1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Ferrari G, Lopez-Martinez I, Wanek T, Kuntner C, Montagner D. Recent Advances on Pt-Based Compounds for Theranostic Applications. Molecules 2024; 29:3453. [PMID: 39124859 PMCID: PMC11313463 DOI: 10.3390/molecules29153453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation. In these systems, the platinum core serves as the therapeutic agent, while the functionalized ligand provides diagnostic tools using various imaging techniques. This review aims to highlight the significant role of platinum-based complexes in theranostic applications, and, to the best of our knowledge, this is the first focused contribution on this type of platinum compounds. This review presents a brief introduction to the development of platinum chemotherapeutic drugs, their limitations, and resistance mechanisms. It then describes recent advancements in integrating platinum complexes with diagnostic agents for both tumor treatment and monitoring. The main body is organized into three categories based on imaging techniques: fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Finally, this review outlines promising strategies and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Ines Lopez-Martinez
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Diego Montagner
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
5
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Liu XL, Yang X, Li L, Xie T, Zhang X, Yang T, Jiang D, Chen J, Chen Y, Cai L, Wang Y, Zhang P. An analyte-replacement near-infrared fluorogenic probe for ultrafast detection of hypochlorite in rheumatoid arthritis. Bioorg Chem 2023; 139:106757. [PMID: 37543016 DOI: 10.1016/j.bioorg.2023.106757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Xue-Liang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Lu Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tingfei Xie
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Daoyong Jiang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jihong Chen
- Department of Nephrology, The People's Hospital of Baoan Shenzhen, The Second School of Clinical Medicine, Southern Medical University, China
| | - Yizhao Chen
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China; Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
7
|
Chi Y, Hu Q, Yi S, Qu H, Xiao Y. A novel strategy to construct activatable silver chalcogenide quantum dots nanoprobe for NIR-Ⅱ fluorescence imaging of hypochlorous acid in vivo. Talanta 2023; 262:124668. [PMID: 37229815 DOI: 10.1016/j.talanta.2023.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
It is necessary to develop sensitive and selective probes for real-time in vivo monitoring of hypochlorous acid (HClO) which plays a significant role in physiological and pathological processes. The second near-infrared (NIR-Ⅱ) luminescent silver chalcogenide quantum dots (QDs) have shown great potential in developing activatable nanoprobe for HClO in terms of their outstanding imaging performance in the living organism. However, the limited strategy for the construction of activatable nanoprobes severely restricts their widespread applications. Herein, we proposed a novel strategy for developing an activatable silver chalcogenide QDs nanoprobe for NIR-Ⅱ fluorescence imaging of HClO in vivo. The nanoprobe was fabricated by mixing an Au-precursor solution with Ag2Te@Ag2S QDs to allow cation exchange and release Ag ions and then reducing the released Ag ions on the QDs surface to form an Ag shell for quenching of the emission of QDs. The Ag shell of QDs was oxidized and etched in the presence of HClO, resulting in the disappearance of their quenching effect on QDs and the activation of the QDs emission. The developed nanoprobe enabled highly sensitive and selective determination of HClO and imaging of HClO in arthritis and peritonitis. This study provides a novel strategy for the construction of activatable nanoprobe based on QDs and a promising tool for NIR-Ⅱ imaging of HClO in vivo.
Collapse
Affiliation(s)
- Yajie Chi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Qing Hu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Shuxiao Yi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Huijiao Qu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China
| | - Yan Xiao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
8
|
Ma R, Tang X, Wang M, Du Z, Chen S, Heng Y, Zhu L, Alifu N, Zhang X, Ma C. Clinical indocyanine green-based silk fibroin theranostic nanoprobes for in vivo NIR-I/II fluorescence imaging of cervical diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102615. [PMID: 36265558 DOI: 10.1016/j.nano.2022.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.
Collapse
Affiliation(s)
- Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Xiaohui Tang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Mei Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Youqiang Heng
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, People's Republic of China.
| |
Collapse
|
9
|
Sun JX, Xu JZ, An Y, Ma SY, Liu CQ, Zhang SH, Luan Y, Wang SG, Xia QD. Future in precise surgery: Fluorescence-guided surgery using EVs derived fluorescence contrast agent. J Control Release 2023; 353:832-841. [PMID: 36496053 DOI: 10.1016/j.jconrel.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Surgery is the only cure for many solid tumors, but positive resection margins, damage to vital nerves, vessels and organs during surgery, and the range and extent of lymph node dissection are significant concerns which hinder the development of surgery. The emergence of fluorescence-guided surgery (FGS) means a farewell to the era when surgeons relied only on visual and tactile feedback, and it gives surgeons another eye to distinguish tumors from normal tissues for precise resection and helps to find a balance between complete tumor lesions removal and maximal organ function conservation. However, the existing synthetic fluorescence contrast agent has flaws in safety, specificity and biocompatibility to various extents. Extracellular vesicles (EVs) are a group of heterogeneous types of cell-derived membranous structures present in all biological fluids. EVs, especially engineered targeting EVs, play an increasingly important role in drug delivery because of their good biocompatibility, validated safety and targeting ability. Nevertheless, few studies have employed EVs loaded with fluorophores to construct fluorescence contrast agents and used them in FGS. Here, we systematically reviewed the current state of knowledge regarding FGS, fundamental characteristics of EVs, and the development of engineered targeting EVs, and put forward a novel strategy and procedures to produce EVs-based fluorescence contrast agent used in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Luan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| |
Collapse
|
10
|
The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications. Anal Bioanal Chem 2022:10.1007/s00216-022-04463-z. [PMID: 36445453 DOI: 10.1007/s00216-022-04463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
As fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) has gained increasing attention, it is inevitable that NIR-II fluorophores, the cornerstone of NIR-II imaging, have come to the middle of the stage. NIR-II xanthenoid fluorophores with good stability, high brightness, and fluorescence adjustability are becoming popular. We here reviewed the recent progress of xanthenoid fluorophores with NIR-II emission for in vivo applications. Especially, we focus on the strategies used for longer wavelength and fluorescence regulation to construct OFF-ON or ratiometric NIR-II fluorescent probes.
Collapse
|
11
|
Lan Q, Yu P, Yan K, Li X, Zhang F, Lei Z. Polymethine Molecular Platform for Ratiometric Fluorescent Probes in the Second near-Infrared Window. J Am Chem Soc 2022; 144:21010-21015. [DOI: 10.1021/jacs.2c10041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingchun Lan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai 201203, China
| |
Collapse
|
12
|
Wang K, Jiao Y, Ma Q, Shu W, Xiao H, Zhang T, Liu Y. Construction and Application of a New Polarity‐Sensitive Fluorescent Probe Based on the Excited‐State Intramolecular Proton Transfer Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kai Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Qingqing Ma
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Wei Shu
- School of Life Sciences and Medicine Shandong University of Technology Zibo 255049 P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 P. R. China
| |
Collapse
|
13
|
Zhao J, Ma T, Chang B, Fang J. Recent Progress on NIR Fluorescent Probes for Enzymes. Molecules 2022; 27:5922. [PMID: 36144654 PMCID: PMC9503431 DOI: 10.3390/molecules27185922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The majority of diseases' biomarkers are enzymes, and the regulation of enzymes is fundamental but crucial. Biological system disorders and diseases can result from abnormal enzymatic activity. Given the biological significance of enzymes, researchers have devised a plethora of tools to map the activity of particular enzymes in order to gain insight regarding their function and distribution. Near-infrared (NIR) fluorescence imaging studies on enzymes may help to better understand their roles in living systems due to their natural imaging advantages. We review the NIR fluorescent probe design strategies that have been attempted by researchers to develop NIR fluorescent sensors of enzymes, and these works have provided deep and intuitive insights into the study of enzymes in biological systems. The recent enzyme-activated NIR fluorescent probes and their applications in imaging are summarized, and the prospects and challenges of developing enzyme-activated NIR fluorescent probes are discussed.
Collapse
Affiliation(s)
| | | | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
A New Deep‐Red to Near‐infrared Emission and Polarity Sensitive Fluorescent Probe Based on β‐Diketone‐boron Difluoride and Coumarin Derivative. ChemistrySelect 2022. [DOI: 10.1002/slct.202202272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Shi S, Zhang P, Chu X, Liu Y, Feng W, Zhou N, Shen J. Combination of Carbon Dots for the Design of Superhydrophobic Fluorescent Materials with Bioinspired Micro-Nano Multiscale Hierarchical Structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Abstract
Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Wenrui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
17
|
Ye Y, Liu C, Wang L, Shen XC, Chen H. A dual-positive charges strategy for sensitive and quantitative detection of mitochondrial SO 2 in cancer cells and tumor tissue. Talanta 2022; 249:123699. [PMID: 35738208 DOI: 10.1016/j.talanta.2022.123699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022]
Abstract
Mitochondrial sulfur dioxide (SO2) correlates with various activities of the development and progression of cancer. However, the specific biological function of mitochondrial SO2 in cancerous cells remains amphibolous. Therefore, it is of great significance and urgency to develop a rapid and accurate method to monitor the dynamic fluctuations of mitochondrial SO2 in cancer cells and tumor tissue. Herein, in this work, we introduce a "dual-positive charges" strategy for simultaneously enhancing the sensitivity and mitochondrial targeting ability of SO2 detection in cancer cells for the first time. For proof of concept, the dual positive charged probe DCP was rationally designed and synthesized based on chromenoquinoline fluorophore. Correspondingly, we also synthesized single positive charged SO2 probe MCP as controls. As expected, the detection limit of dual positive charged DCP for SO2 detection was 0.06 μM, which was 7-fold lower than that of the single positive charged probe MCP. Besides, DCP showed a higher mitochondrial co-localization coefficient in cancer cells and it could distinguish cancer cells (HeLa) and normal cells (L929) in co-incubated system. In a word, the evidence suggested that the implementation of dual-positive charges strategy greatly improved the sensitivity to SO2 response and the specificity of mitochondrial targeting in cancer cells. Finally, DCP was successfully applied to monitor SO2 fluctuation in cancer cells, tumor tissue and living zebrafish. Thus, this work provides a powerful tool to investigate the role of mitochondrial SO2 in cancer and other related diseases.
Collapse
Affiliation(s)
- Yuan Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Chunli Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Liping Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hua Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
18
|
Wong KCY, Sletten EM. Extending optical chemical tools and technologies to mice by shifting to the shortwave infrared region. Curr Opin Chem Biol 2022; 68:102131. [PMID: 35366502 PMCID: PMC9583727 DOI: 10.1016/j.cbpa.2022.102131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 01/11/2023]
Abstract
Fluorescence imaging is an indispensable method for studying biological processes non-invasively in cells and transparent organisms. Extension into the shortwave infrared (SWIR, 1000-2000 nm) region of the electromagnetic spectrum has allowed for imaging in mammals with unprecedented depth and resolution for optical imaging. In this review, we summarize recent advances in imaging technologies, dye scaffold modifications, and incorporation of these dyes into probes for SWIR imaging in mice. Finally, we offer an outlook on the future of SWIR detection in the field of chemical biology.
Collapse
Affiliation(s)
- Kelly C Y Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States.
| |
Collapse
|
19
|
Dang Y, Lai Y, Chen F, Sun Q, Ding C, Zhang W, Xu Z. Activatable NIR-II Fluorescent Nanoprobe for Rapid Detection and Imaging of Methylglyoxal Facilitated by the Local Nonpolar Microenvironment. Anal Chem 2022; 94:1076-1084. [DOI: 10.1021/acs.analchem.1c04076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Li D, Pan J, Xu S, Fu S, Chu C, Liu G. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. BIOSENSORS 2021; 11:436. [PMID: 34821652 PMCID: PMC8615551 DOI: 10.3390/bios11110436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 05/12/2023]
Abstract
Recently, second near-infrared (NIR-II) fluorescent imaging has been widely applied in biomedical diagnosis, due to its high spatiotemporal resolution and deep tissue penetration. In contrast to the "always on" NIR-II fluorescent probes, the activatable NIR-II fluorescent probes have specific targeting to biological tissues, showing a higher imaging signal-to-background ratio and a lower detection limit. Therefore, it is of great significance to utilize disease-associated endogenous stimuli (such as pH values, enzyme existence, hypoxia condition and so on) to activate the NIR-II probes and achieve switchable fluorescent signals for specific deep bioimaging. This review introduces recent strategies and mechanisms for activatable NIR-II fluorescent probes and their applications in biosensing and bioimaging. Moreover, the potential challenges and perspectives of activatable NIR-II fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Dong Li
- Correspondence: (D.L.); (G.L.)
| | | | | | | | | | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging, Translational Medicine School of Public Health, Xiamen University, Xiamen 361102, China; (J.P.); (S.X.); (S.F.); (C.C.)
| |
Collapse
|
21
|
Gu C, Wang H, Wang X, Wen S, Liu X, Tan W, Qiu M, Ma J. Dithieno[3,2- b:2',3'- d]silole-based conjugated polymers for bioimaging in the short-wave infrared region. RSC Adv 2021; 11:30798-30804. [PMID: 35498949 PMCID: PMC9041370 DOI: 10.1039/d1ra05097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
The short-wave infrared window (SWIR, 900–1700 nm) fluorescence imaging has been demonstrated to have excellent imaging performance in signal/noise ratio and tissue penetration compared to the conventional NIR biological window (NIR-I, 700–900 nm). Conventional organic SWIR fluorescent materials still suffer from low fluorescence quantum efficiency. In this work, a donor unit with sp3 hybrid configuration and an acceptor unit with small hindered alkyl side chains are employed to construct donor–acceptor (D–A) type conjugated polymers P1 and P2, which were substituted with one or two fluorine atoms. These structural features can alleviate the aggregation-caused quenching (ACQ) and contribute to charge transfer, resulting in a significantly improved fluorescence quantum efficiency. The SWIR fluorescent quantum efficiencies of P1 and P2 nanoparticles are 3.4% and 4.4%, respectively, which are some of the highest for organic SWIR fluorophores reported so far. Excellent imaging quality has been demonstrated with P2 nanoparticles for SWIR imaging of the vascular system of nude mice. The results indicate that our design strategy of introducing sp3 hybrid configuration and small hindered alkyl side chains to fabricate conjugated polymers is efficient in improving the fluorescent quantum efficiency as SWIR fluorescent imaging agents for potential clinical practice. A D–A type polymer with a SWIR fluorescence quantum efficiency of 4.4% was obtained after structural optimization.![]()
Collapse
Affiliation(s)
- Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Haicheng Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Xiaoxia Wang
- Qing Dao Municipal Hospital Qingdao 266011 P. R. China
| | - Shuguang Wen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Xiaoguang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Weiqiang Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education Qingdao 266011 P. R. China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| |
Collapse
|