1
|
Alaei E, Hashemi F, Farahani N, Tahmasebi S, Nabavi N, Daneshi S, Mahmoodieh B, Rahimzadeh P, Taheriazam A, Hashemi M. Peptides in breast cancer therapy: From mechanisms to emerging drug delivery and immunotherapy strategies. Pathol Res Pract 2025; 269:155946. [PMID: 40174279 DOI: 10.1016/j.prp.2025.155946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Breast cancer therapy can be improved by the application of multifunctional peptides and they have unique features, such as high specificity, minimized toxicity, and the capability to influence diverse processes. The role of peptides in breas cancer therapy is highlighted in the present review, examining their functions as therapeutic agents, diagnostic tools, and drug delivery application. Therapeutic peptides have displayed the ability to regulate key pathways in breast tumor, including HER2, VEGF, and EGFR, providing ideal alternatives to the conventional chemotherapy with reduced adverse effects. Additionally, peptide-based vaccines and immune-modulating peptides have demonstrated the capacity in enhancing anti-cancer immunity. The incorporation of peptides into nanoparticles has improved the delivery of drugs and genes, enhanced anti-cancer efficacy while minimizing side impacts. The progresses in the peptide engineering, including stapled peptides, peptide-drug conjugates, and cell-penetrating peptides, have remarkably increased their therapeutic efficacy and stability, elevating their applications in breast cancer therapy. Peptides can be developed using bioinformatics and high-throughput screening technologies to optimize pharmacokinetics and bioavailability. Despite their promise, peptides demonstrate challenges such as enzymatic degradation, limited stability, and high production costs. These obstacles can be addressed through strategies such as peptide cyclization, the employement of non-natural amino acids, and nanoparticle encapsulation. This review explores these recent advancements and strategies, providing ideal insights into the clinical potential of peptides in breast tumor therapy.
Collapse
Affiliation(s)
- Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Palma M. Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges. Vaccines (Basel) 2025; 13:344. [PMID: 40333213 PMCID: PMC12030785 DOI: 10.3390/vaccines13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge due to its complex biology, which complicates both diagnosis and treatment. Immunotherapy and cancer vaccines have emerged as promising alternatives, harnessing the body's immune system to precisely target and eliminate cancer cells. However, several key factors influence the selection and effectiveness of these therapies, including BC subtype, tumor mutational burden (TMB), tumor-infiltrating lymphocytes (TILs), PD-L1 expression, HER2 resistance, and the tumor microenvironment (TME). BC subtypes play a critical role in shaping treatment responses. Triple-negative breast cancer (TNBC) exhibits the highest sensitivity to immunotherapy, while HER2-positive and hormone receptor-positive (HR+) subtypes often require combination strategies for optimal outcomes. High TMB enhances immune responses by generating neoantigens, making tumors more susceptible to immune checkpoint inhibitors (ICIs); whereas, low TMB may indicate resistance. Similarly, elevated TIL levels are associated with better immunotherapy efficacy, while PD-L1 expression serves as a key predictor of checkpoint inhibitor success. Meanwhile, HER2 resistance and an immunosuppressive TME contribute to immune evasion, highlighting the need for multi-faceted treatment approaches. Current breast cancer immunotherapies encompass a range of targeted treatments. HER2-directed therapies, such as trastuzumab and pertuzumab, block HER2 dimerization and enhance antibody-dependent cellular cytotoxicity (ADCC), while small-molecule inhibitors, like lapatinib and tucatinib, suppress HER2 signaling to curb tumor growth. Antibody-drug conjugates (ADCs) improve tumor targeting by coupling monoclonal antibodies with cytotoxic agents, minimizing off-target effects. Meanwhile, ICIs, including pembrolizumab, restore T-cell function, and CAR-macrophage (CAR-M) therapy leverages macrophages to reshape the TME and overcome immunotherapy resistance. While immunotherapy, particularly in TNBC, has demonstrated promise by eliciting durable immune responses, its efficacy varies across subtypes. Challenges such as immune-related adverse events, resistance mechanisms, high costs, and delayed responses remain barriers to widespread success. Breast cancer vaccines-including protein-based, whole-cell, mRNA, dendritic cell, and epitope-based vaccines-aim to stimulate tumor-specific immunity. Though clinical success has been limited, ongoing research is refining vaccine formulations, integrating combination therapies, and identifying biomarkers for improved patient stratification. Future advancements in BC treatment will depend on optimizing immunotherapy through biomarker-driven approaches, addressing tumor heterogeneity, and developing innovative combination therapies to overcome resistance. By leveraging these strategies, researchers aim to enhance treatment efficacy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
| |
Collapse
|
3
|
Wen QE, Li L, Feng RQ, Li DH, Qiao C, Xu XS, Zhang YJ. Recent Advances in Immunotherapy for Breast Cancer: A Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:497-516. [PMID: 39220564 PMCID: PMC11365501 DOI: 10.2147/bctt.s482504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is one of the most common malignant tumors in women in the world, and its incidence is increasing year by year, which seriously threatens the physical and mental health of women. Triple negative breast cancer (TNBC) is a special molecular type of breast cancer in which estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 are negative. Compared with other molecular types of breast cancer, triple-negative breast cancer (TNBC) has high aggressiveness and metastasis, high recurrence rate, lack of effective therapeutic targets, and usually poor clinical treatment effect. Chemotherapy was the main therapeutic means used in the past. With the advent of the immune era, immunotherapy has made a lot of progress in the treatment of triple-negative breast cancer (TNBC), bringing new therapeutic hope for the treatment of triple-negative breast cancer. This review combines the results of cutting-edge medical research, mainly summarizes the research progress of immunotherapy, and summarizes the main treatment methods of triple-negative breast cancer (TNBC) immunotherapy, including immune checkpoint inhibitors, tumor vaccines, adoptive immunotherapy and the application of traditional Chinese and western medicine. It provides a new idea for the treatment of triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Liang Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - De-Hui Li
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Xiao-Song Xu
- Scientific research Center, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Yan-Jing Zhang
- Oncology Department II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
4
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
5
|
Jandick NA, Miller CL. Creation and characterization of a recombinant mammalian orthoreovirus expressing σ1 fusion proteins encoding human epidermal growth factor receptor 2 peptides. Virology 2023; 587:109871. [PMID: 37634292 PMCID: PMC10592078 DOI: 10.1016/j.virol.2023.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Mammalian orthoreovirus (MRV) is an oncolytic virus that has been tested in over 30 clinical trials. Increased clinical success has been achieved when MRV is used in combination with other onco-immunotherapies. This has led the field to explore the creation of recombinant MRVs which incorporate immunotherapeutic sequences into the virus genome. This work focuses on creation and characterization of a recombinant MRV, S1/HER2nhd, which encodes a truncated σ1 protein fused in frame with three human epidermal growth factor receptor 2 (HER2) peptides (E75, AE36, and GP2) known to induce HER2 specific CD8+ and CD4+ T cells. We show S1/HER2nhd expresses the σ1 fusion protein containing HER2 peptides in infected cells and on the virion, and infects, replicates in, and reduces survival of HER2+ breast cancer cells. The oncolytic properties of MRV combined with HER2 peptide expression holds potential as a vaccine to prevent recurrences of HER2 expressing cancers.
Collapse
Affiliation(s)
- Nicole A Jandick
- Molecular, Cellular, and Developmental Biology Interdepartmental Program, Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Cathy L Miller
- Molecular, Cellular, and Developmental Biology Interdepartmental Program, Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
8
|
Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics (Basel) 2022; 12:diagnostics12122981. [PMID: 36552988 PMCID: PMC9777080 DOI: 10.3390/diagnostics12122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. Therefore, along with technological advances, the vaccine design process is now starting to be carried out with more rational methods such as designing epitope-based peptide vaccines using immunoinformatics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen identification, protein structure analysis, T cell epitope prediction, epitope characterization, and evaluation of protein-epitope interactions. Tumor antigen can be divided into two types: tumor associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens using high-throughput technologies. Protein structure analysis comprises the physiochemical, hydrochemical, and antigenicity of the protein. T cell epitope prediction models are widely available with various prediction parameters as well as filtering tools for the prediction results. Epitope characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and toxicity predictors. Evaluation of protein-epitope interactions can also be carried out in silico with molecular simulation. We will also discuss current and future developments of breast cancer vaccines using an immunoinformatics approach. Finally, although prediction models have high accuracy, the opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution.
Collapse
|
9
|
Cruz-Gregorio A, Aranda-Rivera AK, Sciutto E, Fragoso G, Pedraza-Chaverri J. Redox state associated with antitumor and immunomodulatory peptides in cancer. Arch Biochem Biophys 2022; 730:109414. [PMID: 36174750 DOI: 10.1016/j.abb.2022.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Cancer, a major public health problem, is the fourth cause of death in the world. While cancer mortality has decreased in recent decades due to more effective treatments, mostly based on improving antitumor immunity, some forms of cancer are resistant to these immunotherapies. A promising approach for cancer treatment involves the administration of antitumor and immunomodulatory peptides. Immunomodulatory peptides have been proved to exert antitumor and immunomodulatory effects by activating immune cells such as cytotoxic T cells, with fewer side-effects. A process closely related to the regulation of the immune system by immunomodulatory antitumor peptides is the modulation of the redox state, which has been poorly studied. This review focuses on the redox state regulated by antitumor and immunomodulatory peptides in cancer development, and on the potential of redox state as a therapy associated with these peptides in cancer treatment.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Burn OK, Farrand K, Pritchard T, Draper S, Tang CW, Mooney AH, Schmidt AJ, Yang SH, Williams GM, Brimble MA, Kandasamy M, Marshall AJ, Clarke K, Painter GF, Hermans IF, Weinkove R. Glycolipid-peptide conjugate vaccines elicit CD8 + T-cell responses and prevent breast cancer metastasis. Clin Transl Immunology 2022; 11:e1401. [PMID: 35795321 PMCID: PMC9250805 DOI: 10.1002/cti2.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Objectives Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand
| | - Kathryn Farrand
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Tara Pritchard
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Sarah Draper
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Anna H Mooney
- Malaghan Institute of Medical Research Wellington New Zealand
| | | | - Sung H Yang
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Margaret A Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand.,School of Biological Sciences University of Auckland Auckland New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine University of Oxford Oxford UK
| | - Andrew J Marshall
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Kate Clarke
- Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| | - Gavin F Painter
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand.,Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| |
Collapse
|
11
|
Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42:231373. [PMID: 35638450 PMCID: PMC9272595 DOI: 10.1042/bsr20212051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
Collapse
|
12
|
Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 2022; 40:2409-2419. [DOI: 10.1016/j.vaccine.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
|
13
|
Abstract
Breast cancer has become the most commonly diagnosed cancer globally. The relapse and metastasis of breast cancer remain a great challenge despite advances in chemotherapy, endocrine therapy, and HER2 targeted therapy in the past decades. Innovative therapeutic strategies are still critically in need. Cancer vaccine is an attractive option as it aims to induce a durable immunologic response to eradicate tumor cells. Different types of breast cancer vaccines have been evaluated in clinical trials, but none has led to significant benefits. Despite the disappointing results at present, new promise from the latest study indicates the possibility of applying vaccines in combination with anti-HER2 monoclonal antibodies or immune checkpoint blockade. This review summarizes the principles and mechanisms underlying breast cancer vaccines, recapitulates the type and administration routes of vaccine, reviews the current results of relevant clinical trials, and addresses the potential reasons for the setbacks and future directions to explore.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Crews DW, Dombroski JA, King MR. Prophylactic Cancer Vaccines Engineered to Elicit Specific Adaptive Immune Response. Front Oncol 2021; 11:626463. [PMID: 33869008 PMCID: PMC8044825 DOI: 10.3389/fonc.2021.626463] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines have been used to prevent and eradicate different diseases for over 200 years, and new vaccine technologies have the potential to prevent many common illnesses. Cancer, despite many advances in therapeutics, is still the second leading causes of death in the United States. Prophylactic, or preventative, cancer vaccines have the potential to reduce cancer prevalence by initiating a specific immune response that will target cancer before it can develop. Cancer vaccines can include many different components, such as peptides and carbohydrates, and be fabricated for delivery using a variety of means including through incorporation of stabilizing chemicals like polyethylene glycol (PEG) and pan-DR helper T-lymphocyte epitope (PADRE), fusion with antigen-presenting cells (APCs), microneedle patches, and liposomal encapsulation. There are currently five cancer vaccines used in the clinic, protecting against either human papillomavirus (HPV) or hepatitis B virus (HBV), and preventing several different types of cancer including cervical and oral cancer. Prophylactic cancer vaccines can promote three different types of adaptive responses: humoral (B cell, or antibody-mediated), cellular (T cell) or a combination of the two types. Each vaccine has its advantages and challenges at eliciting an adaptive immune response, but these prophylactic cancer vaccines in development have the potential to prevent or delay tumor development, and reduce the incidence of many common cancers.
Collapse
Affiliation(s)
- Davis W Crews
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Brown TA, Mittendorf EA, Hale DF, Myers JW, Peace KM, Jackson DO, Greene JM, Vreeland TJ, Clifton GT, Ardavanis A, Litton JK, Shumway NM, Symanowski J, Murray JL, Ponniah S, Anastasopoulou EA, Pistamaltzian NF, Baxevanis CN, Perez SA, Papamichail M, Peoples GE. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res Treat 2020; 181:391-401. [PMID: 32323103 PMCID: PMC7188712 DOI: 10.1007/s10549-020-05638-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/08/2020] [Indexed: 12/03/2022]
Abstract
Purpose AE37 and GP2 are HER2 derived peptide vaccines. AE37 primarily elicits a CD4+ response while GP2 elicits a CD8+ response against the HER2 antigen. These peptides were tested in a large randomized trial to assess their ability to prevent recurrence in HER2 expressing breast cancer patients. The primary analyses found no difference in 5-year overall disease-free survival (DFS) but possible benefit in subgroups. Here, we present the final landmark analysis. Methods In this 4-arm, prospective, randomized, single-blinded, multi-center phase II trial, disease-free node positive and high-risk node negative breast cancer patients enrolled after standard of care therapy. Six monthly inoculations of vaccine (VG) vs. control (CG) were given as the primary vaccine series with 4 boosters at 6-month intervals. Demographic, safety, immunologic, and DFS data were evaluated. Results 456 patients were enrolled; 154 patients in the VG and 147 in CG for AE37, 89 patients in the VG and 91 in CG for GP2. The AE37 arm had no difference in DFS as compared to CG, but pre-specified exploratory subgroup analyses showed a trend towards benefit in advanced stage (p = 0.132, HR 0.573 CI 0.275–1.193), HER2 under-expression (p = 0.181, HR 0.756 CI 0.499–1.145), and triple-negative breast cancer (p = 0.266, HR 0.443 CI 0.114–1.717). In patients with both HER2 under-expression and advanced stage, there was significant benefit in the VG (p = 0.039, HR 0.375 CI 0.142–0.988) as compared to CG. The GP2 arm had no significant difference in DFS as compared to CG, but on subgroup analysis, HER2 positive patients had no recurrences with a trend toward improved DFS (p = 0.052) in VG as compared to CG. Conclusions This phase II trial reveals that AE37 and GP2 are safe and possibly associated with improved clinical outcomes of DFS in certain subgroups of breast cancer patients. With these findings, further evaluations are warranted of AE37 and GP2 vaccines given in combination and/or separately for specific subsets of breast cancer patients based on their disease biology.
Collapse
Affiliation(s)
- Tommy A Brown
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Breast Surgery, Department of Surgery, Breast Oncology Program, Brigham and Women's Hospital, Dana-Farber/Brigham and Women's Hospital, Boston, MA, USA
| | - Diane F Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - John W Myers
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Kaitlin M Peace
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Doreen O Jackson
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Julia M Greene
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Timothy J Vreeland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, San Antonio, TX, USA
| | - Alexandros Ardavanis
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - J Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Charlotte, NC, USA
| | - James L Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - E A Anastasopoulou
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - N F Pistamaltzian
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | | | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - George E Peoples
- Department of Surgery, Uniformed Services Health University, Bethesda, MD, USA. .,Cancer Vaccine Development Program, 1305 East Houston Street, San Antonio, TX, 78205, USA.
| |
Collapse
|
16
|
Abstract
Vaccines have had a profound impact on the management and prevention of infectious disease. In addition, the development of vaccines against chronic diseases has attracted considerable interest as an approach to prevent, rather than treat, conditions such as cancer, Alzheimer's disease, and others. Subunit vaccines consist of nongenetic components of the infectious agent or disease-related epitope. In this Review, we discuss peptide-based vaccines and their potential in three therapeutic areas: infectious disease, Alzheimer's disease, and cancer. We discuss factors that contribute to vaccine efficacy and how these parameters may potentially be modulated by design. We examine both clinically tested vaccines as well as nascent approaches and explore current challenges and potential remedies. While peptide vaccines hold substantial promise in the prevention of human disease, many obstacles remain that have hampered their clinical use; thus, continued research efforts to address these challenges are warranted.
Collapse
Affiliation(s)
- Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Michael F. Price Center for Translational Research, 1301 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
17
|
Clifton GT, Hale D, Vreeland TJ, Hickerson AT, Litton JK, Alatrash G, Murthy RK, Qiao N, Philips AV, Lukas JJ, Holmes JP, Peoples GE, Mittendorf EA. Results of a Randomized Phase IIb Trial of Nelipepimut-S + Trastuzumab versus Trastuzumab to Prevent Recurrences in Patients with High-Risk HER2 Low-Expressing Breast Cancer. Clin Cancer Res 2020; 26:2515-2523. [PMID: 32071118 DOI: 10.1158/1078-0432.ccr-19-2741] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Preclinical data provide evidence for synergism between HER2-targeted peptide vaccines and trastuzumab. The efficacy of this combination was evaluated in patients with HER2 low-expressing breast cancer in the adjuvant setting. PATIENTS AND METHODS A phase IIb, multicenter, randomized, single-blinded, controlled trial enrolled disease-free patients after standard therapy completion (NCT01570036). Eligible patients were HLA-A2, A3, A24, and/or A26+, and had HER2 IHC 1+/2+, FISH nonamplified breast cancer, that was node positive and/or hormone receptor-negative [triple-negative breast cancer (TNBC)]. Patients received trastuzumab for 1 year and were randomized to placebo (GM-CSF, control) or nelipepimut-S (NPS) with GM-CSF. Primary outcome was 24-month disease-free survival (DFS). Secondary outcomes were 36-month DFS, safety, and immunologic response. RESULTS Overall, 275 patients were randomized; 136 received NPS with GM-CSF, and 139 received placebo with GM-CSF. There were no clinicopathologic differences between groups. Concurrent trastuzumab and NPS with GM-CSF was safe with no additional overall or cardiac toxicity compared with control. At median follow-up of 25.7 (interquartile range, 18.4-32.7) months, estimated DFS did not significantly differ between NPS and control [HR, 0.62; 95% confidence interval (CI), 0.31-1.25; P = 0.18]. In a planned exploratory analysis of patients with TNBC, DFS was improved for NPS versus control (HR, 0.26; 95% CI, 0.08-0.81, P = 0.01). CONCLUSIONS The combination of NPS with trastuzumab is safe. In HER2 low-expressing breast cancer, no significant difference in DFS was seen in the intention-to-treat analysis; however, significant clinical benefit was seen in patients with TNBC. These findings warrant further investigation in a phase III randomized trial.
Collapse
Affiliation(s)
- G Travis Clifton
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Texas
| | - Diane Hale
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Texas
| | - Timothy J Vreeland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annelies T Hickerson
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, San Antonio, Texas
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi K Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason J Lukas
- Division of Oncology, Department of Medicine, University of Washington, Seattle Cancer Care Alliance, Issaquah, Washington
| | - Jarrod P Holmes
- Department of Medical Oncology, St. Joseph Health Cancer Center, Santa Rosa, California
| | - George E Peoples
- Department of Surgery, Uniformed Services Health University, Bethesda, Maryland.
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
18
|
Arab A, Yazdian-Robati R, Behravan J. HER2-Positive Breast Cancer Immunotherapy: A Focus on Vaccine Development. Arch Immunol Ther Exp (Warsz) 2020; 68:2. [PMID: 31915932 PMCID: PMC7223380 DOI: 10.1007/s00005-019-00566-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Clinical progress in the field of HER2-positive breast cancer therapy has been dramatically improved by understanding of the immune regulatory mechanisms of tumor microenvironment. Passive immunotherapy utilizing recombinant monoclonal antibodies (mAbs), particularly trastuzumab and pertuzumab has proved to be an effective strategy in HER2-positive breast cancer treatment. However, resistance to mAb therapy and relapse of disease are still considered important challenges in clinical practice. There are increasing reports on the induction of cellular and humoral immune responses in HER2-positive breast cancer patients. More recently, increasing efforts are focused on using HER2-derived peptide vaccines for active immunotherapy. Here, we discuss the development of various HER2-derived vaccines tested in animal models and human clinical trials. Different formulations and strategies to improve immunogenicity of the antigens in animal studies are also discussed. Furthermore, other immunotherapeutic approaches to HER2 breast cancer including, CTLA-4 inhibitors, immune checkpoint inhibitors, anti PD-1/PD-L1 antibodies are presented.
Collapse
Affiliation(s)
- Atefeh Arab
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, University of Waterloo, Waterloo, ON, Canada. .,Theraphage Inc., Kitchener, ON, Canada.
| |
Collapse
|
19
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
20
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
21
|
Lambda bacteriophage nanoparticles displaying GP2, a HER2/neu derived peptide, induce prophylactic and therapeutic activities against TUBO tumor model in mice. Sci Rep 2019; 9:2221. [PMID: 30778090 PMCID: PMC6379380 DOI: 10.1038/s41598-018-38371-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Generating a protective and long-lasting immune response is the primary goal in the expanding field of immunotherapeutic research. In current study we designed an immunogenic bacteriophage- based vaccine to induce a cytotoxic T lymphocyte activity against a mice tumor model over-expressing HER2/neu. Bacteriophage λ displaying a HER2/neu derived peptide GP2 was constructed and used as an anti-cancer vaccine in a BALB/c mouse xenograft tumor model. The results of our study indicated that phage nanoparticles displaying GP2 as a fused peptide to the gpD phage capsid protein induced a robust CTL response. Furthermore, the chimeric phage nanoparticles protected mice against HER2/neu-positive tumor challenge in both prophylactic and therapeutic settings. In conclusion, we propose that λ phage nanoparticles decorated with GP2 peptide merit further investigation for the development of peptide-based vaccines against HER2/neu overexpressing tumors.
Collapse
|
22
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
23
|
Abstract
Resistance to therapies and disease recurrences after surgery or treatment are common challenges in breast cancer management in clinic. Active immunotherapy using human epidermal growth factor receptor 2 (HER2)-targeted vaccines represents an attractive option in combating breast cancer. Different HER2-derived vaccines have been developed over the years. Many clinical trials have been carried out in evaluating HER2-based vaccines. The authors reviewed current literature on HER2-based vaccines in clinical trials. The trials covered in this mini-review represent some of the major trials published in the past 20 years regarding the clinical use and test of HER2 vaccines. Their focus is on trials using HER2 peptide vaccines as the majority of clinical trials initiated or published used HER2 peptide-based vaccines. Findings from combination therapy trials of HER2 peptide vaccines with other treatment modalities are also presented.
Collapse
Affiliation(s)
- Naipeng Cui
- 1 Department of Breast Surgery, Affiliated Hospital of Hebei University , Baoding, China
| | - Jianhong Shi
- 2 Central Laboratory, Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University , Baoding, China
| | - Chuanwei Yang
- 3 Breast Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
24
|
Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, Peoples GE. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget 2018; 7:66192-66201. [PMID: 27589688 PMCID: PMC5323226 DOI: 10.18632/oncotarget.11751] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
GP2 is a HER2-derived, HLA-A2+ restricted peptide. Phase I studies showed GP2 administered with GM-CSF to be safe and immunogenic. Here we report the primary analysis of a prospective, randomized, multicenter phase II adjuvant trial conducted to determine the vaccine's efficacy. The trial enrolled HLA-A2+, clinically disease-free, node-positive and high-risk node-negative breast cancer patients with tumors expressing HER2 (immunohistochemistry[IHC] 1+-3+). Patients were randomized to GP2+GM-CSF versus GM-CSF alone. Disease-free survival (DFS) was analyzed in intention-to-treat (ITT) and per-treatment cohorts; pre-specified subgroup analyses were performed for patients with IHC 3+ or FISH+ disease. The trial enrolled 180 patients; 89 received GP2+GM-CSF and 91 received GM-CSF alone. The groups were well-matched for clinicopathologic characteristics. Toxicities have been minimal. The Kaplan-Meier estimated 5-year DFS rate in the ITT analyses was 88% (95% CI:78-94%) in vaccinated vs. 81% (95% CI:69-89%) (P = 0.43) in control patients after a 34 month median follow-up. In the per-treatment analysis, the estimated 5-year DFS rates were 94% (95% CI:83-98%) and 85% (73-92%) (P = 0.17). In IHC 3+/FISH+ patients, the estimated 5-year DFS rate was 94% (82-98%) in vaccinated patients (n = 51) vs. 89% (71-96%) in control patients (n = 50), (P = 0.86) in the ITT analyses and 100% vs. 89% (71-96%) in vaccinated vs. control patients in the per-treatment analyses (P = 0.08). While the overall ITT analysis did not demonstrate benefit to vaccination, this trial confirmed that the GP2 vaccine is safe and suggests that vaccination may have clinical activity, particularly in patients with HER2 overexpression who received the full vaccine series (ie per-treatment group).
Collapse
Affiliation(s)
- Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandros Ardavanis
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan M Shumway
- Department of Hematology/Oncology, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Diane F Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - James L Murray
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, St. Savas Cancer Hospital, Athens, Greece
| | | |
Collapse
|
25
|
Synergistic tumoricidal effect of combined hPD-L1 vaccine and HER2 gene vaccine. Biochem Biophys Res Commun 2018; 497:394-400. [DOI: 10.1016/j.bbrc.2018.02.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
|
26
|
Li X, Bu X. Progress in Vaccine Therapies for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:315-330. [DOI: 10.1007/978-981-10-6020-5_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Costa RLB, Soliman H, Czerniecki BJ. The clinical development of vaccines for HER2 + breast cancer: Current landscape and future perspectives. Cancer Treat Rev 2017; 61:107-115. [PMID: 29125981 DOI: 10.1016/j.ctrv.2017.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a tumor associated antigen over-expressed in 20-30% of cases of breast cancer. Passive immune therapy with HER2-directed monoclonal antibodies (mabs) has changed the natural history of this subset of breast tumors both in the localized and metastatic settings. The safety and efficacy of HER2 vaccines have been assessed in early phase clinical trials but to date clinically relevant results in late phase trials remain an elusive target. Here, we review the recent translational discoveries related to the interactions between the adaptive immune system and the HER2 antigen in breast cancer, results of published clinical trials, and future directions in the field of HER2 vaccine treatment development.
Collapse
Affiliation(s)
- R L B Costa
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States.
| | - H Soliman
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| | - B J Czerniecki
- Lee Moffitt Cancer Center, Department of Breast Cancer, Tampa, United States
| |
Collapse
|
28
|
Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z, Hatamipour M, Reza Nikpoor A, Momtazi-Borojeni AA, Mosaffa F, Ghahremani MH, Jaafari MR. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One 2017; 12:e0185099. [PMID: 29045460 PMCID: PMC5646774 DOI: 10.1371/journal.pone.0185099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023] Open
Abstract
One of the challenging issues in vaccine development is peptide and adjuvant delivery into target cells. In this study, we developed a vaccine and therapeutic delivery system to increase cytotoxic T lymphocyte (CTL) response against a breast cancer model overexpressing HER2/neu. Gp2, a HER2/neu-derived peptide, was conjugated to Maleimide-mPEG2000-DSPE micelles and post inserted into liposomes composed of DMPC, DMPG phospholipids, and fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) containing monophosphoryl lipid A (MPL) adjuvant (DMPC-DMPG-DOPE-MPL-Gp2). BALB/c mice were immunized with different formulations and the immune response was evaluated in vitro and in vivo. ELISpot and intracellular cytokine analysis by flow cytometry showed that the mice vaccinated with Lip-DOPE-MPL-GP2 incited the highest number of IFN-γ+ in CD8+ cells and CTL response. The immunization led to lower tumor sizes and longer survival time compared to the other groups of mice immunized and treated with the Lip-DOPE-MPL-GP2 formulation in both prophylactic and therapeutic experiments. These results showed that co-formulation of DOPE and MPL conjugated with GP2 peptide not only induces high antitumor immunity but also enhances therapeutic efficacy in TUBO mice model. Lip-DOPE-MPL-GP2 formulation could be a promising vaccine and a therapeutic delivery system against HER2 positive cancers and merits further investigation.
Collapse
Affiliation(s)
- Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran Iran
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholizadeh
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Hosein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Clifton GT, Litton JK, Arrington K, Ponniah S, Ibrahim NK, Gall V, Alatrash G, Peoples GE, Mittendorf EA. Results of a Phase Ib Trial of Combination Immunotherapy with a CD8+ T Cell Eliciting Vaccine and Trastuzumab in Breast Cancer Patients. Ann Surg Oncol 2017; 24:2161-2167. [PMID: 28315060 DOI: 10.1245/s10434-017-5844-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND CD8+ T cell-eliciting vaccines are being investigated in breast cancer patients. Preclinical data showed that trastuzumab increases the susceptibility of tumor cells to lysis by vaccine-generated CD8+ T cells, suggesting potential benefit of a combination immunotherapy strategy. The current trial was undertaken to demonstrate the safety of this approach. METHODS This study was designed as a dose-escalation trial enrolling clinically disease-free, human leukocyte antigen A2+ or A3+ , human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients. Patients received 6-monthly inoculations of GP2+ granulocyte-macrophage colony-stimulating factor (GM-CSF) administered concurrently with standard-of-care trastuzumab. Local and systemic toxicity, as well as left ventricular ejection fraction (LVEF) were monitored. Immunologic responses were assessed in vivo by measuring the local reaction and in vitro using an interferon-γ enzyme-linked immunosorbent spot (ELISPOT) assay. RESULTS Seventeen disease-free breast cancer patients were vaccinated. There were no dose-limiting or grade 3-5 local or systemic toxicities, and the median LVEF was unchanged from baseline after vaccination. Mean local reaction at initial inoculation was 28 ± 10 mm, increasing to 68 ± 8 mm at the final inoculation (p < 0.01). Mean ELISPOT response to GP2 increased from 47 ± 19 at baseline to 144 ± 60 (p = 0.13) after vaccination. Based on safety and immunologic data, the appropriate dose was determined to be 1000 μg of GP2 + 250 μg of GM-CSF. CONCLUSION The GP2 + GM-CSF vaccine is safe and stimulates an immunologic response when administered concurrently with trastuzumab. An ongoing phase II trial is evaluating the efficacy of combining a CD8 T-cell-eliciting vaccine with trastuzumab in HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- G Travis Clifton
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Sathibalan Ponniah
- Cancer Vaccine Development Laboratory, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victor Gall
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George E Peoples
- Cancer Vaccine Development Program, San Antonio, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Ugen KE, Lin X, Bai G, Liang Z, Cai J, Li K, Song S, Cao C, Sanchez-Ramos J. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease. Hum Vaccin Immunother 2016; 11:922-30. [PMID: 25714663 DOI: 10.1080/21645515.2015.1012033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.
Collapse
Affiliation(s)
- Kenneth E Ugen
- a Department of Molecular Medicine ; University of South Florida; Morsani College of Medicine ; Tampa , FL USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schneble E, Clifton GT, Hale DF, Peoples GE. Peptide-Based Cancer Vaccine Strategies and Clinical Results. Methods Mol Biol 2016; 1403:797-817. [PMID: 27076168 DOI: 10.1007/978-1-4939-3387-7_46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Active cancer immunotherapy is an exciting and developing field in oncology research. Peptide vaccines, the use of isolated immunogenic tumor-associated antigen (TAA) epitopes to generate an anticancer immune response, are an attractive option as they are easily produced and administered with minimal toxicity. Multiple TAA-derived peptides have been identified and evaluated with various vaccine strategies currently in clinical testing. Research suggests that utilizing vaccines in patients with minimal-residual disease may be a more effective strategy compared to targeting patients with widely metastatic disease as it avoids the immune suppression and tolerance associated with higher volumes of more established disease. Clinical trials also suggest that vaccines may need to be tailored and administered to specific cancer subtypes to achieve maximum efficacy. Additionally, numerous immunomodulators now in research and development show potential synergy with peptide vaccines. Our group has focused on a simpler, single-peptide strategy largely from the HER2/neu protein. We will discuss our experience thus far as well as review other peptide vaccine strategies that have shown clinical efficacy.
Collapse
Affiliation(s)
- Erika Schneble
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA.
| | - G Travis Clifton
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
- Department of Surgical Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Diane F Hale
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
- San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - George E Peoples
- Cancer Insight, LLC, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA
| |
Collapse
|
32
|
Clifton GT, Mittendorf EA, Peoples GE. Adjuvant HER2/neu peptide cancer vaccines in breast cancer. Immunotherapy 2015; 7:1159-68. [PMID: 26567563 DOI: 10.2217/imt.15.81] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Active cancer immunotherapy remains an exciting and rapidly advancing field in oncology. Peptide cancer vaccines are an attractive therapeutic option as they are safe and easily produced and administered. Peptide cancer vaccines may be most effective in patients with a lower disease burden, when cancer tolerance is minimized. Our experience with three peptide cancer vaccines, E75, GP2 and AE37, in clinically disease-free breast cancer patients provides encouraging results that this method may be effective. Furthermore, the combined results of the initial trials suggest that the vaccine administered may need to be tailored to the specific subtype of cancer and tumor antigen expression level to achieve maximum effectiveness. The results also suggest that combining peptide vaccines with other immunotherapy may lead to a synergistic effect.
Collapse
Affiliation(s)
- Guy T Clifton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George E Peoples
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| |
Collapse
|
33
|
Peptide-Based Vaccination and Induction of CD8+ T-Cell Responses Against Tumor Antigens in Breast Cancer. BioDrugs 2014; 29:15-30. [DOI: 10.1007/s40259-014-0114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Shukla S, Wen AM, Commandeur U, Steinmetz NF. Presentation of HER2 epitopes using a filamentous plant virus-based vaccination platform. J Mater Chem B 2014; 2:6249-6258. [DOI: 10.1039/c4tb00749b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Occhipinti S, Sponton L, Rolla S, Caorsi C, Novarino A, Donadio M, Bustreo S, Satolli MA, Pecchioni C, Marchini C, Amici A, Cavallo F, Cappello P, Pierobon D, Novelli F, Giovarelli M. Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clin Cancer Res 2014; 20:2910-21. [PMID: 24668647 DOI: 10.1158/1078-0432.ccr-13-2663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite the great success of HER2 vaccine strategies in animal models, effective clinical results have not yet been obtained. We studied the feasibility of using DNA coding for chimeric rat/human HER2 as a tool to break the unresponsiveness of T cells from patients with HER2-overexpressing tumors (HER2-CP). EXPERIMENTAL DESIGN Dendritic cells (DCs) generated from patients with HER2-overexpressing breast (n = 28) and pancreatic (n = 16) cancer were transfected with DNA plasmids that express human HER2 or heterologous rat sequences in separate plasmids or as chimeric constructs encoding rat/human HER2 fusion proteins and used to activate autologous T cells. Activation was evaluated by IFN-γ ELISPOT assay, perforin expression, and ability to halt HER2+ tumor growth in vivo. RESULTS Specific sustained proliferation and IFN-γ production by CD4 and CD8 T cells from HER2-CP was observed after stimulation with autologous DCs transfected with chimeric rat/human HER2 plasmids. Instead, T cells from healthy donors (n = 22) could be easily stimulated with autologous DCs transfected with any human, rat, or chimeric rat/human HER2 plasmid. Chimeric HER2-transfected DCs from HER2-CP were also able to induce a sustained T-cell response that significantly hindered the in vivo growth of HER2(+) tumors. The efficacy of chimeric plasmids in overcoming tumor-induced T-cell dysfunction relies on their ability to circumvent suppressor effects exerted by regulatory T cells (Treg) and/or interleukin (IL)-10 and TGF-β1. CONCLUSIONS These results provide the proof of concept that chimeric rat/human HER2 plasmids can be used as effective vaccines for any HER2-CP with the advantage of being not limited to specific MHC. Clin Cancer Res; 20(11); 2910-21. ©2014 AACR.
Collapse
Affiliation(s)
- Sergio Occhipinti
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Laura Sponton
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Simona Rolla
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Cristiana Caorsi
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Anna Novarino
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Michela Donadio
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Sara Bustreo
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Maria Antonietta Satolli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Carla Pecchioni
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Cristina Marchini
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Augusto Amici
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Federica Cavallo
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Paola Cappello
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Daniele Pierobon
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Francesco Novelli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Mirella Giovarelli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| |
Collapse
|
37
|
Curigliano G, Spitaleri G, Dettori M, Locatelli M, Scarano E, Goldhirsch A. Vaccine immunotherapy in breast cancer treatment: promising, but still early. Expert Rev Anticancer Ther 2014; 7:1225-41. [PMID: 17892423 DOI: 10.1586/14737140.7.9.1225] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer vaccine-based immunotherapy should potentiate immunosurveillance function, preventing and protecting against growing tumors. Tumor cells usually activate the immune system, including T lymphocytes and natural killer cells, which are able to eliminate the transformed cells. Immunosubversion mechanisms related to tumor cells antigenic immunoediting induces mechanisms of tolerance and immunoescape. This condition impairs not only host-generated immunosurveillance, but also attempts to harness the immune response for therapeutic purposes. Most trials evaluating breast cancer vaccines have been carried out in patients in the metastatic and adjuvant setting. The aim of this review is to analyze the activity of vaccination strategies in current clinical trials. We summarize the differential approaches, protein-based and cell-based vaccines, focusing on vaccines targeting HER2/neu protein. Another focus of the review is to provide the reader with future challenges in the field, taking into account both the immunological and clinical aspects to better target the goal.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- European Institute of Oncology, Department of Medicine, Division of Medical Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines 2014; 10:755-74. [DOI: 10.1586/erv.11.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol 2013; 24:1740-1748. [PMID: 23585514 DOI: 10.1093/annonc/mdt133] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The use of anti-HER2 monoclonal antibodies (mAbs) has improved the clinical outcome of HER2-overexpressing breast cancers (BCs). Unfortunately, often these tumors tend to relapse and, when metastatic, the duration of clinical benefit is limited over time and almost invariably followed by tumor progression. Alternative approaches to this essentially passive immunotherapy are therefore needed in HER2-overexpressing BC patients. As HER2 is one of the most suitable targets for active immunotherapy in BC, manipulating the immune system is a highly attractive approach. MATERIAL AND METHODS A computer-based literature search was carried out using PubMed (keywords: breast neoplasm, HER2 vaccine, immunology); data reported at international meetings were included. RESULTS This review provides a focus on the following active vaccinal approaches under clinical investigation against HER2-overexpressing BC: (i) peptide and protein based; (ii) DNA based; (iii) whole tumor cell based; (iv) dendritic cell based. Moreover, the review discuss future challenges in the field, trying to define the best setting for the development of this innovative strategy, considering both immunological and clinical aspects of HER2 targeting. CONCLUSIONS Development of effective vaccines for BC remains a distinct challenge but is likely to become a substantial advance for patients with HER2-overexpressing BCs.
Collapse
Affiliation(s)
- A Milani
- Medical Oncology I, Institute for Cancer Research and Treatment (IRCC) Candiolo FPO (Fondazione del Piemonte per l'Oncologia); Department of Oncology, University of Torino Medical School, Candiolo
| | - D Sangiolo
- Medical Oncology I, Institute for Cancer Research and Treatment (IRCC) Candiolo FPO (Fondazione del Piemonte per l'Oncologia); Department of Oncology, University of Torino Medical School, Candiolo
| | - F Montemurro
- Medical Oncology I, Institute for Cancer Research and Treatment (IRCC) Candiolo FPO (Fondazione del Piemonte per l'Oncologia); Investigative Clinical Oncology Unit (INCO), Candiolo, Italy
| | - M Aglietta
- Medical Oncology I, Institute for Cancer Research and Treatment (IRCC) Candiolo FPO (Fondazione del Piemonte per l'Oncologia); Department of Oncology, University of Torino Medical School, Candiolo
| | - G Valabrega
- Medical Oncology I, Institute for Cancer Research and Treatment (IRCC) Candiolo FPO (Fondazione del Piemonte per l'Oncologia); Department of Oncology, University of Torino Medical School, Candiolo.
| |
Collapse
|
40
|
Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat 2013; 138:1-12. [PMID: 23340862 DOI: 10.1007/s10549-013-2410-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
Immunologic interventions in a subset of breast cancer patients represent a well-established therapeutic approach reflecting individualized treatment modalities. Thus, the therapeutic administration of monoclonal antibodies targeting tumor-associated antigens (TAA), such as Her-2/neu, represents a milestone in cancer treatment. However, passive antibody administration suffers from several drawbacks, including frequency and long duration of treatment. These undesirables may be avoidable in an approach based on generating active immune responses against these same targets. Only recently has the significance of tumors in relation to their microenvironments been understood as essential for creating an effective cancer vaccine. In particular, the immune system plays an important role in suppressing or promoting tumor formation and growth. Therefore, activation of appropriate triggers (such as induction of Th1 cells, CD8+ T cells, and suppression of regulatory cells in combination with generation of antibodies with anti-tumor activity) is a desirable goal. Current vaccination approaches have concentrated on therapeutic vaccines using certain TAA. Many cancer antigens, including breast cancer antigens, have been described and also given priority ranking for use as vaccine antigens by the US National Cancer Institute. One of the TAA antigens which has been thoroughly examined in numerous trials is Her-2/neu. This review will discuss delivery systems for this antigen with special focus on T and B cell peptide vaccines. Attention will be given to their advantages and limitations, as well as the use of certain adjuvants to improve anti-cancer responses.
Collapse
|
41
|
Kaumaya PTP, Foy KC. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol 2012; 8:961-87. [PMID: 22894670 DOI: 10.2217/fon.12.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ErbB family (HER-1, HER-2, HER-3 and HER-4) of receptor tyrosine kinases has been the focus of cancer immunotherapeutic strategies while antiangiogenic therapies have focused on VEGF and its receptors VEGFR-1 and VEGFR-2. Agents targeting receptor tyrosine kinases in oncology include therapeutic antibodies to receptor tyrosine kinase ligands or the receptors themselves, and small-molecule inhibitors. Many of the US FDA-approved therapies targeting HER-2 and VEGF exhibit unacceptable toxicities, and show problems of efficacy, development of resistance and unacceptable safety profiles that continue to hamper their clinical progress. The combination of different peptide vaccines and peptidomimetics targeting specific molecular pathways that are dysregulated in tumors may potentiate anticancer immune responses, bypass immune tolerance and circumvent resistance mechanisms. The focus of this review is to discuss efforts in our laboratory spanning two decades of rationally developing peptide vaccines and therapeutics for breast cancer. This review highlights the prospective benefit of a new, untapped category of therapies biologically targeted to EGF receptor (HER-1), HER-2 and VEGF with potential peptide 'blockbusters' that could lay the foundation of a new paradigm in cancer immunotherapy by creating clinical breakthroughs for safe and efficacious cancer cures.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- Departments of Obstetrics & Gynecology, OSU Wexner Medical Center, James Cancer Hospital & Solove Research Institute & the Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
42
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer's disease in APP+PS1 mice. PLoS One 2012; 7:e49468. [PMID: 23226497 PMCID: PMC3513317 DOI: 10.1371/journal.pone.0049468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Previously, our lab was the first to report the use of antigen-sensitized dendritic cells as a vaccine against Alzheimer's disease (AD). In preparation of this vaccine, we sensitized the isolated dendritic cells ex vivo with Aβ peptide, and administered these sensitized dendritic cells as a therapeutic agent. This form of cell therapy has had success in preventing and/or slowing the rate of cognitive decline when administered prior to the appearance of Aβ plaques in PDAPP mice, but has not been tested in 2 × Tg models. Herein, we test the efficacy and safety of this vaccine in halting and reversing Alzheimer's pathology in 9-month-old APP + PS1 mice. The results showed that administration of this vaccine elicits a long-lasting antibody titer, which correlated well with a reduction of Aβ burden upon histological analysis. Cognitive function in transgenic responders to the vaccine was rescued to levels similar to those found in non-transgenic mice, indicating that the vaccine is capable of providing therapeutic benefit in APP+PS1 mice when administered after the onset of AD pathology. The vaccine also shows indications of circumventing past safety problems observed in AD immunotherapy, as Th1 pro-inflammatory cytokines were not elevated after long-term vaccine administration. Moreover, microhemorrhaging and T-cell infiltration into the brain are not observed in any of the treated subjects. All in all, this vaccine has many advantages over contemporary vaccines against Alzheimer's disease, and may lead to a viable treatment for the disease in the future.
Collapse
Affiliation(s)
- Neel R. Nabar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Fang Yuan
- Chinese People Liberty Army General Hospital, Beijing, China
- Third Military Medical University, Chongqing, China
| | - Xiaoyang Lin
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Li Wang
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Ge Bai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Jonathan Mayl
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | | | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
43
|
Luo Z, Li J, Nabar NR, Lin X, Bai G, Cai J, Zhou SF, Cao C, Wang J. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer's mice. J Neuroimmune Pharmacol 2012; 7:640-55. [PMID: 22684353 DOI: 10.1007/s11481-012-9371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/17/2012] [Indexed: 01/12/2023]
Abstract
Despite FDA suspension of Elan's AN-1792 amyloid beta (Aβ) vaccine in phase IIb clinical trials, the implications of this study are the guiding principles for contemporary anti-Aβ immunotherapy against Alzheimer's disease (AD). AN-1792 showed promising results with regards to Aβ clearance and cognitive function improvement, but also exhibited an increased risk of Th1 mediated meningoencephalitis. As such, vaccine development has continued with an emphasis on eliciting a notable anti-Aβ antibody titer, while avoiding the unwanted Th1 pro-inflammatory response. Previously, we published the first report of an Aβ sensitized dendritic cell vaccine as a therapeutic treatment for AD in BALB/c mice. Our vaccine elicited an anti-Aβ titer, with indications that a Th1 response was not present. This study is the first to investigate the efficacy and safety of our dendritic cell vaccine for the prevention of AD in transgenic mouse models (PDAPP) for AD. We also used Immunohistochemistry to characterize the involvement of LXR, ABCA1, and CD45 in order to gain insight into the potential mechanisms through which this vaccine may provide benefit. The results indicate that (1) the use of mutant Aβ1-42 sensitized dendritic cell vaccine results in durable antibody production, (2) the vaccine provides significant benefits with regards to cognitive function without the global (Th1) inflammation seen in prior Aβ vaccines, (3) histological studies showed an overall decrease in Aβ burden, with an increase in LXR, ABCA1, and CD45, and (4) the beneficial results of our DC vaccine may be due to the LXR/ABCA1 pathway. In the future, mutant Aβ sensitized dendritic cell vaccines could be an efficacious and safe method for the prevention or treatment of AD that circumvents problems associated with traditional anti-Aβ vaccines.
Collapse
Affiliation(s)
- Zhongqiu Luo
- Department of Neurosurgery, Tianjin First Center Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS One 2012; 7:e43746. [PMID: 22916301 PMCID: PMC3423377 DOI: 10.1371/journal.pone.0043746] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR) binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC) molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab) library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu) peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2), with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with 64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT) imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.
Collapse
|
45
|
Clive KS, Tyler JA, Clifton GT, Holmes JP, Ponniah S, Peoples GE, Mittendorf EA. The GP2 peptide: a HER2/neu-based breast cancer vaccine. J Surg Oncol 2012; 105:452-8. [PMID: 22441896 DOI: 10.1002/jso.21723] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preclinical studies suggest that GP2, a HER2/neu-derived peptide, is immunogenic. Subsequent phase I clinical trials demonstrated that GP2-based vaccines are safe and effective in stimulating peptide-specific immunity. A GP2 peptide vaccine is currently being evaluated in a phase II efficacy trial enrolling breast cancer patients. This article reviews initial studies characterizing GP2, clinical trials investigating GP2-based vaccines, and novel immunotherapy strategies incorporating GP2 in combination with other peptides or with the monoclonal antibody trastuzumab.
Collapse
Affiliation(s)
- Kevin S Clive
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, Ft. Sam Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Martelli C, Borelli M, Ottobrini L, Rainone V, Degrassi A, Russo M, Gianelli U, Bosari S, Fiorini C, Trabattoni D, Clerici M, Lucignani G. In Vivo Imaging of Lymph Node Migration of MNP- and 111In-Labeled Dendritic Cells in a Transgenic Mouse Model of Breast Cancer (MMTV-Ras). Mol Imaging Biol 2011; 14:183-96. [DOI: 10.1007/s11307-011-0496-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine 2010; 28:7476-82. [DOI: 10.1016/j.vaccine.2010.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
|
48
|
Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59:1295-312. [PMID: 20532501 DOI: 10.1007/s00262-010-0869-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/11/2010] [Indexed: 12/24/2022]
Abstract
Each year, breast cancer accounts for more than 400,000 new cancer cases and more than 130,000 cancer deaths in Europe. Prognosis of nonmetastatic breast cancer patients is directly related to the extent of the disease, mainly nodal spreading and tumor size, and to the molecular profile, particularly HER2 over-expression. In patients with HER2-over-expressing tumors, different studies have shown cellular and/or humoral immune responses against HER2 associated with a lower tumor development at early stages of the disease. These findings have led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-over-expressing tumor growth. Taken together with the clinical efficiency of trastuzumab-based anti-HER2 passive immunotherapy, these observations allowed to envisage various vaccine strategies against HER2. The induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be either composed of tumoral allogenic cells or autologous cells, or specific to HER2. It can be delivered by dendritic cells or in a DNA, peptidic or proteic form. Another area of research concerns the use of anti-idiotypic antibodies mimicking HER2.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier1, Montpellier, France
| | | | | | | | | |
Collapse
|
49
|
Lekka E, Gritzapis AD, Perez SA, Tsavaris N, Missitzis I, Mamalaki A, Papamichail M, Baxevanis CN. Identification and characterization of a HER-2/neu epitope as a potential target for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:715-27. [PMID: 19904532 PMCID: PMC11030771 DOI: 10.1007/s00262-009-0791-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022]
Abstract
Our aim is to develop peptide vaccines that stimulate tumor antigen-specific T-lymphocyte responses against frequently detected cancers. We describe herein a novel HLA-A*0201-restricted epitope, encompassing amino acids 828-836 (residues QIAKGMSYL), which is naturally presented by various HER-2/neu (+) tumor cell lines. HER-2/neu(828-836), [HER-2(9(828))], possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent Class I binding assay. This peptide was stable for 3.5 h in an off-kinetic assay. HER-2(9(828)) was found to be immunogenic in HLA-A*0201 transgenic (HHD) mice inducing peptide-specific and functionally potent CTL and long-lasting anti-tumor immunity. Most important, using HLA-A*0201 pentamer analysis we could detect increased ex vivo frequencies of CD8(+) T-lymphocytes specifically recognizing HER-2(9(828)) in 8 out of 20 HLA-A*0201(+) HER-2/neu (+) breast cancer patients. Moreover, HER-2(9(828))-specific human CTL recognized the tumor cell line SKOV3.A2 as well as the primary RS.A2.1.DR1 tumor cell line both expressing HER-2/neu and HLA-A*0201. Finally, therapeutic vaccination with HER-2(9(828)) in HHD mice was proven effective against established transplantable ALC.A2.1.HER tumors, inducing complete tumor regression in 50% of mice. Our data encourage further exploitation of HER-2(9(828)) as a promising candidate for peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Eftychia Lekka
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Carmichael MG, Benavides LC, Holmes JP, Gates JD, Mittendorf EA, Ponniah S, Peoples GE. Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04. Cancer 2010; 116:292-301. [PMID: 19924797 DOI: 10.1002/cncr.24756] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND HER-2/neu, overexpressed in breast cancer, is a source of immunogenic peptides that include GP2 and E75. Phase 2 testing of E75 as an adjuvant vaccine has suggested a clinical benefit. GP2, derived from the transmembrane portion of HER-2/neu, has differing binding characteristics and may be more immunogenic than E75. Results of the first phase 1 trial of GP2 peptide vaccine are presented. METHODS Disease-free, lymph node-negative, human leukocyte antigen (HLA)-A2(+) breast cancer patients were enrolled. This dose escalation trial included 4 groups to determine safety and optimal GP2 peptide/granulocyte-macrophage colony-stimulating factor (GM-CSF) dose. Toxicities were monitored. Immunologic response was assessed ex vivo via the HLA-A2:immunoglobulin dimer assay to detect GP2-specific CD8(+) T cells (and E75-specific CD8(+) T cells to assess epitope spreading) and in vivo via delayed type hypersensitivity (DTH) reaction (medians/ranges). RESULTS Eighteen patients were enrolled. All toxicities were grade < or =2. Eight (88.9%) of 9 patients in the first 3 dose groups required GM-CSF dose reductions for local reactions > or =100 mm or grade > or =2 systemic toxicity. GM-CSF dose was reduced to 125 microg for the final dose group. All patients responded immunologically ex vivo (GP2-specific CD8(+) T cells from prevaccination to maximum, 0.4% [0.0%-2.0%] to 1.1% [0.4%-3.6%], P < .001) and in vivo (GP2 pre- to postvaccination DTH, 0 mm [0.0-19.5 mm] to 27.5 mm [0.0-114.5 mm, P < .001). E75-specific CD8(+) T cells also increased in response to GP2 from prevaccination to maximum (0.8% [0.0%-2.41%] to 1.6% [0.86%-3.72%], P < .001). CONCLUSIONS The GP2 peptide vaccine appears safe and well tolerated with minimal local/systemic toxicity. GP2 elicited HER-2/neu-specific immune responses, including epitope spreading, in high-risk, lymph node-negative breast cancer patients. These findings support further investigation of the GP2 vaccine for the prevention of breast cancer recurrence.
Collapse
Affiliation(s)
- Mark G Carmichael
- Cancer Vaccine Development Program, United States Military Cancer Institute, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|