1
|
Huang T, Liang C, Li J, Ling X. Study on dissociated states of twenty proteinogenic amino acids and their interactions with LAT1 by HPCE-IICRD. J Chromatogr A 2025; 1755:466031. [PMID: 40403647 DOI: 10.1016/j.chroma.2025.466031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025]
Abstract
High performance capillary electrophoresis (HPCE) has been widely applied in the analysis of amino acids (AAs), but no studies on the HPCE analysis of dissociated states of AAs have been reported. Here, twenty proteingenic AAs were analyzed by the newly-developed universal interface-induced current detector (IICRD). Two or three current signal peaks were observed in current electrophoretograms (CR-EGs), while only one peak with low sensitivity can be obtained by DAD. The current signal peaks of AAs were accurately identified by adding charge-neutral marker, comparing current signal peaks at different pH conditions, also calculating by pKa. The qualitative analysis indicated that the three current signal peaks of basic AAs were monovalent cations ([AA+]), charge-neutral forms ([AA±]), and monovalent anions ([AA-]) in order. Similarly, acidic AAs can be detected in three forms as [AA±], [AA-] and [AA2-], while neutral AAs can be detected as [AA±] and [AA-]. Quantitative analysis showed that HPCE-IICRD can enhance the sensitivity of AAs to 40 μmol/L in LOD, with a linear range from 10-6 mol/L to 10-2 mol/L. Furthermore, interactions between different dissociated states of twenty AAs and l-type amino acid transporter (LAT1) were studied by combined application of NICCE method for the first time. The binding kinetic parameters and mole number of LAT1 on cell membranes can also be obtained. Besides, competitive binding experiments proved that JPH203 (LAT1-specific inhibitor) and leucine shared the same binding site. HPCE-IICRD provides a new method to reveal the interaction between different dissociated forms of AAs or other biomolecules and essential receptors.
Collapse
Affiliation(s)
- Tao Huang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Chunsu Liang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jilun Li
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiaomei Ling
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
2
|
He B, Karroum NB, Gealageas R, Mauvais FX, Warenghem S, Roignant M, Kraupner N, Lam BV, Azaroual N, Ultré V, Rech A, Lesire L, Couturier C, Leroux F, van Endert P, Deprez B, Deprez-Poulain R. Discovery of New Nanomolar Selective IRAP Inhibitors. J Med Chem 2025; 68:4168-4195. [PMID: 39916550 PMCID: PMC11874008 DOI: 10.1021/acs.jmedchem.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Among the M1 family of oxytocinase aminopeptidases, insulin-regulated aminopeptidase IRAP, is an emerging drug target implicated in various biological pathways and particularly in MHC-I antigen presentation through amino-terminal trimming of exogenous cross-presented peptides. A few series of inhibitors inspired either by angiotensin IV, one of IRAP substrates, or by bestatin a pan aminopeptidase inhibitor, have been disclosed. However, the variety and number of chemotypes remains relatively limited. Here we disclose the design and optimization of a series of hydroxamic acids IRAP inhibitors bearing a 5-substituted indole. Docking studies of the best compound 43 (BDM_92499), a single-digit nanomolar and selective inhibitor of IRAP, suggest an original binding mode and highlight the substituent on the indole and a primary amide as groups driving selectivity. Several inhibitors in the series displayed IRAP-dependent inhibition of antigen cross-presentation. These results pave the way to the development of novel therapeutic agents targeting IRAP.
Collapse
Affiliation(s)
- Ben He
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nour Bou Karroum
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - François-Xavier Mauvais
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
de Physiologie—Explorations Fonctionnelles, AP-HP, Hôpital
Robert-Debré, Paris F-75019, France
| | - Sandrine Warenghem
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Matthieu Roignant
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nicolas Kraupner
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Bao Vy Lam
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Nathalie Azaroual
- University
Lille, CHU Lille, ULR 7365—GRITA—Groupe de Recherche
Sur Les Formes Injectables Et Les Technologies Associées, Lille F-59000, France
| | - Vincent Ultré
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Alexandre Rech
- University
Lille, Plateau RMN Pharmacie, UFR3S-Pharmacie, Lille F-59000, France
| | - Laetitia Lesire
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Cyril Couturier
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Peter van Endert
- Institut
Necker Enfants Malades, Université
Paris Cité, INSERM, CNRS, Paris F-75015, France
- Service
Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants
Malades, Paris F-75015, France
| | - Benoit Deprez
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| | - Rebecca Deprez-Poulain
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
- European
Genomic Institute for Diabetes, EGID, University
of Lille, Lille F-59000, France
| |
Collapse
|
3
|
Ma J, Ma N, Liu J, Zhu Q, Tang Y, Wang L, Yan Y, Yue T, Shao M, Zhang W. One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation. ACS Biomater Sci Eng 2025; 11:249-258. [PMID: 39603821 DOI: 10.1021/acsbiomaterials.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Basic amino acid alternating copolymers exhibit exceptional antimicrobial properties and biosafety, yet their application is restricted by the complexity of the synthesis process and low molecular weight (Mn = 1000). In this study, we synthesized a basic amino acid alternating copolymer (Orn-Val) in only one step by the Ugi four-component condensation (Ugi'4CC), achieving high molecular weight (Mn = 20,000) and narrow polydispersity (PDI ≤ 1.10). Furthermore, we observed that factors such as the feed ratio, reaction solvent, and pH significantly influenced the molecular weight and polydispersity of MPE-Orn-Val-Cbz. Moreover, the structure of potassium isocyanate also significantly affected the molecular weight and polydispersity of the products. And it was also demonstrated that the obtained Orn-Val demonstrated excellent antimicrobial properties and biocompatibility. Therefore, this method effectively addresses the limitations associated with the complex synthesis process and low molecular weight of amino acid alternating copolymers.
Collapse
Affiliation(s)
- Junhui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Yue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyu Shao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Hossen MS, Islam MSU, Yasin M, Ibrahim M, Das A. A Review on the Role of Human Solute Carriers Transporters in Cancer. Health Sci Rep 2025; 8:e70343. [PMID: 39807482 PMCID: PMC11725534 DOI: 10.1002/hsr2.70343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Aim The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer. Methods We retrieved data from Google Scholar, Web of Science, PubMed, Cochrane Library, and EMBASE regarding the influence of human SLCs on the development of cancer. Articles published in English before August 2024 were included in the study. Results The overexpression of SLCs is strongly related to tumor cell proliferation and angiogenesis in a number of cancer types including thyroid, pancreatic, lung, hepatocellular, and colon cancers. They are crucial for the stimulation of several biological signaling pathways, particularly mTOR kinase activity, which starts a signaling cascade, protein synthesis, cell growth, and proliferation, and inhibits apoptosis of cancerous cells. Furthermore, they contribute to the activation of PI3K/AKT signaling, which has an impact on the growth, invasion, and death of cancer cells. Thus, SLC transporters become a potential therapeutic target that plays a crucial role in drug resistance, tumor microenvironment regulation, and modulation of immune response. Conclusion The review recognized the crucial role of SLC transporters in different types of cancer progression. Therefore, to confirm our findings, a case-control study is required to investigate the role of amino acid transporters in cancer development.
Collapse
Affiliation(s)
- Md. Shafiul Hossen
- Department of PharmacyState University of BangladeshDhakaBangladesh
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| | | | - Mohammad Yasin
- Department of PharmacySouthern University BangladeshChittagongBangladesh
| | - Mohammed Ibrahim
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Abhijit Das
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| |
Collapse
|
5
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
6
|
Cheng X, Wang Y, Gong G, Shen P, Li Z, Bian J. Design strategies and recent development of bioactive modulators for glutamine transporters. Drug Discov Today 2024; 29:103880. [PMID: 38216118 DOI: 10.1016/j.drudis.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Glutamine transporters are integral to the metabolism of glutamine in both healthy tissues and cancerous cells, playing a pivotal role in maintaining amino acid balance, synthesizing biomolecules, and regulating redox equilibrium. Their critical functions in cellular metabolism make them promising targets for oncological therapies. Recent years have witnessed substantial progress in the field of glutamine transporters, marked by breakthroughs in understanding of their protein structures and the discovery of novel inhibitors, prodrugs, and radiotracers. This review provides a comprehensive update on the latest advancements in modulators targeting the glutamine transporter, with special attention given to LAT1 and ASCT2. It also discusses innovative approaches in drug design aimed at these transporters.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yezhi Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyue Gong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinlei Bian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
8
|
Hutchinson K, Silva DB, Bohlke J, Clausen C, Thomas AA, Bonomi M, Schlessinger A. Describing inhibitor specificity for the amino acid transporter LAT1 from metainference simulations. Biophys J 2022; 121:4476-4491. [PMID: 36369754 PMCID: PMC9748366 DOI: 10.1016/j.bpj.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The human L-type amino acid transporter 1 (LAT1; SLC7A5) is a membrane transporter of amino acids, thyroid hormones, and drugs such as the Parkinson's disease drug levodopa (L-Dopa). LAT1 is found in the blood-brain barrier, testis, bone marrow, and placenta, and its dysregulation has been associated with various neurological diseases, such as autism and epilepsy, as well as cancer. In this study, we combine metainference molecular dynamics simulations, molecular docking, and experimental testing, to characterize LAT1-inhibitor interactions. We first conducted a series of molecular docking experiments to identify the most relevant interactions between LAT1's substrate-binding site and ligands, including both inhibitors and substrates. We then performed metainference molecular dynamics simulations using cryoelectron microscopy structures in different conformations of LAT1 with the electron density map as a spatial restraint, to explore the inherent heterogeneity in the structures. We analyzed the LAT1 substrate-binding site to map important LAT1-ligand interactions as well as newly described druggable pockets. Finally, this analysis guided the discovery of previously unknown LAT1 ligands using virtual screening and cellular uptake experiments. Our results improve our understanding of LAT1-inhibitor recognition, providing a framework for rational design of future lead compounds targeting this key drug target.
Collapse
Affiliation(s)
- Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, California
| | - Joshua Bohlke
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Chase Clausen
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska
| | - Massimiliano Bonomi
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
9
|
Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Glutamine transporters transport different amino acids for cell growth and metabolism. In tumor cells, glutamine transporters are often highly expressed and play a crucial role in their growth. By inhibiting the amino acid transport of these transporters, the growth of cancer cells can be inhibited. In recent years, more and more attention has been paid to the study of glutamine transporter. In this article, the differences between the ASC system amino acid transporter 2 (ASCT2), L-type amino acid transporter 1 (LAT1), and the cystine–glutamate exchange (xCT) transporters research progress on the mechanism of action and corresponding small molecule inhibitors are summarized. This article introduces 62 related small molecule inhibitors of different transporters of ASCT2, LAT1, and xCT. These novel chemical structures provide ideas for the research and design of targeted inhibitors of glutamine transporters, as well as important references and clues for the design of new anti-tumor drugs.
Collapse
Affiliation(s)
- Jiye Zhao
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Jiayi Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Yang Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Qile Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| | - Hao Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| |
Collapse
|