1
|
Wang N, Min FT, Wen WB, Cui HT. Mechanisms underlying hepatocellular carcinoma progression through N6-methyladenosine modifications of long non-coding RNA. World J Gastroenterol 2025; 31:103184. [DOI: 10.3748/wjg.v31.i21.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 06/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy with limited treatment options, particularly for patients with advanced stages of the disease. Sorafenib, the standard first-line therapy, faces significant challenges due to the development of drug resistance. Yu et al explored the mechanisms by which lncRNA KIF9-AS1 regulates the stemness and sorafenib resistance in HCC using a combination of cell culture, transfection, RNA immunoprecipitation, co-immunoprecipitation, and xenograft tumor models. They demonstrate that N6-methyladenosine-modified long non-coding RNA KIF9-AS1 acts as an oncogene in HCC. This modification involves methyltransferase-like 3 and insulin-like growth factor 2 mRNA-binding protein 1, which play critical roles in regulating KIF9-AS1. Furthermore, KIF9-AS1 stabilizes and upregulates short stature homeobox 2 by promoting its deubiquitination through ubiquitin-specific peptidase 1, thereby enhancing stemness and contributing to sorafenib resistance in HCC cells. These findings provide a theoretical basis for KIF9-AS1 as a diagnostic marker and therapeutic target for HCC, highlighting the need for further investigation into its clinical application potential.
Collapse
Affiliation(s)
- Ning Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650000, Yunnan Province, China
| | - Fei-Tian Min
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650000, Yunnan Province, China
| | - Wei-Bo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650000, Yunnan Province, China
| | - Huan-Tian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650000, Yunnan Province, China
| |
Collapse
|
2
|
Li G, Chen W, Liu D, Tang S. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors. Eur J Med Chem 2025; 290:117560. [PMID: 40147343 DOI: 10.1016/j.ejmech.2025.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotic cells, exerts a critical influence on RNA function and gene expression. It has attracted considerable attention within the rapidly evolving field of epitranscriptomics. METTL3 is a key enzyme for m6A modification and is essential for maintaining normal m6A levels. High expression of METTL3 is closely associated with various cancers, including gastric cancer, liver cancer, and leukemia. Inhibiting METTL3 has shown potential in slowing cancer progression, thereby driving the development of METTL3 inhibitors. In this work, we summarize recent advancements in the development of METTL3 inhibitor, with a focus on medicinal chemistry strategies employed during discovery and optimization phases. We explore the application of structure-activity relationship (SAR) studies and protein-targeted degradation techniques, while addressing key challenges associated with their characterization and clinical translation. This review underscores the therapeutic potential of METTL3 inhibitors in modulating epitranscriptomic pathways and aims to offer perspectives for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Gengwu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shibing Tang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Gao Y, Liu X, Li J. Targeting tRNA methyltransferases: from molecular mechanisms to drug discovery. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2886-2. [PMID: 40347212 DOI: 10.1007/s11427-024-2886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/24/2025] [Indexed: 05/12/2025]
Abstract
Transfer RNA methyltransferases (tRNA MTases) catalyze site-specific methylation on tRNAs, a critical process that ensures the stability and functionality of tRNA molecules, thereby maintaining cellular homeostasis of tRNA methylation. Recent studies have illuminated the structural diversity, specific substrate recognition, and conserved catalytic mechanisms of tRNA MTases, revealing how their dysregulation contributes to various diseases, including cancers and neurodevelopmental disorders. This review integrates these advances, exploring the challenges of achieving precise substrate recognition and modification in the context of complex and specific tRNA modification landscape, while emphasizing the crucial role of tRNA MTases in disease pathogenesis. The identification of small-molecule inhibitors targeting specific tRNA MTases marks a promising step toward the development of novel therapies. With continued research into the broader biological functions and regulatory mechanisms of tRNA MTases, these insights hold great potential to drive clinical advancements and therapeutic innovations.
Collapse
Affiliation(s)
- Yanrong Gao
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Xinyu Liu
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jiazhi Li
- Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010020, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
4
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
5
|
Ding YP, Liu CC, Yu KD. RNA modifications in the tumor microenvironment: insights into the cancer-immunity cycle and beyond. Exp Hematol Oncol 2025; 14:48. [PMID: 40176140 PMCID: PMC11963313 DOI: 10.1186/s40164-025-00648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
The chemical modification of biological molecules is a critical regulatory mechanism for controlling molecular functions. Although research has long focused on DNA and proteins, RNA modifications have recently attracted substantial interest with the advancement in detection technologies. In oncology, many studies have identified dysregulated RNA modifications including m6A, m1A, m5C, m7G, pseudouridylation and A to I editing, leading to disrupted downstream pathways. As the concept of the tumor microenvironment has gained prominence, studies have increasingly examined the role of RNA modifications in this context, focusing on interactions among cancer cells, immune cells, stromal cells, and other components. Here we review the RNA modifications in the tumor microenvironment through the perspective of the Cancer-Immunity Cycle. The extracellular RNA modifications including exosomes and influence of microbiome in RNA modifications are potential research questions. Additionally, RNA modifying enzymes including FTO, ALKBH5, METTL3, PUS7 are under investigation as potential biomarkers and targets for combination with immunotherapies. ADCs and mimetics of modified RNA could be potential novel drugs. This review discusses the regulatory roles of RNA modifications within the tumor microenvironment.
Collapse
Affiliation(s)
- You-Peng Ding
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Qiu X, Kemker C, Goebel GL, Lampe P, Wallis N, Schiller D, Bigler K, Jiang M, Sievers S, Yeo GW, Wu P. Phenylpyrazoles as Inhibitors of the m 6A RNA-Binding Protein YTHDF2. JACS AU 2025; 5:618-630. [PMID: 40017738 PMCID: PMC11862924 DOI: 10.1021/jacsau.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The N6-methyladenosine (m6A) modification, which is the most common RNA modification in eukaryotes, is regulated by the "writer" methyltransferases, the "reader" m6A binding proteins, and the "eraser" demethylases. m6A plays a multifunctional role in physiological and pathological processes, regulating all aspects of RNA metabolism and function, including RNA splicing, translation, transportation, and degradation. Accumulating evidence suggests that the YT521-B homology domain family 2 (YTHDF2), one of the m6A "readers," is associated with various biological processes in cancers and noncancerous disorders, impacting migration, invasion, metastasis, proliferation, apoptosis, and cell cycle. Here, we describe our work in the identification of a series of functionalized pyrazoles, such as CK-75, as new YTHDF2 inhibitors, which potentially bind to a small hydrophobic pocket on the YTH domain. Cellular evaluations revealed that the small-molecule YTHDF2 inhibitors induced cell cycle arrest, induced apoptosis, and significantly inhibited the cell viability of cancer cells. Furthermore, we evaluated the transcriptome-wide change in the global RNA-binding protein and RNA-binding patterns of CK-75 via an enhanced cross-linking and immunoprecipitation assay. Our work demonstrated the feasibility of targeting the YTH domain of YTHDF2 with small molecules. The phenylpyrazoles studied in this work provided a lead structure for the further development of small molecules targeting YTHDF2 for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Xiaqiu Qiu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Claus Kemker
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Philipp Lampe
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Nadav Wallis
- Department
of Cellular and Molecular Medicine, University
of California San Diego, La Jolla, California 92037, United States
| | - Damian Schiller
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Katrin Bigler
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Mao Jiang
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Gene W. Yeo
- Department
of Cellular and Molecular Medicine, University
of California San Diego, La Jolla, California 92037, United States
- Sanford
Stem Cell Institute and Sanford Consortium for Regenerative Medicine,
University of California San Diego, La Jolla, California 92037, United States
- Institute
for Genomic Medicine, University of California San Diego, La Jolla, California 92037, United States
- Sanford
Laboratories for Innovative Medicines, La Jolla, California 92037, United States
- Center
for RNA Technologies and Therapeutics, University
of California San Diego, La Jolla, California 92037, United States
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| |
Collapse
|
7
|
Dutheuil G, Oukoloff K, Korac J, Lenoir F, El Bousmaqui M, Probst N, Lapin A, Nakhabina G, Sorlet C, Parmentier N, Karila D, Ghavtadze N, Casault P, Claridge S, Sapmaz S, Slater MJ, Fraser GL. Discovery, Optimization, and Preclinical Pharmacology of EP652, a METTL3 Inhibitor with Efficacy in Liquid and Solid Tumor Models. J Med Chem 2025; 68:2981-3003. [PMID: 39883878 DOI: 10.1021/acs.jmedchem.4c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
METTL3 is the RNA methyltransferase predominantly responsible for the addition of N6-methyladenosine (m6A), the most abundant modification to mRNA. The prevalence of m6A and the activity and expression of METTL3 have been linked to the appearance and progression of acute myeloid leukemia (AML), thereby making METTL3 an attractive target for cancer therapeutics. We report herein the discovery and optimization of small-molecule inhibitors of METTL3, culminating in the selection of EP652 as an in vivo proof-of-concept compound. EP652 potently inhibits the enzymatic activity of METTL3, has favorable PK parameters, and demonstrates efficacy in preclinical oncology models, indicating that pharmacological inhibition of METTL3 is a viable strategy for the treatment of liquid and solid tumors.
Collapse
Affiliation(s)
| | - Killian Oukoloff
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Julien Korac
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - François Lenoir
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Nicolas Probst
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Alexey Lapin
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Galina Nakhabina
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | - Catherine Sorlet
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| | | | - Delphine Karila
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Nugzar Ghavtadze
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Paméla Casault
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Stephen Claridge
- Paraza Pharma, Inc., 2525 Avenue Marie Curie, Montréal H4S 2E1, Canada
| | - Selma Sapmaz
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Martin J Slater
- Cresset Biomolecular Discovery Limited, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, United Kingdom
| | - Graeme L Fraser
- Epics Therapeutics SA, rue Adrienne Bolland 47, Gosselies 6041, Belgium
| |
Collapse
|
8
|
Santamarina-Ojeda P, Fernández AF, Fraga MF. Epitranscriptomics in the Glioma Context: A Brief Overview. Cancers (Basel) 2025; 17:578. [PMID: 40002173 PMCID: PMC11853273 DOI: 10.3390/cancers17040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Epitranscriptomics, the study of chemical modifications in RNA, has emerged as a crucial field in cellular regulation, adding another layer to the established landscape of DNA- and histone-based epigenetics. A wide range of RNA modifications, including N6-methyladenosine, pseudouridine, and inosine, have been identified across nearly all RNA species, influencing essential processes such as transcription, splicing, RNA stability, and translation. In the context of brain tumors, particularly gliomas, specific epitranscriptomic signatures have been reported to play a role in tumorigenesis. Despite growing evidence, the biological implications of various RNA modifications remain poorly understood. This review offers an examination of the main RNA modifications, the interplay between modified and unmodified molecules, how they could contribute to glioma-like phenotypes, and the therapeutic impact of targeting these mechanisms.
Collapse
Affiliation(s)
- Pablo Santamarina-Ojeda
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Agustín F. Fernández
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mario F. Fraga
- Foundation for Biomedical Research and Innovation in Asturias (FINBA), 33011 Oviedo, Spain; (P.S.-O.); (A.F.F.)
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Nanomaterials and Nanotechnology Research Centre (CINN-CSIC), 33940 El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
9
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
10
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
11
|
Wu Z, Smith AR, Qian Z, Zheng G. Patent landscape of small molecule inhibitors of METTL3 (2020-present). Expert Opin Ther Pat 2024:1-16. [PMID: 39721070 DOI: 10.1080/13543776.2024.2447056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Methyltransferase-like protein 3 (METTL3), in complex with METTL14, is the key 'writer' protein for RNA m6A methylation, accounting for almost all mRNA m6A modifications. Recent studies reveal that METTL3 is implicated in the development and progression of various types of cancers. Targeting METTL3 with small molecule inhibitors represents a promising therapeutic strategy for cancer. AREAS COVERED This review provides an overview of the patent literature covering METTL3 inhibitors. A literature search was conducted in SciFinder by using 'METTL3 inhibitor' as a keyword and was refined by narrowing the criteria to patents. EXPERT OPINION Efforts to develop METTL3/METTL14 inhibitors have led to the advancement of the drug candidate STC-15 to clinical trials. Preclinical studies of STC-15 show promise in inhibiting tumor growth via direct anti-tumor effects and anti-cancer immune responses. The clinical trial outcomes of STC-15 will shape future METTL3/METTL14 inhibitor development. However, critical questions remain. The role of METTL3/METTL14 in m6A RNA methylation is essential for cellular activity, raising concerns about the potential adverse effects of targeting this complex. Furthermore, depending on the context, METTL3/METTL14 can function as a tumor suppressor. This underscores the need for a deeper understanding of the molecular mechanisms by which RNA modifications regulate cancer.
Collapse
Affiliation(s)
- Zhixing Wu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexis R Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Tarullo M, Fernandez Rodriguez G, Iaiza A, Venezia S, Macone A, Incocciati A, Masciarelli S, Marchioni M, Giorgis M, Lolli ML, Fornaseri F, Proietti L, Grebien F, Rosignoli S, Paiardini A, Rotili D, Mai A, Bochenkova E, Caflisch A, Fazi F, Fatica A. Off-Target Inhibition of Human Dihydroorotate Dehydrogenase ( hDHODH) Highlights Challenges in the Development of Fat Mass and Obesity-Associated Protein (FTO) Inhibitors. ACS Pharmacol Transl Sci 2024; 7:4096-4111. [PMID: 39698280 PMCID: PMC11651170 DOI: 10.1021/acsptsci.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
FTO, an N 6-methyladenosine (m6A) and N 6,2'-O-dimethyladenosine (m6Am) RNA demethylase, is a promising target for treating acute myeloid leukemia (AML) due to the significant anticancer activity of its inhibitors in preclinical models. Here, we demonstrate that the FTO inhibitor FB23-2 suppresses proliferation across both AML and CML cell lines, irrespective of FTO dependency, indicating an alternative mechanism of action. Metabolomic analysis revealed that FB23-2 induces the accumulation of dihydroorotate (DHO), a key intermediate in pyrimidine nucleotide synthesis catalyzed by human dihydroorotate dehydrogenase (hDHODH). Notably, structural similarities between the catalytic pockets of FTO and hDHODH enabled FB23-2 to inhibit both enzymes. In contrast, the hDHODH-inactive FB23-2 analog, ZLD115, required FTO for its antiproliferative activity. Similarly, the FTO inhibitor CS2 (brequinar), known as one of the most potent hDHODH inhibitors, exhibited FTO-independent antileukemic effects. Uridine supplementation fully rescued leukemia cells from FB23-2 and CS2-induced growth inhibition, but not ZLD115, confirming the inhibition of pyrimidine synthesis as the primary mechanism of action underlying their antileukemic activity. These findings underscore the importance of considering off-target effects on hDHODH in the development of FTO inhibitors to optimize their therapeutic potential and minimize unintended consequences.
Collapse
Affiliation(s)
- Marco Tarullo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Alessia Iaiza
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Venezia
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Incocciati
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Masciarelli
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Marcella Marchioni
- Institute
of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, 00185 Rome, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Federico Fornaseri
- Department
of Drug Science and Technology, University
of Torino, 10125 Torino, Italy
| | - Ludovica Proietti
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
| | - Florian Grebien
- Institute
of Medical Biochemistry, University of Veterinary
Medicine, 1210 Vienna, Austria
- St.
Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Serena Rosignoli
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department
of Biochemical Sciences “A. Rossi Fanelli″, Sapienza University of Rome, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Science, Roma Tre University, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, 00185 Rome, Italy
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Francesco Fazi
- Department
of Anatomical, Histological, Forensic & Orthopedic Sciences, Section
of Histology & Medical Embryology, Sapienza
University of Rome, 00161 Rome, Italy
| | - Alessandro Fatica
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
14
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
15
|
Widmer J, Vitalis A, Caflisch A. On the specificity of the recognition of m6A-RNA by YTH reader domains. J Biol Chem 2024; 300:107998. [PMID: 39551145 PMCID: PMC11699332 DOI: 10.1016/j.jbc.2024.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Most processes of life are the result of polyvalent interactions between macromolecules, often of heterogeneous types and sizes. Frequently, the times associated with these interactions are prohibitively long for interrogation using atomistic simulations. Here, we study the recognition of N6-methylated adenine (m6A) in RNA by the reader domain YTHDC1, a prototypical, cognate pair that challenges simulations through its composition and required timescales. Simulations of RNA pentanucleotides in water reveal that the unbound state can impact (un)binding kinetics in a manner that is both model- and sequence-dependent. This is important because there are two contributions to the specificity of the recognition of the Gm6AC motif: from the sequence adjacent to the central adenine and from its methylation. Next, we establish a reductionist model consisting of an RNA trinucleotide binding to the isolated reader domain in high salt. An adaptive sampling protocol allows us to quantitatively study the dissociation of this complex. Through joint analysis of a data set including both the cognate and control sequences (GAC, Am6AA, and AAA), we derive that both contributions to specificity, sequence, and methylation, are significant and in good agreement with experimental numbers. Analysis of the kinetics suggests that flexibility in both the RNA and the YTHDC1 recognition loop leads to many low-populated unbinding pathways. This multiple-pathway mechanism might be dominant for the binding of unstructured polymers, including RNA and peptides, to proteins when their association is driven by polyvalent, electrostatic interactions.
Collapse
Affiliation(s)
- Julian Widmer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Song B, Wu X, Zeng Y. Methyltransferase-like 3 represents a prospective target for the diagnosis and treatment of kidney diseases. Hum Genomics 2024; 18:125. [PMID: 39538346 PMCID: PMC11562609 DOI: 10.1186/s40246-024-00692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney disease is marked by complex pathological mechanisms and significant therapeutic hurdles, resulting in high morbidity and mortality rates globally. A deeper understanding of the fundamental processes involved can aid in identifying novel therapeutic targets and improving treatment efficacy. Current comprehensive data analyses indicate the involvement of methyltransferase-like 3 (METTL3) and its role in RNA N6-methyladenosine methylation in various renal pathologies, including acute kidney injury, renal fibrosis, and chronic kidney disease. However, there is a paucity of thorough reviews that clarify the functional mechanisms of METTL3 and evaluate its importance in enhancing therapeutic outcomes. This review seeks to systematically examine the roles, mechanisms, and potential clinical applications of METTL3 in renal diseases. The findings presented suggest that METTL3 is implicated in the etiology and exacerbation of kidney disorders, affecting their onset, progression, malignancy, and responsiveness to chemotherapeutic agents through the regulation of specific genetic pathways. In conclusion, this review underscores a detrimental correlation between METTL3 and kidney diseases, highlighting the therapeutic promise of targeting METTL3. Additionally, it offers critical insights for researchers concerning the diagnosis, prognosis, and treatment strategies for renal conditions.
Collapse
Affiliation(s)
- Bin Song
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xiaolong Wu
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Yan Zeng
- Department of Pediatrics, People's Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang, Sichuan Province, 618000, China.
| |
Collapse
|
17
|
Mishra T, Phillips S, Zhao Y, Wilms B, He C, Wu L. Epitranscriptomic m 6A modifications during reactivation of HIV-1 latency in CD4 + T cells. mBio 2024; 15:e0221424. [PMID: 39373537 PMCID: PMC11559067 DOI: 10.1128/mbio.02214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Despite effective antiretroviral therapy reducing HIV-1 viral loads to undetectable levels, the presence of latently infected CD4+ T cells poses a major barrier to HIV-1 cure. N6-methyladenosine (m6A) modification of viral and cellular RNA has a functional role in regulating HIV-1 infection. m6A modification of HIV-1 RNA can affect its stability, translation, and splicing in cells and suppresses type-I interferon induction in macrophages. However, the function of m6A modification in regulating HIV-1 latency reactivation remains unknown. We used the Jurkat T cell line-derived HIV-1 latency model (J-Lat cells) to investigate changes in m6A levels of cellular RNA in response to latency reversal. We observed a significant increase in m6A levels of total cellular RNA upon reactivation of latent HIV-1 in J-Lat cells. This increase in m6A levels was transient and returned to steady-state levels despite continued high levels of viral gene expression in reactivated cells compared to control cells. Upregulation of m6A levels occurred without significant changes in the protein expression of m6A writers or erasers that add or remove m6A, respectively. Knockdown of m6A writers in J-Lat cells significantly reduced HIV-1 reactivation. Treatment with an m6A writer inhibitor reduced cellular RNA m6A levels, along with a reduction in HIV-1 reactivation. Furthermore, using m6A-specific sequencing, we identified cellular RNAs that are differentially m6A-modified during HIV-1 reactivation in J-Lat cells. Knockdown of identified m6A-modified RNA validates these results with an established primary CD4+ T cell model of HIV-1 latency. These results show the importance of m6A RNA modification in HIV-1 latency reversal. IMPORTANCE RNA m6A modification is important for regulating gene expression and innate immune responses to HIV-1 infection. However, the functional significance of m6A modification during HIV-1 latency reactivation is unknown. To address this important question, in this study, we used established cellular models of HIV-1 latency, m6A-specific sequencing at single-base resolution, and functional assays. We demonstrate that HIV-1 latency reversal leads to increased levels of cellular m6A modification, correlates with cellular m6A levels, and is dependent on the catalytic activity of the m6A methyltransferase enzyme. We also identified cellular genes that are differentially m6A-modified during HIV-1 reactivation, as well as the sites of m6A within HIV-1 RNA. Our novel findings point toward a significant role for m6A modification in HIV-1 latency reversal.
Collapse
Affiliation(s)
- Tarun Mishra
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yutao Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| | - Bethany Wilms
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Kaur P, Sharma P, Bhatia P, Singh M. Current insights on m6A RNA modification in acute leukemia: therapeutic targets and future prospects. Front Oncol 2024; 14:1445794. [PMID: 39600630 PMCID: PMC11590065 DOI: 10.3389/fonc.2024.1445794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is the critical mechanism for regulating post-transcriptional processes. There are more than 150 RNA modifications reported so far, among which N6-Methyladenosine is the most prevalent one. M6A RNA modification complex consists of 'writers', 'readers' and 'erasers' which together in a group catalyze, recognize and regulate the methylation process of RNA and thereby regulate the stability and translation of mRNA. The discovery of erasers also known as demethylases, revolutionized the research on RNA modifications as it revealed that this modification is reversible. Since then, various studies have focused on discovering the role of m6A modification in various diseases especially cancers. Aberrant expression of these 'readers', 'writers', and 'erasers' is found to be altered in various cancers resulting in disturbance of cellular homeostasis. Acute leukemias are the most common cancer found in pediatric patients and account for 20% of adult cases. Dysregulation of the RNA modifying complex have been reported in development and progression of hematopoietic malignancies. Further, targeting m6A modification is the new approach for cancer immunotherapy and is being explored extensively. This review provides detailed information about current information on the role of m6A RNA modification in acute leukemia and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical
Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
20
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician's Guide to Epitranscriptomics: An Example of N 1-Methyladenosine (m 1A) RNA Modification and Cancer. Life (Basel) 2024; 14:1230. [PMID: 39459530 PMCID: PMC11508930 DOI: 10.3390/life14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Epitranscriptomics is the study of modifications of RNA molecules by small molecular residues, such as the methyl (-CH3) group. These modifications are inheritable and reversible. A specific group of enzymes called "writers" introduces the change to the RNA; "erasers" delete it, while "readers" stimulate a downstream effect. Epitranscriptomic changes are present in every type of organism from single-celled ones to plants and animals and are a key to normal development as well as pathologic processes. Oncology is a fast-paced field, where a better understanding of tumor biology and (epi)genetics is necessary to provide new therapeutic targets and better clinical outcomes. Recently, changes to the epitranscriptome have been shown to be drivers of tumorigenesis, biomarkers, and means of predicting outcomes, as well as potential therapeutic targets. In this review, we aimed to give a concise overview of epitranscriptomics in the context of neoplastic disease with a focus on N1-methyladenosine (m1A) modification, in layman's terms, to bring closer this omics to clinicians and their future clinical practice.
Collapse
Affiliation(s)
- Ana Kvolik Pavić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Josipa Čonkaš
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vedran Zubčić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
22
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
23
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
25
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
26
|
Santos-Pujol E, Quero-Dotor C, Esteller M. Clinical Perspectives in Epitranscriptomics. Curr Opin Genet Dev 2024; 87:102209. [PMID: 38824905 DOI: 10.1016/j.gde.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Epitranscriptomics, the study of reversible and dynamic chemical marks on the RNA, is rapidly emerging as a pivotal field in post-transcriptional gene expression regulation. Increasing knowledge about epitranscriptomic landscapes implicated in disease pathogenesis proves an invaluable opportunity for the identification of epitranscriptomic biomarkers and the development of new potential therapeutic drugs. Hence, recent advances in the characterization of these marks and associated enzymes in both health and disease blaze a trail toward the use of epitranscriptomics approaches for clinical applications. Here, we review the latest studies to provide a wide and comprehensive perspective of clinical epitranscriptomics and emphasize its transformative potential in shaping future health care paradigms.
Collapse
Affiliation(s)
- Eloy Santos-Pujol
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. https://twitter.com/@EloySantosPujol
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
27
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
28
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
29
|
Hu R, Liao P, Xu B, Qiu Y, Zhang H, Li Y. N6-methyladenosine RNA modifications: a potential therapeutic target for AML. Ann Hematol 2024; 103:2601-2612. [PMID: 37548690 DOI: 10.1007/s00277-023-05302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 08/08/2023]
Abstract
N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Epigenesis, Genetic
- Hematopoiesis/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Molecular Targeted Therapy
- Animals
- Drug Resistance, Neoplasm/genetics
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, People's Republic of China.
| |
Collapse
|
30
|
Yu Y, Hai Y, Zhou H, Bao W, Hu X, Gao Y, Wu J. METTL3 Inhibition Suppresses Cell Growth and Survival in Colorectal Cancer via ASNS Downregulation. J Cancer 2024; 15:4853-4865. [PMID: 39132158 PMCID: PMC11310885 DOI: 10.7150/jca.96760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Colorectal cancer (CRC) presents a significant global health burden, with high rates of incidence and mortality, and an urgent need to improve prognosis. STM2457, a novel small molecule inhibitor specific for N6-methyladenosine (m6A) catalytic enzyme Methyltransferase-like 3 (METTL3) has implicated significant treatment potentials in a few of types of cancer. However, its impact and underlying mechanism are still unclear in CRC cells. Methods: We used CCK-8 and colony formation assay to observe cell growth, flow cytometry and TUNEL approaches to detect cell apoptosis under the treatment of STM2457 on CRC cells in vitro or in vivo. RNA-sequencing, qRT-PCR and western blotting were performed to explore downstream effectors of STM2457. Messenger RNA stability was evaluated by qRT-PCR after treatment with actinomycin D. The methylated RNA immunoprecipitation (MeRIP) qPCR, dual-luciferase reporter analyses and m6A dot blotting were carried out to measure the m6A modification. Associated gene expression pattern and clinical relevance in CRC clinical tissue samples were analyzed using online database. Results: STM2457 exhibited a strong influence on cell growth suppression and apoptosis of CRC cells in vitro and subcutaneous xenograft growth in vivo. Asparagine synthetase (ASNS) was markedly downregulated upon STM2457 treatment or METTL3 knockdown and exogenous overexpression of ASNS could rescue the biological defects induced by STM2457. Mechanistically, the downregulation of ASNS by STM2457 may be due to the decrease of m6A modification level in ASNS mRNA mediated by METTL3. Conclusions: Our findings suggest that STM2457 may serve as a potential therapeutic agent and ASNS may be a new promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yang Yu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongfeng Zhou
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaowei Hu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jin Wu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
31
|
Hu H, Li Z, Xie X, Liao Q, Hu Y, Gong C, Gao N, Yang H, Xiao Y, Chen Y. Insights into the role of RNA m 6A modification in the metabolic process and related diseases. Genes Dis 2024; 11:101011. [PMID: 38560499 PMCID: PMC10978549 DOI: 10.1016/j.gendis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
According to the latest consensus, many traditional diseases are considered metabolic diseases, such as cancer, type 2 diabetes, obesity, and cardiovascular disease. Currently, metabolic diseases are increasingly prevalent because of the ever-improving living standards and have become the leading threat to human health. Multiple therapy methods have been applied to treat these diseases, which improves the quality of life of many patients, but the overall effect is still unsatisfactory. Therefore, intensive research on the metabolic process and the pathogenesis of metabolic diseases is imperative. N6-methyladenosine (m6A) is an important modification of eukaryotic RNAs. It is a critical regulator of gene expression that is involved in different cellular functions and physiological processes. Many studies have indicated that m6A modification regulates the development of many metabolic processes and metabolic diseases. In this review, we summarized recent studies on the role of m6A modification in different metabolic processes and metabolic diseases. Additionally, we highlighted the potential m6A-targeted therapy for metabolic diseases, expecting to facilitate m6A-targeted strategies in the treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | | | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
32
|
Zálešák F, Nai F, Herok M, Bochenkova E, Bedi RK, Li Y, Errani F, Caflisch A. Structure-Based Design of a Potent and Selective YTHDC1 Ligand. J Med Chem 2024; 67:9516-9535. [PMID: 38787793 PMCID: PMC11181329 DOI: 10.1021/acs.jmedchem.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
N6-Adenosine methylation (m6A) is a prevalent post-transcriptional modification of mRNA, with YTHDC1 being the reader protein responsible for recognizing this modification in the cell nucleus. Here, we present a protein structure-based medicinal chemistry campaign that resulted in the YTHDC1 inhibitor 40, which shows an equilibrium dissociation constant (Kd) of 49 nM. The crystal structure of the complex (1.6 Å resolution) validated the design. Compound 40 is selective against the cytoplasmic m6A-RNA readers YTHDF1-3 and YTHDC2 and shows antiproliferative activity against the acute myeloid leukemia (AML) cell lines THP-1, MOLM-13, and NOMO-1. For the series of compounds that culminated into ligand 40, the good correlation between the affinity in the biochemical assay and antiproliferative activity in the THP-1 cell line provides evidence of YTHDC1 target engagement in the cell. The binding to YTHDC1 in the cell is further supported by the cellular thermal shift assay. Thus, ligand 40 is a tool compound for studying the role of YTHDC1 in AML.
Collapse
Affiliation(s)
- František Zálešák
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marcin Herok
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elena Bochenkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rajiv K. Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Francesco Errani
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
33
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Xiao S, Ma S, Sun B, Pu W, Duan S, Han J, Hong Y, Zhang J, Peng Y, He C, Yi P, Caligiuri MA, Yu J. The tumor-intrinsic role of the m 6A reader YTHDF2 in regulating immune evasion. Sci Immunol 2024; 9:eadl2171. [PMID: 38820140 PMCID: PMC12068375 DOI: 10.1126/sciimmunol.adl2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yaqun Hong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Yi
- Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
35
|
Feng G, Wu Y, Hu Y, Shuai W, Yang X, Li Y, Ouyang L, Wang G. Small molecule inhibitors targeting m 6A regulators. J Hematol Oncol 2024; 17:30. [PMID: 38711100 PMCID: PMC11075261 DOI: 10.1186/s13045-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.
Collapse
Affiliation(s)
- Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
37
|
Nai F, Flores Espinoza MP, Invernizzi A, Vargas-Rosales PA, Bobileva O, Herok M, Caflisch A. Small-Molecule Inhibitors of the m7G-RNA Writer METTL1. ACS BIO & MED CHEM AU 2024; 4:100-110. [PMID: 38645929 PMCID: PMC11027120 DOI: 10.1021/acsbiomedchemau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 04/23/2024]
Abstract
We discovered the first inhibitors of the m7G-RNA writer METTL1 by high-throughput docking and an enzymatic assay based on luminescence. Eleven compounds, which belong to three different chemotypes, show inhibitory activity in the range 40-300 μM. Two adenine derivatives identified by docking have very favorable ligand efficiency of 0.34 and 0.31 kcal/mol per non-hydrogen atom, respectively. Molecular dynamics simulations provide evidence that the inhibitors compete with the binding of the cosubstrate S-adenosyl methionine to METTL1. We also present a soakable crystal form that was used to determine the structure of the complex of METTL1 with sinefungin at a resolution of 1.85 Å.
Collapse
Affiliation(s)
- Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Annalisa Invernizzi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Marcin Herok
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
38
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
39
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
40
|
Vaid R, Thombare K, Mendez A, Burgos-Panadero R, Djos A, Jachimowicz D, Lundberg K, Bartenhagen C, Kumar N, Tümmler C, Sihlbom C, Fransson S, Johnsen J, Kogner P, Martinsson T, Fischer M, Mondal T. METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: a therapeutic target for ALT-positive neuroblastoma. Nucleic Acids Res 2024; 52:2648-2671. [PMID: 38180812 PMCID: PMC10954483 DOI: 10.1093/nar/gkad1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.
Collapse
Affiliation(s)
- Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Akram Mendez
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rebeca Burgos-Panadero
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristina Ihrmark Lundberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Conny Tümmler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, 41345 Sweden
| |
Collapse
|
41
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Ethève-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. eLife 2024; 12:RP92537. [PMID: 38470714 PMCID: PMC10932547 DOI: 10.7554/elife.92537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | | | - Rajiv Kumar Bedi
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Jiahua Deng
- Department of Chemistry, Boston UniversityBostonUnited States
| | - Dylan Coelho
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Emmanuelle Braud
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Yaozong Li
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Danzhi Huang
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Qiang Cui
- Department of Chemistry, Boston UniversityBostonUnited States
- Department of Physics, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Amedeo Caflisch
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
42
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
43
|
Errani F, Invernizzi A, Herok M, Bochenkova E, Stamm F, Corbeski I, Romanucci V, Di Fabio G, Zálešák F, Caflisch A. Proteolysis Targeting Chimera Degraders of the METTL3-14 m 6A-RNA Methyltransferase. JACS AU 2024; 4:713-729. [PMID: 38425900 PMCID: PMC10900215 DOI: 10.1021/jacsau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Methylation of adenine N6 (m6A) is the most frequent RNA modification. On mRNA, it is catalyzed by the METTL3-14 heterodimer complex, which plays a key role in acute myeloid leukemia (AML) and other types of blood cancers and solid tumors. Here, we disclose the first proteolysis targeting chimeras (PROTACs) for an epitranscriptomics protein. For designing the PROTACs, we made use of the crystal structure of the complex of METTL3-14 with a potent and selective small-molecule inhibitor (called UZH2). The optimization of the linker started from a desfluoro precursor of UZH2 whose synthesis is more efficient than that of UZH2. The first nine PROTAC molecules featured PEG- or alkyl-based linkers, but only the latter showed cell penetration. With this information in hand, we synthesized 26 PROTACs based on UZH2 and alkyl linkers of different lengths and rigidity. The formation of the ternary complex was validated by a FRET-based biochemical assay and an in vitro ubiquitination assay. The PROTACs 14, 20, 22, 24, and 30, featuring different linker types and lengths, showed 50% or higher degradation of METTL3 and/or METTL14 measured by Western blot in MOLM-13 cells. They also showed substantial degradation on three other AML cell lines and prostate cancer cell line PC3.
Collapse
Affiliation(s)
- Francesco Errani
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Annalisa Invernizzi
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Marcin Herok
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Fiona Stamm
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Ivan Corbeski
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Valeria Romanucci
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - Giovanni Di Fabio
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - František Zálešák
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
44
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
46
|
Su W, Che L, Liao W, Huang H. The RNA m 6A writer METTL3 in tumor microenvironment: emerging roles and therapeutic implications. Front Immunol 2024; 15:1335774. [PMID: 38322265 PMCID: PMC10845340 DOI: 10.3389/fimmu.2024.1335774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Weiqi Su
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
47
|
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J, Zhang G. The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target. BMC Cancer 2024; 24:8. [PMID: 38166703 PMCID: PMC10762986 DOI: 10.1186/s12885-023-11741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
48
|
Zhang Y, Ling Y, Zhou Y, Shi X, Shen F, Zhou J, Chen Y, Yang F, Gu Y, Wang J. Research Advances in the Roles of N6-Methyladenosine Modification in Ovarian Cancer. Cancer Control 2024; 31:10732748241256819. [PMID: 38755968 PMCID: PMC11102699 DOI: 10.1177/10732748241256819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological tumor, characterized by its insidious and frequently recurring metastatic progression. Owing to limited early screening methods, over 70% of OC cases are diagnosed at advanced stages, typically stage III or IV. Recently, N6-methyladenosine (m6A) modification has emerged as a hotspot of epigenetic research, representing a significant endogenous RNA modification in higher eukaryotes. Numerous studies have reported that m6A-related regulatory factors play pivotal roles in tumor development through diverse mechanisms. Moreover, recent studies have indicated the aberrant expression of multiple regulatory factors in OC. Therefore, this paper comprehensively reviews research advancements concerning m6A in OC, aiming to elucidate the regulatory mechanism of m6A-associated regulators on pivotal aspects, such as proliferation, invasion, metastasis, and drug resistance, in OC. Furthermore, it discusses the potential of m6A-associated regulators as early diagnostic markers and therapeutic targets, thus contributing to the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Ling
- Affiliated Hospital of Medical School, Nanjing University, Nanjing Stomatological Hospital, Nanjing, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, West China Second Hospital, University of Sichuan, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, University of Sichuan, Chengdu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Bhattarai PY, Kim G, Bhandari D, Shrestha P, Choi HS. Regulation of m 6A Methylome in Cancer: Mechanisms, Implications, and Therapeutic Strategies. Cells 2023; 13:66. [PMID: 38201270 PMCID: PMC10778393 DOI: 10.3390/cells13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Reversible N6-adenosine methylation of mRNA, referred to as m6A modification, has emerged as an important regulator of post-transcriptional RNA processing. Numerous studies have highlighted its crucial role in the pathogenesis of diverse diseases, particularly cancer. Post-translational modifications of m6A-related proteins play a fundamental role in regulating the m6A methylome, thereby influencing the fate of m6A-methylated RNA. A comprehensive understanding of the mechanisms that regulate m6A-related proteins and the factors contributing to the specificity of m6A deposition has the potential to unveil novel therapeutic strategies for cancer treatment. This review provides an in-depth overview of our current knowledge of post-translational modifications of m6A-related proteins, associated signaling pathways, and the mechanisms that drive the specificity of m6A modifications. Additionally, we explored the role of m6A-dependent mechanisms in the progression of various human cancers. Together, this review summarizes the mechanisms underlying the regulation of the m6A methylome to provide insight into its potential as a novel therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea; (P.Y.B.); (G.K.); (D.B.); (P.S.)
| |
Collapse
|
50
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Etheve-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556513. [PMID: 37732228 PMCID: PMC10508762 DOI: 10.1101/2023.09.06.556513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
|