1
|
Andreolla AP, Koishi AC, Borges AA, de Oliveira LA, de Oliveira VG, Lima NM, Ávila EP, de Castro PP, Amarante GW, de Almeida MV, Bordignon J, Duarte dos Santos CN. Identification and Characterization of Antiviral Activity of Synthetic Compounds Against Mayaro Virus. Pharmaceuticals (Basel) 2025; 18:717. [PMID: 40430536 PMCID: PMC12115251 DOI: 10.3390/ph18050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background/objectives: In Brazil, the co-circulation of arboviruses-such as dengue, Zika, yellow fever, and Chikungunya viruses-creates a complex epidemiological landscape, drawing attention from health authorities due to high morbidity and mortality rates. Also present in this context is the Mayaro virus (MAYV), a neglected arbovirus, which can also cause severe syndromes and has been expanding beyond its usual endemic areas in northern and central-western Brazil. Epidemiological surveillance measures remain limited, and there are no effective prophylactic strategies or antiviral treatments for this neglected arbovirus. In this study, we evaluated the antiviral activity of commercial and synthetic compounds against MAYV using an image high-throughput screening (iHTS) system. Methods: A total of 52 compounds from an FDA-approved commercial library (Tocriscreen) and 50 other compounds were tested. Results: Seven compounds showed anti-MAYV activity and were non-toxic for the following cell lines: Naringenin, LLA9A, chrysin, and its ester C6. Post-infection treatments with these selected compounds significantly decreased the percentage of infected cells and the release of infectious viral particles in the supernatant. Additionally, anti-MAYV activity of these four selected hits was confirmed using several human cell lines and two different MAYV genotypes. Conclusions: Our results indicate that the iHTS platform is effective for screening anti-MAYV drugs and that four promising compounds can efficiently inhibit MAYV replication in human cell lines. Although in vivo studies are still required to confirm the efficacy of the selected hits, our findings provide a starting point for developing a potential treatment for MAYV infections.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Cidade Industrial de Curitiba, Curitiba 81350-010, Paraná, Brazil; (A.P.A.); (A.C.K.)
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Cidade Industrial de Curitiba, Curitiba 81350-010, Paraná, Brazil; (A.P.A.); (A.C.K.)
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Instituto de Ciências Biológicas e da Saúde (ICBS), Universidade Federal de Alagoas (UFAL), Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió 57072-900, Alagoas, Brazil;
| | - Larissa Albuquerque de Oliveira
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Viviane Guedes de Oliveira
- Instituto de Educação, Agricultura e Ambiente, IEAA, Universidade Federal do Amazonas, Rua 29 de agosto, Centro, Humaitá 69800–000, Amazonas, Brazil;
| | - Nerilson Marques Lima
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Eloah Pereira Ávila
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Pedro Pôssa de Castro
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Giovanni Wilson Amarante
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Mauro Vieira de Almeida
- Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer s/n, Martelos, Juiz de Fora 36036-900, Minas Gerais, Brazil; (L.A.d.O.); (N.M.L.); (E.P.Á.); (P.P.d.C.); (G.W.A.); (M.V.d.A.)
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Cidade Industrial de Curitiba, Curitiba 81350-010, Paraná, Brazil; (A.P.A.); (A.C.K.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Cidade Industrial de Curitiba, Curitiba 81350-010, Paraná, Brazil; (A.P.A.); (A.C.K.)
| |
Collapse
|
2
|
Yu M, Liu H, Wang Y, Zhou S, Ding X, Xia Z, An M, Wu Y. Synthesis, Anti-TMV Activities, and Action Mechanisms of a Novel Cytidine Peptide Compound. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20783-20793. [PMID: 39267339 DOI: 10.1021/acs.jafc.4c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Cytidine has a broad range of applications in the pharmaceutical field as an intermediate of antitumor or antiviral agent. Here, a series of new cytidine peptide compounds were synthesized using cytidine and Boc group-protected amino acids and analyzed for their antiviral activities against tobacco mosaic virus (TMV). Among these compounds, the structure of an effective antiviral cytidine peptide SN11 was characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometer. The compound SN11 has a molecular formula of C15H22N6O8 and is named 2-amino-N-(2- ((1- (3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl) -2-oxo-1,2-dihydropyrimidin-4-yl) amino) -2-oxyethyl) amino). The protection, inactivation, and curation activities of SN11 at a concentration of 500 μg/mL against TMV in Nicotiana glutinosa were 82.6%, 84.2%, and 72.8%, respectively. SN11 also effectively suppressed the systemic transportation of a recombinant TMV carrying GFP reporter gene (p35S-30B:GFP) in Nicotiana benthamiana by reducing viral accumulation to 71.3% in the upper uninoculated leaves and inhibited the systemic infection of TMV in Nicotiana tabacum plants. Furthermore, the results of RNA-seq showed that compound SN11 induced differential expression of genes involved in the biogenesis and function of ribosome, plant hormone signal transduction, plant pathogen interaction, and chromatin. These results validate the antiviral mechanisms of the cytidine peptide compound and provide a theoretical basis for their potential application in the management of plant virus diseases.
Collapse
Affiliation(s)
- Miao Yu
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - He Liu
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
- Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, Guizhou, China
| | - Yan Wang
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - Shidong Zhou
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - Xiaojie Ding
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, Liaoning, China
| |
Collapse
|
3
|
Duarte Filho LAMDS, Yanaguibashi Leal CE, Bodet PE, Beserra de Alencar Filho E, Almeida JRGDS, Porta Zapata M, Achour O, Groult H, Gouveia Veloso CA, Viegas Júnior C, Bourgougnon N, Picot L. The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy. Mar Drugs 2024; 22:244. [PMID: 38921555 PMCID: PMC11205194 DOI: 10.3390/md22060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme's proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease's active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices.
Collapse
Affiliation(s)
| | - Cintia Emi Yanaguibashi Leal
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Picardie Jules Verne, 80039 Amiens, France;
| | - Pierre-Edouard Bodet
- Plateforme D’analyse Haute Résolution des Biomolécules, UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | | | | | - Manon Porta Zapata
- Littoral Environnement et Societés (LIENSs), UMRi CNRS 7266, La Rochelle Université, 17042 La Rochelle, France; (L.A.M.d.S.D.F.); (M.P.Z.); (O.A.); (H.G.)
| | - Oussama Achour
- Littoral Environnement et Societés (LIENSs), UMRi CNRS 7266, La Rochelle Université, 17042 La Rochelle, France; (L.A.M.d.S.D.F.); (M.P.Z.); (O.A.); (H.G.)
| | - Hugo Groult
- Littoral Environnement et Societés (LIENSs), UMRi CNRS 7266, La Rochelle Université, 17042 La Rochelle, France; (L.A.M.d.S.D.F.); (M.P.Z.); (O.A.); (H.G.)
| | - Carlos Arthur Gouveia Veloso
- Littoral Environnement et Societés (LIENSs), UMRi CNRS 7266, La Rochelle Université, 17042 La Rochelle, France; (L.A.M.d.S.D.F.); (M.P.Z.); (O.A.); (H.G.)
| | - Claudio Viegas Júnior
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil;
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, LBCM, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56000 Vannes, France;
| | - Laurent Picot
- Littoral Environnement et Societés (LIENSs), UMRi CNRS 7266, La Rochelle Université, 17042 La Rochelle, France; (L.A.M.d.S.D.F.); (M.P.Z.); (O.A.); (H.G.)
| |
Collapse
|
4
|
Simonyan H, Palumbo R, Petrosyan S, Mkrtchyan A, Galstyan A, Saghyan A, Scognamiglio PL, Vicidomini C, Fik-Jaskólka M, Roviello GN. BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study. Biomolecules 2024; 14:579. [PMID: 38785986 PMCID: PMC11118884 DOI: 10.3390/biom14050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior.
Collapse
Affiliation(s)
- Hayarpi Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Satenik Petrosyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Anna Mkrtchyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Armen Galstyan
- Department of Chemistry, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | | | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marta Fik-Jaskólka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Kavaliauskas P, Grybaitė B, Sapijanskaitė-Banevič B, Vaickelionienė R, Petraitis V, Petraitienė R, Naing E, Garcia A, Grigalevičiūtė R, Mickevičius V. Synthesis of 3-((4-Hydroxyphenyl)amino)propanoic Acid Derivatives as Promising Scaffolds for the Development of Antimicrobial Candidates Targeting Multidrug-Resistant Bacterial and Fungal Pathogens. Antibiotics (Basel) 2024; 13:193. [PMID: 38391579 PMCID: PMC10886201 DOI: 10.3390/antibiotics13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 2-37 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 14-16, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5-2 µg/mL), Gram-negative pathogens (MIC 8-64 µg/mL), and drug-resistant Candida species (MIC 8-64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| | - Vidmantas Petraitis
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Rūta Petraitienė
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Street 38A, LT-59116 Prienai, Lithuania
| | - Ethan Naing
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Andrew Garcia
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
6
|
Hans N, Solanki D, Nagpal T, Amir H, Naik S, Malik A. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119497. [PMID: 37951112 DOI: 10.1016/j.jenvman.2023.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
The growing demand for macroalgal biomass as a source of proteins, peptides, and amino acids is garnering attention for their biological and functional properties. This study depicts the use of emerging green techniques, i.e. subcritical water, to hydrolyze protein from Padina tetrastromatica. The biomass was treated with subcritical water at varying temperatures between 100 and 220 °C for 10-40 min at a biomass to water proportion of 1:50 (w/v) and pressure of 4.0 MPa. The optimum conditions for recovering the maximum protein (127.2 ± 1.1 mg g-1), free amino acids (58.4 ± 1.0 mg g-1), highest degree of hydrolysis (58.8 ± 1.2 %) and low molecular weight peptides (<650 Da) were found to be 220 °C for 10 min. The amino acid profiling of the hydrolysate revealed that it contains 45 % essential amino acids, with the highest concentration of methionine (0.18 %), isoleucine (0.12 %) and leucine (0.10 %). It was found that the hydrolysate contains phenolics (23.9 ± 1.4 mg GAE g-1) and flavonoids (1.23 ± 0.1 mg QE g-1), which are largely responsible for antioxidant activity. The hydrolysate effectively inhibits acetylcholinesterase and α-amylase in vitro, with IC50 values of 17.9 ± 0.1 mg mL-1 and 16.0 ± 0.5 %, respectively, which can help prevent Alzheimer's disease and diabetes mellitus. Consequently, this study reveals that utilizing eco-friendly subcritical water hydrolysis method, 79 % of the protein was recovered from P. tetrastromatica, which might be an effective source of bioactive peptides in various nutraceutical, pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Divyang Solanki
- School of Agriculture and Food Science, The University of Queensland, Brisbane, 4072, Australia.
| | - Tanya Nagpal
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Hirah Amir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Ashfaq F, Barkat MA, Ahmad T, Hassan MZ, Ahmad R, Barkat H, Idreesh Khan M, Saad Alhodieb F, Asiri YI, Siddiqui S. Phytocompound screening, antioxidant activity and molecular docking studies of pomegranate seed: a preventive approach for SARS-CoV-2 pathogenesis. Sci Rep 2023; 13:17069. [PMID: 37816760 PMCID: PMC10564957 DOI: 10.1038/s41598-023-43573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
A global hazard to public health has been generated by the coronavirus infection 2019 (COVID-19), which is spreading quickly. Pomegranate is a strong source of antioxidants and has demonstrated a number of pharmacological characteristics. This work was aimed to analyze the phytochemicals present in ethanolic pomegranate seed extract (PSE) and their in vitro antioxidant potential and further in-silico evaluation for antiviral potential against crystal structure of two nucleocapsid proteins i.e., N-terminal RNA binding domain (NRBD) and C-terminal Domain (CTD) of SARS-CoV-2. The bioactive components from ethanolic extract of PSE were assessed by gas chromatography-mass spectroscopy (GC-MS). Free radical scavenging activity of PSE was determined using DPPH dye. Molecular docking was executed through the Glide module of Maestro software. Lipinski's 5 rule was applied for drug-likeness characteristics using cheminformatics Molinspiration software while OSIRIS Data Warrior V5.5.0 was used to predict possible toxicological characteristics of components. Thirty-two phytocomponents was detected in PSE by GC-MS technique. Free radical scavenging assay revealed the high antioxidant capacity of PSE. Docking analysis showed that twenty phytocomponents from PSE exhibited good binding affinity (Docking score ≥ - 1.0 kcal/mol) towards NRBD and CTD nucleocapsid protein. This result increases the possibility that the top 20 hits could prevent the spread of SARS-CoV-2 by concentrating on both nucleocapsid proteins. Moreover, molecular dynamics (MD) simulation using GROMACS was used to check their binding efficacy and internal dynamics of top complexes with the lowest docking scores. The metrics root mean square deviation (RMSD), root mean square fluctuation (RMSF), intermolecular hydrogen bonding (H-bonds) and radius of gyration (Rg) revealed that the lead phytochemicals form an energetically stable complex with the target protein. Majority of the phytoconstituents exhibited drug-likeness with non-tumorigenic properties. Thus, the PSE phytoconstituents could be useful source of drug or nutraceutical development in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia.
| | - Tanvir Ahmad
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Harshita Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India.
| |
Collapse
|
8
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Lungu CN, Mangalagiu I. Editorial for Special Issue-''Research Progress and Applications of Natural Products". Molecules 2023; 28:5449. [PMID: 37513320 PMCID: PMC10385373 DOI: 10.3390/molecules28145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This Special Issue (S [...].
Collapse
Affiliation(s)
- Claudiu N Lungu
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, Dunarea de Jos, 800017 Galati, Romania
| | - Ionel Mangalagiu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd., 700506 Iasi, Romania
| |
Collapse
|
10
|
Ershov PV, Yablokov EO, Mezentsev YV, Chuev GN, Fedotova MV, Kruchinin SE, Ivanov AS. SARS-COV-2 Coronavirus Papain-like Protease PLpro as an Antiviral Target for Inhibitors of Active Site and Protein-Protein Interactions. Biophysics (Nagoya-shi) 2023; 67:902-912. [PMID: 36883182 PMCID: PMC9984130 DOI: 10.1134/s0006350922060082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 03/06/2023] Open
Abstract
The papain-like protease PLpro of the SARS-CoV-2 coronavirus is a multifunctional enzyme that catalyzes the proteolytic processing of two viral polyproteins, pp1a and pp1ab. PLpro also cleaves peptide bonds between host cell proteins and ubiquitin (or ubiquitin-like proteins), which is associated with a violation of immune processes. Nine structures of the most effective inhibitors of the PLpro active center were prioritized according to the parameters of biochemical (IC 50) and cellular tests to assess the suppression of viral replication (EC 50) and cytotoxicity (CC 50). A literature search has shown that PLpro can interact with at least 60 potential protein partners in cells, 23 of which are targets for other viral proteins (human papillomavirus and Epstein-Barr virus). The analysis of protein-protein interactions showed that the proteins USP3, UBE2J1, RCHY1, and FAF2 involved in deubiquitinylation and ubiquitinylation processes contain the largest number of bonds with other proteins; the interaction of viral proteins with them can affect the architecture of the entire network of protein-protein interactions. Using the example of a spatial model of the PLpro/ubiquitin complex and a set of 154 naturally occurring compounds with known antiviral activity, 13 compounds (molecular masses in the range of 454-954 Da) were predicted as potential PLpro inhibitors. These compounds bind to the "hot" amino acid residues of the protease at the positions Gly163, Asp164, Arg166, Glu167, and Tyr264 involved in the interaction with ubiquitin. Thus, pharmacological effects on peripheral PLpro sites, which play important roles in binding protein substrates, may be an additional target-oriented antiviral strategy.
Collapse
Affiliation(s)
- P. V. Ershov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - E. O. Yablokov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | - G. N. Chuev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - M. V. Fedotova
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - S. E. Kruchinin
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - A. S. Ivanov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
11
|
In Silico and In Vitro Inhibition of SARS-CoV-2 PL pro with Gramicidin D. Int J Mol Sci 2023; 24:ijms24031955. [PMID: 36768280 PMCID: PMC9915632 DOI: 10.3390/ijms24031955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.
Collapse
|
12
|
van Dongen S, Ahlal I, Leeman M, Kaptein B, Kellogg RM, Baglai I, Noorduin WL. Chiral Amplification through the Interplay of Racemizing Conditions and Asymmetric Crystal Growth. J Am Chem Soc 2022; 145:436-442. [PMID: 36534614 PMCID: PMC9837840 DOI: 10.1021/jacs.2c10584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amplification of enantiomeric excesses (ee) is routinely observed during chiral crystallization of conglomerate crystals for which the enantiomers undergo racemization in solution. Although routes comprising a combination of crystal growth and dissolution are frequently used to obtain enantiopure molecules, crystal growth by itself has rather been considered as a source of enantiomeric erosion and discounted as a potential source of enantiomeric amplification. Counterintuitively, we here demonstrate striking enantiomeric amplification during crystal growth for clopidogrel and tert-leucine precursors. Based on a mechanistic framework, we identify that the interplay between racemization and crystal growth rates elicits this surprising effect. The asymmetric amplification of the solid-phase ee can be enhanced by increasing the mass of grown material relative to the product such that small amounts of seeds of only 60% ee already result in virtually exclusive growth of the majority phase. These results impact our understanding of asymmetric amplification mechanisms during crystallization and offer a tangible basis for practical production of enantiopure molecules.
Collapse
Affiliation(s)
| | - Imane Ahlal
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Michel Leeman
- Symeres, Kadijk 3, 9747 ATGroningen, The Netherlands
| | | | | | - Iaroslav Baglai
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands,
| | - Willem L. Noorduin
- AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands,Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands,
| |
Collapse
|
13
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
14
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
15
|
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022; 932:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert G Gourdie
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022; 27:molecules27144584. [PMID: 35889455 PMCID: PMC9317528 DOI: 10.3390/molecules27144584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of antimicrobial-resistant infections is still a major concern for public health worldwide. The number of pathogenic microorganisms capable of resisting common therapeutic treatments are constantly increasing, highlighting the need of innovative and more effective drugs. This phenomenon is strictly connected to the rapid metabolism of microorganisms: due to the huge number of mutations that can occur in a relatively short time, a colony can “adapt” to the pharmacological treatment with the evolution of new resistant species. However, the shortage of available antimicrobial drugs in clinical use is also caused by the high costs involved in developing and marketing new drugs without an adequate guarantee of an economic return; therefore, the pharmaceutical companies have reduced their investments in this area. The use of antimicrobial peptides (AMPs) represents a promising strategy for the design of new therapeutic agents. AMPs act as immune defense mediators of the host organism and show a poor ability to induce antimicrobial resistance, coupled with other advantages such as a broad spectrum of activity, not excessive synthetic costs and low toxicity of both the peptide itself and its own metabolites. It is also important to underline that many antimicrobial peptides, due to their inclination to attack cell membranes, have additional biological activities, such as, for example, as anti-cancer drugs. Unfortunately, they usually undergo rapid degradation by proteolytic enzymes and are characterized by poor bioavailability, preventing their extensive clinical use and landing on the pharmaceutical market. This review is focused on the strength and weak points of antimicrobial peptides as therapeutic agents. We give an overview on the AMPs already employed in clinical practice, which are examples of successful strategies aimed at overcoming the main drawbacks of peptide-based drugs. The review deepens the most promising strategies to design modified antimicrobial peptides with higher proteolytic stability with the purpose of giving a comprehensive summary of the commonly employed approaches to evaluate and optimize the peptide potentialities.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
17
|
Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallogr D Struct Biol 2022; 78:363-378. [PMID: 35234150 PMCID: PMC8900819 DOI: 10.1107/s2059798322000948] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.
Collapse
Affiliation(s)
- Emanuele Fornasier
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Maria Ludovica Macchia
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Gabriele Giachin
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Alice Sosic
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Matteo Pavan
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Mattia Sturlese
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Cristiano Salata
- University of PaduaDepartment of Molecular MedicineVia Gabelli 63Padova35121Italy
| | - Stefano Moro
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Barbara Gatto
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Massimo Bellanda
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| | - Roberto Battistutta
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| |
Collapse
|
18
|
Stagi L, De Forni D, Innocenzi P. Blocking viral infections by Lysine-based polymeric nanostructures. A critical review. Biomater Sci 2022; 10:1904-1919. [DOI: 10.1039/d2bm00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The outbreak of the Covid-19 pandemic due to the SARS-CoV-2 coronavirus has accelerated the search for innovative antivirals with possibly broad-spectrum efficacy. One of the possible strategies is to inhibit...
Collapse
|
19
|
Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals (Basel) 2021; 14:ph14111125. [PMID: 34832907 PMCID: PMC8625736 DOI: 10.3390/ph14111125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause many severe human diseases, being responsible for remarkably high mortality rates. In this sense, both the academy and the pharmaceutical industry are continuously searching for new compounds with antiviral activity, and in addition, face the challenge of developing greener and more efficient methods to synthesize these compounds. This becomes even more important with drugs possessing stereogenic centers as highly enantioselective processes are required. In this minireview, the advances achieved to improve synthetic routes efficiency and sustainability of important commercially antiviral chiral drugs are discussed, highlighting the use of organocatalytic methods.
Collapse
|