the same time, this prodrug enhanced the selectivity in vivo and improved the preferential accumulation of prodrug in tumours. Notably, this prodrug exhibited excellent in vivo antitumour effects in a murine breast cancer xenograft model without visible pathological toxicity.
Collapse
Affiliation(s)
- Zhiyang Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Ying Huang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Qianqian Shen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yangrong Zhao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Lei Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| | - Jiahui Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China
| | - Wei Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, PR China.
| |
Collapse
|