1
|
Wang J, Wang Y, Zhu J, Wang L, Huang Y, Zhang H, Wang X, Li X. Promoter hypermethylation-induced downregulation of ITGA7 promotes colorectal cancer proliferation and migration by activating the PI3K/AKT/NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119785. [PMID: 38885843 DOI: 10.1016/j.bbamcr.2024.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
We previously reported that integrin alpha 7 (ITGA7) was downregulated in colorectal cancer (CRC) tissues and CRC cell lines and that the lower expression of ITGA7 in CRC tissues was correlated with distant metastasis, suggesting that ITGA7 may function as a suppressor in CRC. The present research was conducted to further investigate the role and mechanisms of ITGA7 in CRC progression. First, bisulfite modification and genomic sequencing (BSP) results showed that the methylation rate of ITGA7 promoter was higher in 10 CRC tissues than in the matched normal tissues. Additionally, 5-Aza-CdR treatment increased ITGA7 expression in CRC cells. Gain-of-function assays revealed the inhibitory role of ITGA7 in CRC cell proliferation and migration. Mechanistically, RNA sequencing, RT-qPCR, and cytoplasm and nuclear separation and rescue assays indicated that knockdown of ITGA7 activated the transcription of MMP9, SETD7, and ADAM15 by enhancing the nuclear translocation of NF-κB. Moreover, CoIP and Western blot suggested a mechanistic model in which ITGA7 binds to CKAP4 to block the interaction of CKAP4 and PI3K p85α and thereby suppress the PI3K/AKT/NF-κB pathway. Accordingly, the current study suggests that ITGA7 functions as a suppressor in CRC progression and that its expression is controlled by promoter methylation.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Histology and Embryology, Wannan Medical College, Wuhu, China
| | - Yu Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Jijun Zhu
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Lili Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Yanlin Huang
- School of Medical Imaging, Wannan Medical College, Wuhu, China
| | - Huiru Zhang
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| | - Xiaomin Li
- Department of Gastroenterology, Clinical Medical Research Center, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China; Laboratory of Clinical and Experimental Pathology, National Demonstration Center for Experimental Basic Medical Science Education, Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Nasra S, Shukla H, Patel M, Kumar A. Bortezomib-loaded immunoliposomes against CD44 expressing macrophages: an interplay for inflammation resolution. NANOSCALE 2024; 16:5280-5293. [PMID: 38369899 DOI: 10.1039/d4nr00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Macrophage-driven inflammation is the central player in a range of pathological conditions, comprising autoimmune disorders, various cancers, as well as chronic inflammatory states like rheumatoid arthritis. Therapeutic strategies tailored to specifically target macrophage behavior have acquired substantial interest for their potential to alleviate chronic inflammation effectively. In this study, we introduce a pioneering therapeutic approach utilizing specialized CD44-targeted immunoliposomes carrying bortezomib to address inflammation at the cellular level and the significance of this strategy lies in its precision nature. Bortezomib's inhibition of the proteasome interferes with the finely-tuned mechanism that controls NFκB activation, ultimately leading to a downregulation of the inflammatory response. After performing computational docking demonstrating its strong binding affinity to the proteasome molecule, the resulting nano-construct displayed a hydrodynamic size of 144.26 ± 74.4 nm and a quasi-spherical morphology. Moreover, the nano-construct ensured a minimum shelf-life of 30 days, aiming for targeted delivery with practical longevity. Upon internalization of immunoliposomes, the interaction with CD44 receptors exhibited downstream signaling events. This included the activation of Jun amino-terminal kinases 1/2 (JNK1/2) and the extracellular-signal-regulated kinases (ERK) pathway. JNK1/2 activation may lead to the release of mitochondrial pro-apoptotic factors, triggering the intrinsic apoptotic pathway and activation of caspases, which was confirmed from the level of apoptotic gene and protein expression. The precise targeting and anti-inflammatory action of this therapy against macrophages hold promise for therapeutic interventions in a wide range of inflammatory conditions, offering a novel avenue for precision medicine in the battle against excessive inflammation.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
3
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Rojas-Zambrano PM, Meyer-Herrera JE, Ruiz-Aparicio PF, Vernot JP. Simultaneously Targeting Two Coupled Signalling Molecules in the Mesenchymal Stem Cell Support Efficiently Sensitises the Multiple Myeloma Cell Line H929 to Bortezomib. Int J Mol Sci 2023; 24:ijms24098157. [PMID: 37175864 PMCID: PMC10178910 DOI: 10.3390/ijms24098157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Several studies have shown that diverse components of the bone marrow (BM) microenvironment play a central role in the progression, pathophysiology, and drug resistance in multiple myeloma (MM). In particular, the dynamic interaction between BM mesenchymal stem cells (BM-MSC) and MM cells has shown great relevance. Here we showed that inhibiting both PKC and NF-κB signalling pathways in BM-MSC reduced cell survival in the MM cell line H929 and increased its susceptibility to the proteasome inhibitor bortezomib. PKC-mediated cell survival inhibition and bortezomib susceptibility induction were better performed by the chimeric peptide HKPS than by the classical enzastaurin inhibitor, probably due to its greatest ability to inhibit cell adhesion and its increased capability to counteract the NF-κB-related signalling molecules increased by the co-cultivation of BM-MSC with H929 cells. Thus, inhibiting two coupled signalling molecules in BM-MSC was more effective in blocking the supportive cues emerging from the mesenchymal stroma. Considering that H929 cells were also directly susceptible to PKC and NF-κB inhibition, we showed that treatment of co-cultures with the HKPS peptide and BAY11-7082, followed by bortezomib, increased H929 cell death. Therefore, targeting simultaneously connected signalling elements of BM-MSC responsible for MM cells support with compounds that also have anti-MM activity can be an improved treatment strategy.
Collapse
Affiliation(s)
- P M Rojas-Zambrano
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J E Meyer-Herrera
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - P F Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J P Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
5
|
Ćwiertnia A, Kozłowski M, Cymbaluk-Płoska A. The Role of Iron and Cobalt in Gynecological Diseases. Cells 2022; 12:117. [PMID: 36611913 PMCID: PMC9818544 DOI: 10.3390/cells12010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Iron and cobalt are micronutrients that play an important role in the regulation of cellular processes, being part of the centre of catalases, peroxidases, cytochromes and metalloproteins such as hemoglobin and myoglobin (Fe). Cobalt primarily functions as a component of hydroxycobalamin, which is essential for regulating red blood cell production. Maintaining normal levels of cobalt and iron in the human body is important, as a deficiency can lead to anaemia. These elements are also involved in reactions during which oxidative stress occurs and are therefore considered to be a cause of tumor formation. This paper will discuss aspects of the influence of cobalt and iron on mechanisms that may contribute to the growth of gynecological tumors, as well as other obstetric-gynecological disease entities, by altering the conditions of the microenvironment. In addition, the following review also highlights the role of cobalt and iron in the treatment of gynecological tumors.
Collapse
Affiliation(s)
- Adrianna Ćwiertnia
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | | | | |
Collapse
|
6
|
Polyneuropathy Associated with IgM Monoclonal Gammopathy; Advances in Genetics and Treatment, Focusing on Anti-MAG Antibodies. HEMATO 2022. [DOI: 10.3390/hemato3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With increasing age, the chances of developing either MGUS or polyneuropathy increase as well. In some cases, there is a causative relationship between the IgM M-protein and polyneuropathy. In approximately half of these cases, IgM targets the myelin-associated glycoprotein (MAG). This results in chronic polyneuropathy with slowly progressive, predominantly sensory neurological deficits and distally demyelinating features in nerve conduction studies. Despite the disease being chronic and developing slowly, it can cause considerable impairment. We reviewed English medical publications between 1980 and May 2022 on IgM gammopathy-associated polyneuropathy, with special attention to studies addressing the pathophysiology or treatment of anti-MAG polyneuropathy. Treatment options have been limited to a temporizing effect of intravenous immunoglobulins in some patients and a more sustained effect of rituximab but in only 30 to 55 percent of patients. An increase in our knowledge concerning genetic mutations, particularly the MYD88L265P mutation, led to the development of novel targeted treatment options such as BTK inhibitors. Similarly, due to the increasing knowledge of the pathophysiology of anti-MAG polyneuropathy, new treatment options are emerging. Since anti-MAG polyneuropathy is a rare disease with diverse symptomatology, large trials with good outcome measures are a challenge.
Collapse
|
7
|
Wang TY, Hu YJ, Wang X, Li YF, Zhang F, Yan YD, Dou WT, Cheng CY, Xu P. Targeting p65 to inhibit Cas3 transcription by Onjisaponin B for radiation damage therapy in p65+/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154317. [PMID: 35816993 DOI: 10.1016/j.phymed.2022.154317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In response to radiation injury, p65 becomes activated. The formation of p65 is one target of Onjisaponin B (OB), but it has not been studied in radioprotection. In addition, there is a binding site for p65 in the promoter region of Cas3. This study evaluates the use of OB as an intervention to modulate p65/Cas3 following radiation exposure. PURPOSE This study aimed to confirm that OB regulated the transcription of Cas3 via p65 to overcome radiation-induced damage. STUDY DESIGN AND METHODS Cells and mice were exposed to X-rays at a dose of 6 Gy. Immunofluorescence was used to locate intracellular p65. For the protein and mRNA analyses, Western blotting and RT-qPCR-based assays were conducted accordingly. HE staining was used to observe pathological changes in tissues. DNA damage was detected by the comet assay and DNA ladder assay. Next, apoptosis was detected by flow cytometry and Hoechst staining. RESULTS Compared with the radiation group, the expression levels of p-p65 and c-Cas3 in the drug group were significantly down-regulated by OB 20 µg/ml. When the expression of p65 was suppressed in V79 and TC cells, OB did not significantly inhibit the activation of p65 or Cas3 in response to irradiation, nor did it significantly inhibit the phosphorylation of p65 and subsequent nuclear translocation. Overexpression of p65 in V79 and MTEC-1 cells resulted in OB significantly inhibiting the activation of p65 and Cas3, and the phosphorylation and translocation of p65 into the nucleus. At 3 d for V79 cells and 24 h for MTEC-1 cells after radiation, compared with the Cas3 over plasmid transfection group, the drug transfection group had no significant effect on reducing apoptosis. In p65+/- mice, expression of the p65 gene was knocked down, leading to increased tissue apoptosis and inflammation, and serious tissue pathological changes. The inhibition of p65 activation by OB after radiation exposure was not apparent in the thymus, although it was observed in the lung. CONCLUSIONS OB interfered with radiation injury by targeting and regulating p65/Cas3. Therefore, it has been concluded that p65 is an important target molecule for the treatment of radiation injury.
Collapse
Affiliation(s)
- Tao-Yang Wang
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong-Jian Hu
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xia Wang
- College of Medical Laboratory, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yu-Feng Li
- Radiology Laboratory, Central laboratory, Rizhao people's Hospital, Rizhao, Shandong 276800, China
| | - Fan Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yi-di Yan
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wen-Tao Dou
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Chen-Yi Cheng
- Basic Medical school, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ping Xu
- School of food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong 277160, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
8
|
Uhl B, Prochazka KT, Fechter K, Pansy K, Greinix HT, Neumeister P, Deutsch AJA. Impact of the microenvironment on the pathogenesis of mucosa-associated lymphoid tissue lymphomas. World J Gastrointest Oncol 2022; 14:153-162. [PMID: 35116108 PMCID: PMC8790412 DOI: 10.4251/wjgo.v14.i1.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphomas of mucosa-associated lymphoid tissue (MALT), also known as MALT lymphomas. These arise at a wide range of different extranodal sites, with most cases affecting the stomach, the lung, the ocular adnexa and the thyroid. The small intestine is involved in a lower percentage of cases. Lymphoma growth in the early stages is associated with long-lasting chronic inflammation provoked by bacterial infections (e.g., Helicobacter pylori or Chlamydia psittaci infections) or autoimmune conditions (e.g., Sjögren’s syndrome or Hashimoto thyroiditis). While these inflammatory processes trigger lymphoma cell proliferation and/or survival, they also shape the microenvironment. Thus, activated immune cells are actively recruited to the lymphoma, resulting in either direct lymphoma cell stimulation via surface receptor interactions and/or indirect lymphoma cell stimulation via secretion of soluble factors like cytokines. In addition, chronic inflammatory conditions cause the acquisition of genetic alterations resulting in autonomous lymphoma cell growth. Recently, novel agents targeting the microenvironment have been developed and clinically tested in MALT lymphomas as well as other lymphoid malignancies. In this review, we aim to describe the composition of the microenvironment of MALT lymphoma, the interaction of activated immune cells with lymphoma cells and novel therapeutic approaches in MALT lymphomas using immunomodulatory and/or microenvironment-targeting agents.
Collapse
Affiliation(s)
- Barbara Uhl
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Peter Neumeister
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | |
Collapse
|
9
|
Jiang X, Jiang L, Cheng J, Chen F, Ni J, Yin C, Wang Q, Wang Z, Fang D, Yi Z, Yu G, Zhong Q, Carter BZ, Meng F. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia. J Transl Med 2021; 19:117. [PMID: 33743723 PMCID: PMC7981995 DOI: 10.1186/s12967-021-02789-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. Methods Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. Results In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. Conclusions Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02789-3.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingxiu Zhong
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| |
Collapse
|
10
|
Ishihara J, Kawasaki N, Fukuda H. Concise Synthesis of TPCA-1 and Related Thiophene-carboxamides by Cross Coupling. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Chen H, Zhang J, Dai Y, Xu J. Nerve growth factor inhibits TLR3-induced inflammatory cascades in human corneal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2019; 16:27. [PMID: 31889912 PMCID: PMC6933932 DOI: 10.1186/s12950-019-0232-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Background In herpes simplex epithelial keratitis, excessive TLR3-induced cellular responses after virus infection evoke inflammatory cascades that might be destructive to the host cornea. Nerve growth factor (NGF), a pluripotent neurotrophic factor with immune regulatory effect, was proved to be effective in Herpes simplex keratitis (HSK) treatment, although the detailed mechanisms remain unclear. This study aims to investigate the effects of NGF on modulating inflammatory responses triggered by TLR3 activation in human corneal epithelial cells (HCECs) in vitro. Methods HCECs were stimulated with TLR3 agonist, poly(I:C), in the absence or presence of NGF. Cell viability and cytotoxicity were measured by a CCK-8 assay and LDH release assay, respectively. The activation of NF-κB signaling pathway was examined using immunofluorescence staining and western blotting. Levels of proinflammatory cytokines were determined by ELISA or RT-qPCR. ROS generation and 8-OHdG positive cells were examined by a fluorometric analysis. Results It was shown that NGF significantly inhibited the generation of proinflammatory cytokines in HCECs triggered by TLR3 activation (P < 0.05), probably via suppressing NF-κB activation. NGF also impeded the upstream signal to initiate NF-κB activation by scavenging ROS by approximately 50% (P < 0.05). In addition, 8-OHdG positive cells were substantially attenuated by NGF treatment (P < 0.01). Conclusions Taken together, this study indicates that NGF could inhibit TLR3-induced inflammatory cascades in HCECs, suggesting NGF as a potential therapeutic agent for HSK.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jing Zhang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| |
Collapse
|
12
|
IKK β Inhibitor IMD-0354 Attenuates Radiation Damage in Whole-body X-Irradiated Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5340290. [PMID: 31885799 PMCID: PMC6900939 DOI: 10.1155/2019/5340290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/09/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Nuclear factor-kappa B (NF-κB) transcription factor plays a critical role in regulating radiation-induced inflammatory and immune responses. Intracellular reactive oxygen species generation induces the activation of NF-κB via the inhibitor of κB (IκB) kinase (IKK) complex signaling. Previous studies have reported that the inhibition of IKK-driven NF-κB activation offers a therapeutic strategy for managing inflammatory disorders and various cancers, but it has additionally been reported that treatment targeting NF-κB also shows a radioprotective effect. IMD-0354 is an IKKβ inhibitor that blocks IκBα phosphorylation in the NF-κB pathway. This compound is known to exert anti-inflammatory and antitumor effects, but its radioprotective effects are unclear. Therefore, in the present study, we examined whether or not IMD-0354 has a mitigative effect on radiation-induced damages in mice. IMD-0354 was dissolved in soybean oil and subcutaneously administered to C57BL/6J Jcl mice for 3 consecutive days after 7 Gy of whole-body X-irradiation. The survival rate on day 30 and the NF-κB p65 and IκBα in bone marrow and spleen cells based on flow cytometry were assessed. IMD-0354 administration significantly suppressed the lethality induced by whole-body X-irradiation, and the survival rate increased by 83%. The NF-κB p65 and IκBα in bone marrow and spleen cells were significantly lower in IMD-0354-treated mice than in irradiated mice, suggesting that the IKKβ inhibitor IMD-0354 exerts a radiomitigative effect by suppressing the NF-κB.
Collapse
|
13
|
Miyake S, Ogo A, Kubota H, Teramoto F, Hirai T. β-Hydroxy-β-methylbutyrate Suppresses NF-ĸB Activation and IL-6 Production in TE-1 Cancer Cells. In Vivo 2019; 33:353-358. [PMID: 30804112 DOI: 10.21873/invivo.11481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Stress reactions, especially those related to surgery, cause poor convalescence of cancer patients. β-Hydroxyβ-methylbutyrate (HMB) is known to regulate excessive inflammation in the body. The objective of this work was to investigate the capacity of HMB to suppress activation of nuclear factor-kappa B (NF-ĸB) and production of interleukin-6 (IL-6) in a human esophageal squamous cell carcinoma cell line (TE-1). MATERIALS AND METHODS Cell proliferation was measured using the water-soluble tetrazolium-1 method, while tumor necrosis factor alpha (TNFα)-induced IL-6 production was measured using an enzyme-linked immunosorbent assay (ELISA) assay. Nuclear translocation of NF-ĸB was detected by immunofluorescence staining. RESULTS HMB did not affect cell proliferation. However, HMB suppressed the TNFα-induced increase in IL-6 production in TE-1 cells by inhibiting NF-ĸB activation. CONCLUSION HMB did not influence TE-1 cell proliferation, but inhibited activation of NF-ĸB and IL-6 production. This result may be useful for improving excessive stress reactions during and after surgery.
Collapse
Affiliation(s)
- Sachi Miyake
- Department of Doctoral Program in Health Science, Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Ayako Ogo
- Department of Doctoral Program in Health Science, Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Hisako Kubota
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Japan
| | - Fusako Teramoto
- Department of Doctoral Program in Health Science, Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Toshihiro Hirai
- Department of Doctoral Program in Health Science, Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| |
Collapse
|
14
|
Khoshvaghti H, Altunkaynak BZ. The effects of bortezomib on the ovariectomy applied rat uterus: A histopathological, stereological, and immunohistochemical study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1118-1125. [PMID: 30483384 PMCID: PMC6251398 DOI: 10.22038/ijbms.2018.24756.6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): In this study, potential protective effects of Bortezomib (Bort), as a proteasome inhibitor, were investigated on the uterus of ovariectomized rats by histological, morphometric and immunohistochemical methods. Materials and Methods: In this study, 18 Sprague dawley strain female rats (12 weeks old, 250-300 g body weight) were used. Animals in the control group (Cont, n=6) were not exposed to any treatment. Ovariectomy was performed on the experimental groups. They (n=12) were divided into ovariectomy (Ovt, n=6) and Bortezomib (Bort, n=6) subgroups. Twelve weeks later, the rats were perfused. Then, uterine tissues were removed and examined by morphometrical, and light and electron microscopy methods. In addition, immunoreactivity of nuclear factor-kappa (NF-κB) was evaluated. Results: Morphometric and histopathological evaluations showed that Bort was effective in the uterus and protects the layer structures and the cells. Conclusion: In the light of these findings, we suggest that for proteasome inhibitor particularly Bort is thought to be useful through proteasome inhibition and NF-κB pathway.
Collapse
Affiliation(s)
- Habib Khoshvaghti
- Department of Histology and Embryology, Medical Faculty, Bülent Ecevit University, Zonguldak, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical Faculty, İstanbul Okan University, İstanbul, Turkey
| |
Collapse
|
15
|
PRIMA-1 induces caspase-mediated apoptosis in acute promyelocytic leukemia NB4 cells by inhibition of nuclear factor-κB and downregulation of Bcl-2, XIAP, and c-Myc. Anticancer Drugs 2017; 28:51-58. [PMID: 27548348 DOI: 10.1097/cad.0000000000000426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Restoration of p53 function triggers cell death and eliminates tumors in vivo. Identification of p53-reactivating small molecules such as PRIMA-1 holds promise for effective new anticancer therapies. Here, we investigated the effects of small molecule PRIMA-1 on cell viability and expression of p53-regulated genes and proteins in the acute promyelocytic leukemia-derived NB4 cell line. Our results showed that PRIMA-1 had antileukemic properties in acute promyelocytic leukemia-derived NB4 cells. PRIMA-1-triggered apoptosis in a dose-dependent and time-dependent manner as indicated by the MTT assay and annexin-V staining. Apoptosis induction by PRIMA-1 was associated with caspase-9, caspase-7 activation and PARP cleavage. p21 protein expression was increased after PRIMA-1 treatment and real-time PCR analysis of proapoptotic p53 target genes indicated upregulation of Bax and Noxa. Western blot analysis showed that IκBα phosphorylation and its degradation were inhibited by PRIMA-1. Moreover, protein expression of nuclear factor-κB-regulated antiapoptotic (Bcl-2 and XIAP) and proliferative (c-Myc) gene products was decreased. Importantly, PRIMA-1 did not show any significant apoptotic effect in normal human peripheral blood mononuclear cells. These in-vitro studies imply that p53 reactivation by small compounds may become a novel anticancer therapy in acute promyelocytic leukemia.
Collapse
|
16
|
The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction? Life Sci 2017; 181:31-44. [PMID: 28549559 DOI: 10.1016/j.lfs.2017.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
AIM AND OBJECTIVES Balancing between Bax and Bcl-2 plays critical roles in both proliferation and self-renewal activation of cancer cells. Indole-3-formaldehyde derivatives limit the growth and facilitate cell death in different cell systems. In this study, we introduced a novel indole derivative (2-AITFEI-3-F) with tendency to facilitate apoptosis in NB4 line in comparison to basal Indole-3-formaldehyde (I3F). METHODS The NB4 cells were cultured in RPMI1640 medium contained 2-AITFEI-3-F and I3F (15.12-1000μg/mL) for 24, 48 and 72h. Inhibition of cell proliferation was assessed by trypan blue staining technique and MTT assay. The fold changes of Bax/Bcl-2 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of Bax and Bcl2 at protein level. Data were analyzed by student t and repeated measure tests. Differences were considered significant if (P<0.01). RESULTS There was a significant difference in cell viability, when various concentrations of 2-AITFEI-3-F (but similar to I3F) were used for 24, 48 and 72h in comparison to I3F regarding the cellular viability (P<0.05). Real time PCR and Western blotting analysis indicated that the gene and protein expression level of Bcl-2 down-regulated while Bax was up-regulated in compare to untreated control cells and cells treated with I3F (P<0.01). CONCLUSION According to these findings, the novel indole derivative 2-AITFEI-3-F probably triggered apoptosis of NB4 cells by modulating Bax/Bcl-2 ratio. Furthermore, the 2-AITFEI-3-F had markedly displayed anti-cancer activity than I3F.
Collapse
|
17
|
Richards H, Ramsden C, Naidoo R, Yvon C, Jacob E, Mohamedbhai S. Ocular adnexal lymphomas: a review. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1280394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huw Richards
- North Middlesex University Hospital NHS Trust, London, UK
| | - Conor Ramsden
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | | | - Camille Yvon
- Institute of Ophthalmology, University College London, London, UK
- Frimley Park Hospital, Portsmouth Road, Frimley, Surrey, UK
| | | | - Sajir Mohamedbhai
- North Middlesex University Hospital NHS Trust, London, UK
- University College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Gavriatopoulou M, Terpos E, Kastritis E, Dimopoulos MA. Current treatment options and investigational drugs for Waldenstrom’s Macroglobulinemia. Expert Opin Investig Drugs 2017; 26:197-205. [DOI: 10.1080/13543784.2017.1275561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
19
|
Carrà G, Crivellaro S, Taulli R, Guerrasio A, Saglio G, Morotti A. Mechanisms of p53 Functional De-Regulation: Role of the IκB-α/p53 Complex. Int J Mol Sci 2016; 17:ijms17121997. [PMID: 27916821 PMCID: PMC5187797 DOI: 10.3390/ijms17121997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
TP53 is one of the most frequently-mutated and deleted tumor suppressors in cancer, with a dramatic correlation with dismal prognoses. In addition to genetic inactivation, the p53 protein can be functionally inactivated in cancer, through post-transductional modifications, changes in cellular compartmentalization, and interactions with other proteins. Here, we review the mechanisms of p53 functional inactivation, with a particular emphasis on the interaction between p53 and IκB-α, the NFKBIA gene product.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| |
Collapse
|
20
|
Takeda T, Tsubaki M, Sakamoto K, Ichimura E, Enomoto A, Suzuki Y, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol 2016; 306:105-12. [PMID: 27417526 DOI: 10.1016/j.taap.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
Abstract
Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Kotaro Sakamoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Eri Ichimura
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Aya Enomoto
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Yuri Suzuki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Osamu Muraoka
- Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka, Japan
| | - Hideaki Matsuda
- Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka, Japan.
| |
Collapse
|
21
|
Crivellaro S, Panuzzo C, Carrà G, Volpengo A, Crasto F, Gottardi E, Familiari U, Papotti M, Torti D, Piazza R, Redaelli S, Taulli R, Guerrasio A, Saglio G, Morotti A. Non genomic loss of function of tumor suppressors in CML: BCR-ABL promotes IκBα mediated p53 nuclear exclusion. Oncotarget 2016; 6:25217-25. [PMID: 26295305 PMCID: PMC4694826 DOI: 10.18632/oncotarget.4611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Tumor suppressor function can be modulated by subtle variation of expression levels, proper cellular compartmentalization and post-translational modifications, such as phosphorylation, acetylation and sumoylation. The non-genomic loss of function of tumor suppressors offers a challenging therapeutic opportunity. The reactivation of a tumor suppressor could indeed promote selective apoptosis of cancer cells without affecting normal cells. The identification of mechanisms that affect tumor suppressor functions is therefore essential. In this work, we show that BCR-ABL promotes the accumulation of the NFKBIA gene product, IκBα, in the cytosol through physical interaction and stabilization of the protein. Furthermore, BCR-ABL/IκBα complex acts as a scaffold protein favoring p53 nuclear exclusion. We therefore identify a novel BCR-ABL/IκBα/p53 network, whereby BCR-ABL functionally inactivates a key tumor suppressor.
Collapse
Affiliation(s)
- Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Volpengo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Francesca Crasto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Enrico Gottardi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ubaldo Familiari
- Division of Pathology, Department of Oncology, University of Turin at St Luigi Hospital, Torino, Italy
| | - Mauro Papotti
- Division of Pathology, Department of Oncology, University of Turin at St Luigi Hospital, Torino, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rocco Piazza
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Sara Redaelli
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | | | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
22
|
Takeda T, Tsubaki M, Kino T, Kawamura A, Isoyama S, Itoh T, Imano M, Tanabe G, Muraoka O, Matsuda H, Satou T, Nishida S. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway. Int J Oncol 2016; 48:2704-12. [PMID: 27035859 DOI: 10.3892/ijo.2016.3470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Toshiki Kino
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Ayako Kawamura
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Shota Isoyama
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Genzoh Tanabe
- Laboratory of Pharmaceutical Organic Chemistry, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Osamu Muraoka
- Laboratory of Pharmaceutical Organic Chemistry, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Hideaki Matsuda
- Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
23
|
Dimopoulos MA, Kastritis E, Ghobrial IM. Waldenström's macroglobulinemia: a clinical perspective in the era of novel therapeutics. Ann Oncol 2016; 27:233-40. [PMID: 26598544 PMCID: PMC4722893 DOI: 10.1093/annonc/mdv572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Waldenström's macroglobulinemia (WM) is a rare, low-grade malignancy with no established standard of care. Rituximab regimens are most commonly used, supported by their efficacy in hematologic malignancies, including WM. A growing number of investigational regimens for WM have been evaluated in phase II clinical trials, including single-agent and combination strategies that include newer-generation monoclonal antibodies (ofatumumab and alemtuzumab), proteasome inhibitors (bortezomib and carfilzomib), immunomodulatory agents (thalidomide and lenalidomide), phosphoinositide 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin pathway inhibitors (everolimus and perifosene), a Bruton's tyrosine kinase inhibitor (ibrutinib), and a histone deacetylase inhibitor (panobinostat). Other novel agents are in early-stage development for WM. International treatment guidelines for WM suggest suitable regimens in the newly diagnosed and relapsed/refractory settings, in accordance with patient age, disease presentation, and efficacy and safety profiles of particular drugs. These factors must be considered when choosing appropriate therapy for individual patients with WM, to maximize response and prolong survival, while minimizing the risk of adverse events. This review article provides a clinical perspective of the modern management of patients with WM, in the context of available trial data for novel regimens and recently updated treatment guidelines.
Collapse
Affiliation(s)
- M A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - E Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - I M Ghobrial
- Medical Oncology, Dana Farber Cancer Center, Boston, MA, USA
| |
Collapse
|
24
|
Harms H, Orlikova B, Ji S, Nesaei-Mosaferan D, König GM, Diederich M. Epipolythiodiketopiperazines from the Marine Derived Fungus Dichotomomyces cejpii with NF-κB Inhibitory Potential. Mar Drugs 2015; 13:4949-66. [PMID: 26258781 PMCID: PMC4557009 DOI: 10.3390/md13084949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/26/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022] Open
Abstract
The Ascomycota Dichotomomyces cejpii was isolated from the marine sponge Callyspongia cf. C. flammea. A new gliotoxin derivative, 6-acetylmonodethiogliotoxin (1) was obtained from fungal extracts. Compounds 2 and 3, methylthio-gliotoxin derivatives were formerly only known as semi-synthetic compounds and are here described as natural products. Additionally the polyketide heveadride (4) was isolated. Compounds 1, 2 and 4 dose-dependently down-regulated TNFα-induced NF-κB activity in human chronic myeloid leukemia cells with IC50s of 38.5 ± 1.2 µM, 65.7 ± 2.0 µM and 82.7 ± 11.3 µM, respectively. The molecular mechanism was studied with the most potent compound 1 and results indicate downstream inhibitory effects targeting binding of NF-κB to DNA. Compound 1 thus demonstrates potential of epimonothiodiketopiperazine-derived compounds for the development of NF-κB inhibitors.
Collapse
Affiliation(s)
- Henrik Harms
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn D-53115, Germany.
| | - Barbora Orlikova
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Hôpital Kirchberg, 9 rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Damun Nesaei-Mosaferan
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn D-53115, Germany.
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, Bonn D-53115, Germany.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
25
|
Molecular Pathogenesis of MALT Lymphoma. Gastroenterol Res Pract 2015; 2015:102656. [PMID: 25922601 PMCID: PMC4397421 DOI: 10.1155/2015/102656] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022] Open
Abstract
Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT), also known as MALT lymphoma, which was first described in 1983 by Isaacson and Wright. MALT lymphomas arise at a wide range of different extranodal sites, with the highest frequency in the stomach, followed by lung, ocular adnexa, and thyroid, and with a low percentage in the small intestine. Interestingly, at least 3 different, apparently site-specific, chromosomal translocations and missense and frameshift mutations, all pathway-related genes affecting the NF-κB signal, have been implicated in the development and progression of MALT lymphoma. However, these genetic abnormalities alone are not sufficient for malignant transformation. There is now increasing evidence suggesting that the oncogenic product of translocation cooperates with immunological stimulation in oncogenesis, that is, the association with chronic bacterial infection or autoaggressive process. This review mainly discusses MALT lymphomas in terms of their genetic aberration and association with chronic infections and summarizes recent advances in their molecular pathogenesis.
Collapse
|
26
|
Safa M, Tavasoli B, Manafi R, Kiani F, Kashiri M, Ebrahimi S, Kazemi A. Indole-3-carbinol suppresses NF-κB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells. Tumour Biol 2015; 36:3919-30. [DOI: 10.1007/s13277-014-3035-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/30/2014] [Indexed: 01/07/2023] Open
|
27
|
Dimethyl fumarate induces apoptosis of hematopoietic tumor cells via inhibition of NF-κB nuclear translocation and down-regulation of Bcl-xL and XIAP. Biomed Pharmacother 2014; 68:999-1005. [PMID: 25443417 DOI: 10.1016/j.biopha.2014.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
Dimethyl fumarate (DMF) is a fumaric acid ester that is used to treat psoriasis and multiple sclerosis. Recently, DMF was found to exhibit anti-tumor effects. However, the molecular mechanisms underlying these effects have not been elucidated. In this study, we investigated the mechanism of DMF-induced apoptosis in different human hematopoietic tumor cell lines. We found that DMF induced apoptosis in different human hematopoietic tumor cell lines but it did not affect the normal human B lymphocyte cell line RPMI 1788. We also observed a concurrent increase in caspase-3 activity and in the number of Annexin-V-positive cells. Furthermore, an examination of the survival signals, which are activated by apoptotic stimuli, revealed that DMF significantly inhibited nuclear factor-κB (NF-κB) p65 nuclear translocation. In addition, DMF suppressed B-cell lymphoma extra-large (Bcl-xL) and X-linked inhibitor of apoptosis (XIAP) expression whereas Bcl-2, survivin, Bcl-2-associated X protein (Bax), and Bim levels did not change. These results indicated that DMF induced apoptosis by suppressing NF-κB activation, and Bcl-xL and XIAP expression. These findings suggested that DMF might have potential as an anticancer agent that could be used in combination therapy with other anticancer drugs for the treatment of human hematopoietic tumors.
Collapse
|
28
|
Lou C, Takahashi K, Irimura T, Saiki I, Hayakawa Y. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation. Int J Oncol 2014; 45:2085-91. [PMID: 25175557 DOI: 10.3892/ijo.2014.2624] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor-κB (NF-κB) activation has been implicated not only in carcinogenesis but also in cancer cell invasion and metastatic process; therefore, targeting the NF-κB pathway is an attractive strategy for controlling meta-stasis. Amongst 56 chemically defined compounds derived from natural products, we have identified a new phytochemical compound Hirsutine, which strongly suppresses NF-κB activity in murine 4T1 breast cancer cells. In accordance with the NF-κB inhibition, Hirsutine reduced the metastatic potential of 4T1 cells, as seen in the inhibition of the migration and invasion capacity of 4T1 cells. Hirsutine further inhibited the constitutive expression of MMP-2 and MMP-9 in 4T1 cells, and reduced the in vivo lung metastatic potential of 4T1 cells in the experimental model. Given that the migration of human breast cancer cells was also inhibited, our present study implies that Hirsutine is an attractive phytochemical compound for reducing metastasis potential of cancer cells by regulating tumor-promoting NF-κB activity.
Collapse
Affiliation(s)
- Chenghua Lou
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kei Takahashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
29
|
Zaroulis CK, Chairopoulos K, Sachanas SP, Maltezas D, Tzenou T, Pessach I, Koulieris E, Koutra E, Kilindireas K, Pangalis GA, Kyrtsonis MC. Assessment of bortezomib induced peripheral neuropathy in multiple myeloma by the reduced Total Neuropathy Score. Leuk Lymphoma 2014; 55:2277-83. [DOI: 10.3109/10428194.2013.873535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Mancino M, Grosso S, Terragna C, Borsi E, Cavo M, Biffo S. Cap dependent translation contributes to resistance of myeloma cells to bortezomib. ACTA ACUST UNITED AC 2013; 1:e27245. [PMID: 26824026 PMCID: PMC4718057 DOI: 10.4161/trla.27245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 12/31/2022]
Abstract
Multiple myeloma (MM) is the second most predominant blood malignancy. Proteasome inhibitors like bortezomib have increased life expectancy, but eventually patients develop resistance to therapy. It was proposed that bortezomib acts through the induction of the Unfolded Protein Response (UPR), i.e., accumulation of misfolded proteins causing a lethal stress response. By this theory, increasing the proteasome load by the stimulation of translation may worsen the UPR. Here we evaluated the crosstalk between translation and bortezomib toxicity in both bortezomib sensitive and resistant cells. We found that bortezomib toxicity does not correlate with induction of proapoptotic eIF2α phosphorylation, but rather caused a late reduction in initiation of translation. This effect was accompanied by dephosphorylation of the mTORC1 target 4E-BP1. Infection of myeloma cells with constitutively dephosphorylated 4E-BP1, worsened bortezomib induced cell death. Since mTORC1 inhibitors cause pharmacological inhibition of 4E-BP1 phosphorylation, we tested whether they could act synergistically with bortezomib. We found that both rapamycin, a specific mTORC1 blocker, and PP242 a mTOR antagonist induce the arrest of myeloma cells irrespective of bortezomib sensitivity. Sensitivity to mTOR inhibitors has been associated to the levels of eIF4E/4E-BPs. We found that levels of eIF4E and 4E-BPs are variable among patients, and that 15% of myeloma patients have increased levels of 4E-BP1/2. Primary cells of myeloma retain sensitivity to mTOR inhibition, when plated on stromal cells. We propose that translational load does not contribute to bortezomib-induced death, but rather mTOR targeting may be successful in bortezomib resistant patients, stratified for eIF4E/4EBPs.
Collapse
Affiliation(s)
- Marilena Mancino
- San Raffaele Scientific Institute; Milan, Italy; DISIT; Alessandria, Italy
| | | | | | - Enrica Borsi
- Istituto di Ematologia "Seràgnoli"; DIMES; Bologna, Italy
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli"; DIMES; Bologna, Italy
| | - Stefano Biffo
- San Raffaele Scientific Institute; Milan, Italy; DISIT; Alessandria, Italy
| |
Collapse
|
31
|
Lee J, Zhang G, Wu X, Xu F, Zhou J, Zhang X. Growth inhibitory effect of dihydroartemisinin on Bcr/Abl+ chronic myeloid leukemia K562 cells involve AKT, ERK and NF-κB modulation. J Cancer Res Clin Oncol 2012; 138:2095-102. [PMID: 22833150 DOI: 10.1007/s00432-012-1292-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/12/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE In our previous publication, we have shown that dihydroartemisinin could significantly inhibit the growth of CML K562 cells by its anti-proliferative and inducing apoptotic effects. Given the pivotal effect of Bcr/Abl tyrosine kinase and its downstream signal factors on CML cell proliferation and survival, we extend our study to investigate the effect of DHA on Bcr/Abl and related signal factors to further illuminate the possible mechanisms of the effect of DHA on CML cells. METHODS The expression of Bcr/Abl was analyzed with PCR and Western blotting methods at both mRNA and protein levels. Measurement of protein expression and tyrosine phosphorylation activity of Bcr/Abl, AKT, ERK1/2, NF-κB and cytochrome c were performed with Western blotting and immunoprecipitation methods. Using the activity kits analyzed the activity of caspase 9 and caspase 3. RESULTS The treatment with DHA results in a significant suppression on Bcr/Abl expression and leads to a concentration-dependent reduction on the Bcr/Abl tyrosine activity. Moreover, it also results in a strong influence on the downstream signal factors of Bcr/Abl, which includes inhibition of tyrosine kinase activity of AKT and ERK1/2, suppression of NF-κB protein expression, promotion of the cytochrome c release and the consequential activation of caspase 3/9 in CML K562 cells. CONCLUSIONS Together with our previous report, our data show that the growth inhibitory effect of DHA on CML cells might be due to the influence on Bcr/Abl expression and its downstream signal factors. DHA might be a potential novel anti-CML drug candidate and worthy of further study.
Collapse
MESH Headings
- Artemisinins/pharmacology
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytochromes c/genetics
- Cytochromes c/metabolism
- Down-Regulation/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Growth Inhibitors/pharmacology
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation/drug effects
- Phosphorylation/genetics
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Jun Lee
- Department of Clinical Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
32
|
Jiang XJ, Huang KK, Yang M, Qiao L, Wang Q, Ye JY, Zhou HS, Yi ZS, Wu FQ, Wang ZX, Zhao QX, Meng FY. Synergistic effect of panobinostat and bortezomib on chemoresistant acute myelogenous leukemia cells via AKT and NF-κB pathways. Cancer Lett 2012; 326:135-42. [PMID: 22863538 DOI: 10.1016/j.canlet.2012.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 07/21/2012] [Accepted: 07/26/2012] [Indexed: 02/09/2023]
Abstract
In this study, we investigated the synergistic effects of panobinostat and bortezomib on adriamycin-resistant HL60/ADR cells and refractory acute myelogenous leukemia (AML) primary cells. Combination of both agents had synergistic cytotoxicity on these cells, and increased the sensitivity of HL60/ADR cells to adriamycin. Panobinostat plus bortezomib was shown to modulate multiple apoptotic and drug metabolic related molecules, including activation of caspases, down-regulation of XIAP, Bcl-2 and MRP1. These effects were likely to be mediated via inhibition of AKT and NF-κB pathways. These findings provide evidence for clinic protocols using panobinostat and borezomib to overcome drug resistance in refractory AML patients.
Collapse
Affiliation(s)
- Xue-Jie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
George LE, Lokhandwala MF, Asghar M. Novel role of NF-κB-p65 in antioxidant homeostasis in human kidney-2 cells. Am J Physiol Renal Physiol 2012; 302:F1440-6. [PMID: 22397926 PMCID: PMC3378177 DOI: 10.1152/ajprenal.00006.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/01/2012] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor-κB (NF-κB) plays a role in inflammation. However, we recently reported an association between NF-κB and antioxidant enzymes in renal proximal tubules of exercise-trained rats, suggesting its role in antioxidant homeostasis (George L, Lokhandwala MF, Asghar M. Am J Physiol Renal Physiol 297: F1174-F1180, 2009). A direct role of NF-κB in antioxidant homeostasis in renal cells has not been elucidated and warrants investigation. Therefore, we examined whether NF-κB has a direct role in antioxidant homeostasis and redox balance in human kidney-2 cells overexpressing NF-κB-p65 and compared them with the cells overexpressing Nrf-2, a well-known transcription factor involved in antioxidant homeostasis. The ability of NF-κB-p65 to increase antioxidant enzymes, to reduce reactive oxygen species (ROS), and to rescue ROS-induced renal dopamine D1 receptor dysfunction, was studied. The transcription activity of NF-κB-p65 and Nrf-2, measured as luciferase reporter activity, increased in cells overexpressing these nuclear factors. The levels of mRNA and activity of glutathione peroxidase as well as the protein levels of superoxide dismutase-1 and glutamylcystein transferase were increased in cells overexpressing NF-κB-p65 and Nrf-2. Furthermore, the levels of ROS decreased and D1 receptor agonist SKF38393-mediated [(35)S]GTPγS binding (index of D1 receptor function) increased in the presence of hydrogen peroxide in cells overexpressing NF-κB-p65 and Nrf-2. These results suggest a direct role of NF-κB-p65 in antioxidant homeostasis, contributing to redox balance in renal cells.
Collapse
Affiliation(s)
- Liza E George
- Heart and Kidney Institute, College of Pharmacy, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
34
|
Kuper-Hommel MJJ, van Krieken JHJM. Molecular pathogenesis and histologic and clinical features of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue type. Leuk Lymphoma 2012; 53:1032-45. [DOI: 10.3109/10428194.2011.631157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Loughran ST, Campion EM, D'Souza BN, Smith SM, Vrzalikova K, Wen K, Murray PG, Walls D. Bfl-1 is a crucial pro-survival nuclear factor-κB target gene in Hodgkin/Reed-Sternberg cells. Int J Cancer 2011; 129:2787-2796. [PMID: 21491422 DOI: 10.1002/ijc.25950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
Abstract
Hodgkin/Reed-Sternberg (H/RS) cells are believed to represent clonal progeny of Germinal Centre B cells that have escaped negative selection by evading apoptosis. Aberrant constitutive activity of the transcription factor NF-κB plays a key role in the pathogenesis of Hodgkin's Lymphoma (HL), conferring a survival advantage on H/RS cells. Bfl-1 is a pro-survival NF-κB target gene from the Bcl-2 family of apoptosis-regulating proteins. Here, we report that bfl-1 (also known as A1 or GRS) is frequently expressed in primary H/RS cells from HL tumor biopsies and that elevated bfl-1 expression is a feature of H/RS derived cell lines. We show that bfl-1 is an NF-κB target gene in this cell context and that this regulation is effected through a p65-binding DNA element located in its promoter. We demonstrate that ectopic Bfl-1 can rescue cultured H/RS cells from apoptosis induced by pharmacological inhibitors of NF-κB, and that knockdown of bfl-1 potentiates the pro-apoptotic effect of these agents. These findings are the first indication that Bfl-1 plays a crucial role in setting the elevated threshold of resistance of this malignant cell type to apoptosis.
Collapse
Affiliation(s)
- Sinéad T Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bruna J, Alé A, Velasco R, Jaramillo J, Navarro X, Udina E. Evaluation of pre-existing neuropathy and bortezomib retreatment as risk factors to develop severe neuropathy in a mouse model. J Peripher Nerv Syst 2011; 16:199-212. [DOI: 10.1111/j.1529-8027.2011.00346.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Chen YC, Lu PH, Hsu JL, Yu CC, Guh JH. ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N'-nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers. Toxicol Appl Pharmacol 2011; 257:412-9. [PMID: 22001597 DOI: 10.1016/j.taap.2011.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5μM did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels. Detection of phosphorylation and degradation of IκB-α and nuclear translocation of NF-κB showed that MNNG induced the activation of NF-κB that was responsible for the ICAM-1 up-regulation since PDTC (a NF-κB inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10μM) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-κB-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation.
Collapse
Affiliation(s)
- Yi-Cheng Chen
- School of Pharmacy, College of Medicine, National Taiwan University, No. 1, Sect. 1, Jen-Ai Rd, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Shigdar S, Ward AC, De A, Yang CJ, Wei M, Duan W. Clinical applications of aptamers and nucleic acid therapeutics in haematological malignancies. Br J Haematol 2011; 155:3-13. [PMID: 21810089 DOI: 10.1111/j.1365-2141.2011.08807.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Haematological malignancies result from a heterogeneous mix of genetic mutations and chromosome aberrations and translocations. Targeted therapies, such as the anti-CD20 antibody rituximab, or the BCR-ABL1 inhibitor imatinib, have proven to be effective treatments in the management of some of these malignancies, though relapsing or refractory disease is still common. Nucleic acid-based therapies have also entered the clinical arena, providing an alternative, complementary approach. The forerunner of these therapies were the antisense oligonucleotides, but their scope has expanded to include short-interfering RNA (siRNA), microRNA, decoy oligonucleotides and aptamers. These can be used either as mono-therapeutics, in conjunction with current chemotherapy regimens, or in combination with each other to improve therapeutic efficacy. Not only can these nucleic acid-based therapies silence target genes, they also have the potential of restoring gene function. While challenges remain in delivering effective doses of nucleic acid in vivo, these are steadily being met, suggesting an optimistic future in the treatment of haematological malignancies. This review summarizes the application of nucleic acid-based therapeutics, particularly aptamers, in the diagnosis and treatment of haematological malignancies.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdon Road, Waurn Ponds, Geelong, Victoria 3217, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC, Fenical W, Ghobrial IM, Groll M, Jensen PR, Lam KS, Lloyd GK, McBride W, McConkey DJ, Miller CP, Neuteboom STC, Oki Y, Ovaa H, Pajonk F, Richardson PG, Roccaro AM, Sloss CM, Spear MA, Valashi E, Younes A, Palladino MA. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 2011; 11:254-84. [PMID: 21247382 DOI: 10.2174/156800911794519716] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, chemotherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom's macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
Collapse
Affiliation(s)
- B C Potts
- Nereus Pharmaceuticals, Inc., 10480 Wateridge Circle, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang J, Xin X, Chen Q, Xie Z, Gui M, Chen Y, Lin L, Feng J, Li Q, Ding J, Geng M. Oligomannurarate sulfate sensitizes cancer cells to doxorubicin by inhibiting atypical activation of NF-κB via targeting of Mre11. Int J Cancer 2011; 130:467-77. [PMID: 21387297 DOI: 10.1002/ijc.26021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/02/2011] [Indexed: 12/23/2022]
Abstract
Aberrant regulation of nuclear factor kappa B (NF-κB) transcription factor is involved in cancer development, progression and resistance to chemotherapy. JG3, a marine-derived oligomannurarate sulfate, was reported as a heparanase and NF-κB inhibitor to significantly block tumor growth and metastasis in various animal models. However, the detailed functional mechanism remains unclear. Here, we report that JG3 inhibits NF-κB activation by specifically antagonizing the doxorubicin-triggered Ataxia-telangiectasia-mutated kinase (ATM) and the sequential MEK/ERK/p90Rsk/IKK signaling pathway but does not interfere with TNF-α-mediated NF-κB activation. This selective inactivation of the specific NF-κB cascade is attributed to the binding capacity of JG3 for Mre11, a major sensor of DNA double-strand breaks (DSB). Based on this selective mechanism, JG3 showed synergistic effect with doxorubicin in a panel of tumor cells and did not affect immune system function as shown in the in vivo delayed-type hypersensitivity (DTH) and hemolysis assays. All these highlight the clinical potential of JG3 as a favorable sensitizer in cancer therapy. In addition, identification of Mre11 as a potential target in the development of NF-κB inhibitors provides a platform for the further development of effective anticancer agents.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Conticello C, Giuffrida R, Adamo L, Anastasi G, Martinetti D, Salomone E, Colarossi C, Amato G, Gorgone A, Romano A, Iannolo G, De Maria R, Giustolisi R, Gulisano M, Di Raimondo F. NF-κB localization in multiple myeloma plasma cells and mesenchymal cells. Leuk Res 2011; 35:52-60. [DOI: 10.1016/j.leukres.2010.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/05/2010] [Accepted: 06/28/2010] [Indexed: 01/02/2023]
|
42
|
Conconi A, Martinelli G, Lopez-Guillermo A, Zinzani PL, Ferreri AJM, Rigacci L, Devizzi L, Vitolo U, Luminari S, Cavalli F, Zucca E. Clinical activity of bortezomib in relapsed/refractory MALT lymphomas: results of a phase II study of the International Extranodal Lymphoma Study Group (IELSG). Ann Oncol 2010; 22:689-695. [PMID: 20810546 DOI: 10.1093/annonc/mdq416] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The nuclear factor-kappa B activation in mucosa-associated lymphoid tissue (MALT) lymphoma pathogenesis provided the rationale for the evaluation of bortezomib in this malignancy. PATIENTS AND METHODS Thirty-two patients with relapsed/refractory MALT lymphoma were enrolled. Thirty-one patients received bortezomib 1.3 mg/m(2) i.v., on days 1, 4, 8, and 11, for up to six 21-day cycles. RESULTS Median age was 63 years (range, 37-82 years). Median number of prior therapies was 2 (range, 1-4). Nine patients had Ann Arbor stage I, 7 patients had stage II, and 16 patients had stage IV. Primary lymphoma localization was the stomach in 14 patients; multiple extranodal sites were present in 10 patients. Among the 29 patients assessable for response, the overall response rate was 48% [95% confidence interval (CI) 29% to 67%], with 9 complete and 5 partial responses. Nine patients experienced stable disease and six had disease progression during therapy. The most relevant adverse events were fatigue, thrombocytopenia, neutropenia, and peripheral neuropathy. After a median follow-up of 24 months, the median duration of response was not reached yet. Five deaths were reported, in two patients due to disease progression. CONCLUSION Bortezomib is active in relapsed MALT lymphomas. Further investigations to identify optimal bortezomib dose, schedule, and combination regimens are needed since the frequent detection of dose-limiting peripheral neuropathy.
Collapse
Affiliation(s)
- A Conconi
- Department of Clinical and Experimental Medicine, Division of Hematology, AOU Maggiore della Carità, Amedeo Avogadro University of Eastern Piedmont, Novara.
| | - G Martinelli
- Division of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | | | - P L Zinzani
- Institute of Hematology and Medical Oncology 'L. e A. Seràgnoli', University of Bologna, Bologna
| | - A J M Ferreri
- Unit of Lymphoid Malignancies, Medical Oncology Unit, Department of Oncology, San Raffaele H Scientific Institute, Milan
| | - L Rigacci
- Department of Hematology, Careggi Hospital and University of Florence, Florence
| | - L Devizzi
- Cristina Gandini Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Tumori, Milan
| | - U Vitolo
- SC Ematologia II, Azienda Ospedaliera e Universitaria San Giovanni Battista, Turin
| | - S Luminari
- Department of Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - F Cavalli
- IOSI-Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - E Zucca
- IOSI-Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
43
|
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:775-87. [PMID: 20493977 DOI: 10.1016/j.bbagrm.2010.05.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 2010; 115:3796-800. [PMID: 20203261 DOI: 10.1182/blood-2009-11-254862] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.
Collapse
|
45
|
Shiraishi R, Fujise T, Kuroki T, Kakimoto T, Miao L, Sakata Y, Tsunada S, Noda T, Iwakiri R, Fujimoto K. Long-term ingestion of reduced glutathione suppressed an accelerating effect of beef tallow diet on colon carcinogenesis in rats. J Gastroenterol 2009; 44:1026-35. [PMID: 19568688 DOI: 10.1007/s00535-009-0101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/10/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE We have shown previously that long-term feeding of beef tallow increases colorectal cancer in rats. This study investigated the effects of enzymic antioxidant, reduced glutathione (GSH), on colon carcinogenesis in rats fed with beef tallow. METHODS Colon carcinogenesis was induced by intraperitoneal injection of azoxymethane (AOM) to rats. Rats were fed with 10% beef tallow supplemented with or without 1% GSH in drinking water. Aberrant crypt foci (ACF) and expression of beta-catenin in colonic mucosa were examined at 12 weeks. Cancers, related substances of oxidative stress and arachidonic acid cascade in plasma and normal colonic mucosa were determined at 44 weeks. RESULTS GSH attenuated the number of ACF increased by beef tallow, but GSH had no influence on expression of beta-catenin increased by AOM. Incidence of colon cancer was no different with or without GSH, but GSH attenuated the number of colon cancers in each rat. GSH suppressed plasma malondialdehyde concentration. GSH increased GSH concentration and activities of catalase, glutathione peroxidase and superoxide dismutase in colonic mucosa, and decreased cyclooxygenase-2, prostaglandin E2 and thromboxane B2 levels. CONCLUSIONS This study indicated that GSH suppressed the number of ACF, but the attenuation of colon carcinogenesis was limited to the number of colon cancers, although anti-oxidative effects and suppressive effects of arachidonic acid cascade were demonstrated by several indexes. These results suggested that colon carcinogenesis enhanced by beef tallow was partly caused by oxidative stress and arachidonic acid cascade, which were reduced by GSH.
Collapse
Affiliation(s)
- Ryosuke Shiraishi
- Department of Internal Medicine and Gastrointestinal Endoscopy, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roccaro AM, Sacco A, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem M, Moreau AS, Ghobrial IM. Role of Proteasome Inhibition in Waldenström's Macroglobulinemia. ACTA ACUST UNITED AC 2009; 9:94-6. [DOI: 10.3816/clm.2009.n.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Carney DA. Arsenic trioxide mechanisms of action--looking beyond acute promyelocytic leukemia. Leuk Lymphoma 2008; 49:1846-51. [PMID: 18949607 DOI: 10.1080/10428190802464745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dennis A Carney
- Department of Hematology and Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Peroxisome proliferator-activated receptor gamma overexpression and knockdown: impact on human B cell lymphoma proliferation and survival. Cancer Immunol Immunother 2008; 58:1071-83. [PMID: 19018532 DOI: 10.1007/s00262-008-0625-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/31/2008] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a multifunctional transcription factor that regulates adipogenesis, immunity and inflammation. Our laboratory previously demonstrated that PPARgamma ligands induce apoptosis in malignant B cells. While malignant B lineage cells such as B cell lymphoma express PPARgamma, its physiological function remains unknown. Herein, we demonstrate that silencing PPARgamma expression by RNAi in human Burkitt's type B lymphoma cells increased basal and mitogen-induced proliferation and survival, which was accompanied by enhanced NF-kappaB activity and increased expression of Bcl-2. These cells also had increased survival upon exposure to PPARgamma ligands and exhibited a less differentiated phenotype. In contrast, PPARgamma overexpression in B lymphoma cells inhibited cell growth and decreased their proliferative response to mitogenic stimuli. These cells were also more sensitive to PPARgamma-ligand induced growth arrest and displayed a more differentiated phenotype. Collectively, these findings support a regulatory role for PPARgamma in the proliferation, survival and differentiation of malignant B cells. These findings further suggest the potential of PPARgamma as a therapeutic target for B cell malignancy.
Collapse
|
49
|
Monteghirfo S, Tosetti F, Ambrosini C, Stigliani S, Pozzi S, Frassoni F, Fassina G, Soverini S, Albini A, Ferrari N. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol Cancer Ther 2008; 7:2692-702. [PMID: 18790751 DOI: 10.1158/1535-7163.mct-08-0132] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl+ cells and clinical samples and retained its cytotoxicity when imatinib mesylate-resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl+ myeloid leukemia.
Collapse
Affiliation(s)
- Stefano Monteghirfo
- Oncologia Molecolare, Istituto Nazionale per la Ricerca sul Cancro, L.go R.Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 2008; 113:137-48. [PMID: 18703704 DOI: 10.1182/blood-2008-02-140616] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secondary genetic events associated with follicular lymphoma (FL) progression are not well defined. We applied genome-wide BAC array comparative genomic hybridization to 106 diagnostic biopsies of FL to characterize regional genomic imbalances. Using an analytical approach that defined regions of copy number change as intersections between visual annotations and a Hidden Markov model-based algorithm, we identified 71 regional alterations that were recurrent in at least 10% of cases. These ranged in size from approximately 200 kb to 44 Mb, affecting chromosomes 1, 5, 6, 7, 8, 10, 12, 17, 18, 19, and 22. We also demonstrated by cluster analysis that 46.2% of the 106 cases could be sub-grouped based on the presence of +1q, +6p/6q-, +7, or +18. Survival analysis showed that 21 of the 71 regions correlated significantly with inferior overall survival (OS). Of these 21 regions, 16 were independent predictors of OS using a multivariate Cox model that included the international prognostic index (IPI) score. Two of these 16 regions (1p36.22-p36.33 and 6q21-q24.3) were also predictors of transformation risk and independent of IPI. These prognostic features may be useful to identify high-risk patients as candidates for risk-adapted therapies.
Collapse
|